イロト イヨト イヨト イヨト

æ

On Erdő's similarity problem and its variants

Chun-Kit Lai, San Francisco State University

Chun-Kit Lai, San Francisco State University On Erdő's similarity problem and its variants

Results I

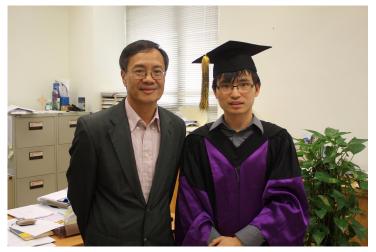
Main Result

イロト イヨト イヨト イヨト

э

990

Main Result



Dedictated to the Memory of Professor Ka-Sing Lau

Background

Results I

Main Result

Main Result

・ 回 ト ・ ヨ ト ・ ヨ ト

æ

Background

Chun-Kit Lai, San Francisco State University On Erdő's similarity problem and its variants

Definition

Let $E \subset \mathbb{R}^d$ be a set and let \mathcal{X} be a collection of subsets in \mathbb{R}^d .

1. An **affine copy** of *E* is a copy of the form t + T(E) where $t \in \mathbb{R}^d$ and *T* is an invertible linear transformation on \mathbb{R}^d .

• • = • • = •

• • = • • = •

Definition

Definition

Let $E \subset \mathbb{R}^d$ be a set and let \mathcal{X} be a collection of subsets in \mathbb{R}^d .

- 1. An **affine copy** of *E* is a copy of the form t + T(E) where $t \in \mathbb{R}^d$ and *T* is an invertible linear transformation on \mathbb{R}^d .
- 2. A **similar copy** of *E* is an affine copy such that $T = \lambda O$ where $\lambda > 0$ is a scalar and *O* is an orthogonal transformation.

向下 イヨト イヨト

Definition

Definition

Let $E \subset \mathbb{R}^d$ be a set and let \mathcal{X} be a collection of subsets in \mathbb{R}^d .

- 1. An **affine copy** of *E* is a copy of the form t + T(E) where $t \in \mathbb{R}^d$ and *T* is an invertible linear transformation on \mathbb{R}^d .
- 2. A **similar copy** of *E* is an affine copy such that $T = \lambda O$ where $\lambda > 0$ is a scalar and *O* is an orthogonal transformation.
- 3. We say that *E* is **universal** in \mathcal{X} if for every $K \in \mathcal{X}$, there exists an affine copy of *E*, t + T(E), such that $t + T(E) \subset K$.

向下 イヨト イヨト

Definition

Definition

Let $E \subset \mathbb{R}^d$ be a set and let \mathcal{X} be a collection of subsets in \mathbb{R}^d .

- 1. An **affine copy** of *E* is a copy of the form t + T(E) where $t \in \mathbb{R}^d$ and *T* is an invertible linear transformation on \mathbb{R}^d .
- 2. A **similar copy** of *E* is an affine copy such that $T = \lambda O$ where $\lambda > 0$ is a scalar and *O* is an orthogonal transformation.
- 3. We say that *E* is **universal in** \mathcal{X} if for every $K \in \mathcal{X}$, there exists an affine copy of *E*, t + T(E), such that $t + T(E) \subset K$.
- E.g. A bounded set is universal in $\mathcal{X} = \{\text{set with non-empty interior}\}$

Background oo●oooo	Results I 000000000	Main Result	Main Result
Measure univers	ality		

Definition

We say that P is measure universal if every set of positive Lebesgue measure contains an affine copy of P.

イヨトイヨト

Measure universality

Definition

We say that P is measure universal if every set of positive Lebesgue measure contains an affine copy of P.

Theorem (Steinhaus, 1920)

Let K be a measurable set of positive Lebesgue measure on \mathbb{R}^1 , and P be any finite sets. Then K contains an affine copy of P. Indeed, the set

$$\{x \in K : \exists \delta \neq 0 \ s.t. \ x + \delta P \subset E\}.$$

contains all Lebesgue points and has full Lebesgue measure.

> < 三 > < 三 >

臣

Main problem

Conjecture (Erdős Similarity conjecture, 1977) There exists no infinite measure universal sets.

Chun-Kit Lai, San Francisco State University On Erdő's similarity problem and its variants

• • = • • = •

Main problem

Conjecture (Erdős Similarity conjecture, 1977)

There exists no infinite measure universal sets.

"I hope there are no such sets"". Erdős

.

E

Main problem

Conjecture (Erdős Similarity conjecture, 1977)

There exists no infinite measure universal sets.

"I hope there are no such sets"". Erdős He bet \$100 for a proof.

Results I 000000000	Main Result	Main Result

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

0000000	COOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	000	OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC
Progress			

- 1. It is known that it suffices to consider $P = \{a_n\}$ is a decreasing sequence to 0.
- 2. Falconer (independently by Eigen) confirms the conjecture for x_n such that

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=1$$

This solves all polynomial/subexponential decay rate.

Progress	0000000	Results I 000000000	000	Main Result
	Progress			

- 1. It is known that it suffices to consider $P = \{a_n\}$ is a decreasing sequence to 0.
- 2. Falconer (independently by Eigen) confirms the conjecture for x_n such that

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=1$$

This solves all polynomial/subexponential decay rate.

3. Some generalization by Humke and Laczkovich (1999) and Kolountzakis (1997).

Background 0000●00	OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	Main Result	OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC
Progress			

- 1. It is known that it suffices to consider $P = \{a_n\}$ is a decreasing sequence to 0.
- 2. Falconer (independently by Eigen) confirms the conjecture for x_n such that

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=1$$

This solves all polynomial/subexponential decay rate.

- 3. Some generalization by Humke and Laczkovich (1999) and Kolountzakis (1997).
- 4. Kolountzakis showed that the conjecture is "almost surely" true: there exists $E \subset \mathbb{R}$ such that

$$F = \{(x, t) : x + tP \subset E\}$$

has two-dimensional Lebesgue measure 0.

Background 0000●00	OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	Main Result	OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC
Progress			

- 1. It is known that it suffices to consider $P = \{a_n\}$ is a decreasing sequence to 0.
- 2. Falconer (independently by Eigen) confirms the conjecture for x_n such that

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=1$$

This solves all polynomial/subexponential decay rate.

- 3. Some generalization by Humke and Laczkovich (1999) and Kolountzakis (1997).
- 4. Kolountzakis showed that the conjecture is "almost surely" true: there exists $E \subset \mathbb{R}$ such that

$$F = \{(x, t) : x + tP \subset E\}$$

has two-dimensional Lebesgue measure 0.

5. It is still open for $\{2^{-n} : n = 1, 2, ...\}$.

Background ○○○○○●○	Results I	Main Result	Main Result
measure uni	versal		
Other res	lta		

1. Bourgain (1987) showed that $S_1 + S_2 + S_3$ is not measure universal if S_i are infinite sets.

イヨトイヨト

æ

Background ○○○○○●○	Results I 000000000	Main Result	Main Result
measure univers	al		

- 1. Bourgain (1987) showed that $S_1 + S_2 + S_3$ is not measure universal if S_i are infinite sets.
- 2. Kolountzakis (1997) showed that $\{2^{-n}\} + \{2^{-n}\}$ is not measure universal.

A B K A B K

Background 00000●0	Results I 000000000	Main Result	Main Result
measure univers	al		

- 1. Bourgain (1987) showed that $S_1 + S_2 + S_3$ is not measure universal if S_i are infinite sets.
- 2. Kolountzakis (1997) showed that $\{2^{-n}\} + \{2^{-n}\}$ is not measure universal.
- 3. Gallagher, L. and Weber (2022) showed that Cantor sets with positive Newhouse thickness are not measure universal.

• • = • • = •

Background ○○○○○●○	Results I 000000000	Main Result	Main Result
	.1		

measure universai

Other results

- 1. Bourgain (1987) showed that $S_1 + S_2 + S_3$ is not measure universal if S_i are infinite sets.
- 2. Kolountzakis (1997) showed that $\{2^{-n}\} + \{2^{-n}\}$ is not measure universal.
- 3. Gallagher, L. and Weber (2022) showed that Cantor sets with positive Newhouse thickness are not measure universal.
- Bradford, Kohut and Mooroogen considered the problem "in the large". They showed that for any unbounded sequence of certain restricted increasing rate and p ∈ (0,1), there always exists L(E) > 0 such that L(E ∩ [x, x + 1]) ≥ p for all x ∈ ℝ and E does not contain an affine copy of this sequence.

伺下 イヨト イヨト

Background ○○○○○●○	Results I	Main Result	Main Result
measure universa			

- 1. Bourgain (1987) showed that $S_1 + S_2 + S_3$ is not measure universal if S_i are infinite sets.
- 2. Kolountzakis (1997) showed that $\{2^{-n}\} + \{2^{-n}\}$ is not measure universal.
- 3. Gallagher, L. and Weber (2022) showed that Cantor sets with positive Newhouse thickness are not measure universal.
- Bradford, Kohut and Mooroogen considered the problem "in the large". They showed that for any unbounded sequence of certain restricted increasing rate and p ∈ (0,1), there always exists L(E) > 0 such that L(E ∩ [x, x + 1]) ≥ p for all x ∈ ℝ and E does not contain an affine copy of this sequence.
- Improving this result, Keleti et al showed there exists a Lebesgue point in a set E such that there is no affine copy of {2⁻ⁿ} around that point.

Background ○○○○○○●	Results I 000000000	Main Result	Main Result
Related problem	าร		

- 1. (Keleti, 1999) There exists a compact set of H-dim 1 not containing arithmetic progression of 3-terms.
- 2. (Keleti, 2009) There exists a compact set of H-dim 1 not containing any affine copy of a given countable pattern.

4 3 4 4 3

Background ○○○○○●	Results I	Main Result	Main Result
Related problem	S		

- 1. (Keleti, 1999) There exists a compact set of H-dim 1 not containing arithmetic progression of 3-terms.
- 2. (Keleti, 2009) There exists a compact set of H-dim 1 not containing any affine copy of a given countable pattern.
- 3. (Davis, Mastrand and Taylor, 1906) There exists compact set of H-dim 0 such that it contains affine copies of all finite sets.

Background 000000●	Results I	Main Result	Main Result
Related problem	S		

- 1. (Keleti, 1999) There exists a compact set of H-dim 1 not containing arithmetic progression of 3-terms.
- 2. (Keleti, 2009) There exists a compact set of H-dim 1 not containing any affine copy of a given countable pattern.
- 3. (Davis, Mastrand and Taylor, 1906) There exists compact set of H-dim 0 such that it contains affine copies of all finite sets.
- 4. (Łaba and Pramanik, 2009) Suppose a set has a large H-dim and supports a measure with certain Fourier dimension condition. Then it contains 3-AP.

• • = • • = •

Background 000000●	Results I	Main Result	Main Result
Related problem	S		

- 1. (Keleti, 1999) There exists a compact set of H-dim 1 not containing arithmetic progression of 3-terms.
- 2. (Keleti, 2009) There exists a compact set of H-dim 1 not containing any affine copy of a given countable pattern.
- 3. (Davis, Mastrand and Taylor, 1906) There exists compact set of H-dim 0 such that it contains affine copies of all finite sets.
- 4. (Łaba and Pramanik, 2009) Suppose a set has a large H-dim and supports a measure with certain Fourier dimension condition. Then it contains 3-AP.
- 5. (Shmerkin, 2016) There exists Salem sets without 3-AP.

向下 イヨト イヨト

Background 000000●	Results I	Main Result	Main Result
Related problem	S		

- 1. (Keleti, 1999) There exists a compact set of H-dim 1 not containing arithmetic progression of 3-terms.
- 2. (Keleti, 2009) There exists a compact set of H-dim 1 not containing any affine copy of a given countable pattern.
- 3. (Davis, Mastrand and Taylor, 1906) There exists compact set of H-dim 0 such that it contains affine copies of all finite sets.
- 4. (Łaba and Pramanik, 2009) Suppose a set has a large H-dim and supports a measure with certain Fourier dimension condition. Then it contains 3-AP.
- 5. (Shmerkin, 2016) There exists Salem sets without 3-AP.
- 6. (Pramanik, Liang, 2022) A rationally independent compact set must have zero Fourier dimension.

向下 イヨト イヨト

Background

Results I

Main Result

Main Result

・日・ ・ ヨ・ ・ ヨ・

臣

Main Result

Bi-Lipschitz Embedding

Chun-Kit Lai, San Francisco State University On Erdő's similarity problem and its variants

• • = • • = •

Main Result

Let's consider **bi-Lipschitz maps**: $\exists L > 1$ such that

$$L^{-1}|x-y| \leq |f(x)-f(y)| \leq L|x-y|$$
 for all $x,y\in\mathbb{R}.$

Definition

We say that A is **bi-Lipschitz measure universal** if A can be bi-Lipschitz embedded into every measurable set of positive Lebesgue measures. i.e. for all $\mathcal{L}(E) > 0$, there exists bi-Lipschitz f such that $f(A) \subset E$.

Main Result

Main Result

伺 ト イヨト イヨト

1. Fast decaying sequences: Yes

Theorem (Feng, L. Xiong, 2023)

Let $(a_n)_{n=1}^{\infty}$ be a strictly decreasing sequence of positive numbers with $a_n \to 0$ as $n \to \infty$. If there exists an integer $N \ge 1$ such that

$$\limsup_{n\to\infty}\frac{a_{n+N}}{a_n}<1,$$

then for any measurable set $E \subset \mathbb{R}$ with positive Lebesgue measure, there exists a bi-Lipschitz map $f : \mathbb{R} \to \mathbb{R}$ such that $f(a_n) \in E$ for all $n \ge 1$ and f'(0) = 1.

.

2. Slow Decaying sequence: No!

Theorem (Feng, L. Xiong, 2023)

Let $(a_n)_{n=1}^{\infty}$ be a strictly decreasing sequence of positive numbers with $a_n \to 0$ as $n \to \infty$. If

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=1,$$

then there exists a compact set $E \subset \mathbb{R}$ with positive Lebesgue measure such that $(a_n)_{n=1}^{\infty}$ can not be bi-Lipschitz embedded into E.

We only work on N = 1. Assumption tells us that there exists $\delta < 1$ such that

$$\frac{a_{n+1}}{a_n} < \delta < 1.$$

i.e. $[\delta a_{n+1}, a_{n+1}] \cap [\delta a_n, a_n] = \emptyset$. Let $I_n = [\delta a_n, a_n]$.

・ 回 ト ・ ヨ ト ・ ヨ ト …

臣

We only work on N = 1. Assumption tells us that there exists $\delta < 1$ such that

$$\frac{a_{n+1}}{a_n} < \delta < 1.$$

i.e. $[\delta a_{n+1}, a_{n+1}] \cap [\delta a_n, a_n] = \emptyset$. Let $I_n = [\delta a_n, a_n]$.

Without loss of generality, assume 0 is the Lebesgue point. We have

$$\lim_{n\to\infty}\frac{\mathcal{L}(E\cap I_n)}{\mathcal{L}(I_n)}=1, \text{ or } \lim_{n\to\infty}\frac{\mathcal{L}(I_n\setminus E)}{\mathcal{L}(I_n)}=0.$$

• • = • • = •

We only work on N=1. Assumption tells us that there exists $\delta < 1$ such that

$$\frac{a_{n+1}}{a_n} < \delta < 1.$$

i.e. $[\delta a_{n+1}, a_{n+1}] \cap [\delta a_n, a_n] = \emptyset$. Let $I_n = [\delta a_n, a_n]$.

Without loss of generality, assume 0 is the Lebesgue point. We have

$$\lim_{n\to\infty}\frac{\mathcal{L}(E\cap I_n)}{\mathcal{L}(I_n)}=1, \,\, \text{or} \,\, \lim_{n\to\infty}\frac{\mathcal{L}(I_n\setminus E)}{\mathcal{L}(I_n)}=0.$$

If we pick a point $b_n \in I_n$ and define $f(a_n) = b_n$, we obtain a bi-Lipschitz map by linear interpolation. If we want to make sure f'(0) = 1, we pick b_n much closer to a_n as $n \to \infty$, which is possible by the density condition.

Proposition

Let $(a_n)_{n=1}^{\infty}$ be a strictly decreasing sequence of positive numbers with $a_n \to 0$ as $n \to \infty$. Suppose that

$$\sup_{m>n>1}\frac{a_{m-1}-a_m}{a_{n-1}-a_n}<\infty, \quad and \quad \limsup_{n\to\infty}\frac{a_{n+1}}{a_n}=1.$$

Then there exists a compact set $E \subset \mathbb{R}$ with positive Lebesgue measure such that $(a_n)_{n=1}^{\infty}$ can not be bi-Lipschitz embedded into E.

.

Sketch of Proof (Slow sequence):

Proposition

Let $(a_n)_{n=1}^{\infty}$ be a strictly decreasing sequence of positive numbers with $a_n \to 0$ as $n \to \infty$. Suppose that

$$\sup_{m>n>1}\frac{a_{m-1}-a_m}{a_{n-1}-a_n}<\infty, \quad and \quad \limsup_{n\to\infty}\frac{a_{n+1}}{a_n}=1.$$

Then there exists a compact set $E \subset \mathbb{R}$ with positive Lebesgue measure such that $(a_n)_{n=1}^{\infty}$ can not be bi-Lipschitz embedded into E.

$$\operatorname{im}_{n \to \infty} \frac{a_{n+1}}{a_n} = 1 \Longrightarrow \exists a_{n_k} \text{ such that}$$

 $\operatorname{lim}_{k \to \infty} \frac{a_{n_k+1}}{a_{n_k}} = 1, \text{ and } a_{n_k} - a_{n_{k+1}} \leq 2a_{n_m} - a_{n_{m+1}} \ \forall k > m.$

.

Background	Results I 000000●000	Main Result	Main Result
Sketch of P	roof (Slow sequen	ce):	

Assumption implies

$$a_n - a_{n+1} \leq C(a_m - a_{m+1})$$
 for all $n > m$.
 $\liminf_{n \to \infty} \frac{a_n - a_{n+1}}{a_n} = 0,$

Choose a subsequence $(n_k)_{k=1}^\infty$ such that

$$rac{a_{n_k} - a_{n_k+1}}{a_{n_k}} \leq k^{-2} 4^{-k} \quad ext{ for } \ k \geq 1.$$

Let

$$\ell_k = \lceil k/a_{n_k} \rceil, \ \delta_k = k(a_{n_k} - a_{n_k+1})$$

Then

$$\frac{1}{\ell_k} \leq \frac{a_{n_k}}{k} < \frac{2}{\ell_k}, \ \ell_k \delta_k < 2 \cdot 4^{-k}.$$

< E > < E >

臣

Background	Results I 0000000●00	Main Result	Main Result
Sketch of Proof	(Slow sequence):		

Define $E = \bigcap_{k=1}^{\infty} E_k$ where

$$egin{aligned} \mathsf{E}_k = [0,1] \setminus igcup_{j=0}^{\ell_k} \left(rac{j}{\ell_k} - rac{\delta_k}{2}, \; rac{j}{\ell_k} + rac{\delta_k}{2}
ight). \end{aligned}$$

 E_k is a union of intervals of length $\frac{1-\delta_k\ell_k}{\ell_k}$ and gap length δ_k .

回 とう ヨン う ヨン

크

Background	Results I	Main Result	Main Result
Sketch of Proof	(Slow sequence):		

Define $E = \bigcap_{k=1}^{\infty} E_k$ where

$$egin{aligned} E_k = [0,1] \setminus igcup_{j=0}^{\ell_k} \left(rac{j}{\ell_k} - rac{\delta_k}{2}, \; rac{j}{\ell_k} + rac{\delta_k}{2}
ight). \end{aligned}$$

 E_k is a union of intervals of length $\frac{1-\delta_k \ell_k}{\ell_k}$ and gap length δ_k . Suppose we can biLipschitz embed (a_n) into E (thus also E_k). 1. $\mathcal{L}(E) \ge 1 - \sum_{k=1}^{\infty} \mathcal{L}([0,1] \setminus E_k]) > 0.$

▶ ★ E ▶ ★ E ▶

Э

Background	Results I 0000000000	Main Result	Main Result
Sketch of Proof	(Slow sequence):		

Define $E = \bigcap_{k=1}^{\infty} E_k$ where

$$\mathsf{E}_k = [0,1] \setminus igcup_{j=0}^{\ell_k} \left(rac{j}{\ell_k} - rac{\delta_k}{2}, \; rac{j}{\ell_k} + rac{\delta_k}{2}
ight).$$

 E_k is a union of intervals of length $\frac{1-\delta_k \ell_k}{\ell_k}$ and gap length δ_k .

Suppose we can biLipschitz embed (a_n) into E (thus also E_k). 1. $\mathcal{L}(E) \ge 1 - \sum_{k=1}^{\infty} \mathcal{L}([0,1] \setminus E_k]) > 0.$

2. Upper Lipschitz bound: for all $m > n_k$ and k > CL

$$|b_m - b_{m+1}| \le L|a_m - a_{m+1}| \le CL|a_{n_k} - a_{n_{k+1}}| \le k(a_{n_k} - a_{n_{k+1}}) = \delta_k.$$

 $(b_m \text{ cannot jump the gap, so all } b_m \text{ all in one basic interval at stage } k$, so is its limit)

 Background
 Results I
 Main Result
 Main Result

 Sketch of Proof (Slow sequence):

Lower Lipschitz bound:

$$|b_{n_k} - b_{\infty}| \geq \frac{a_{n_k}}{L} \geq \frac{a_{n_k}}{k} > \frac{1}{\ell_k}$$

It must jump over some gaps of E_k , contradiction.

伺下 イヨト イヨト

臣

Background	Results I ○○○○○○○○●	Main Result	Main Result
Infinite limi	t points		

We also find a set with infinitely many limit points that are bi-Lipschitz measure universal.

Theorem (Feng, L. and Xiong, 2023)

Let $A = (a_n)_{n=1}^{\infty}$ be a sequence of positive numbers such that

$$a_1+\sum_{n=1}^{\infty}\frac{a_{n+1}}{a_n}<\frac{1}{8}$$

Then the set

$$F = \bigcup_{n=1}^{\infty} 3^{-n} (1+A)$$

is bi-Lipschitz measure universal.

Background	Results I ○○○○○○○○●	Main Result	Main Result
Infinite limi	t points		

We also find a set with infinitely many limit points that are bi-Lipschitz measure universal.

Theorem (Feng, L. and Xiong, 2023)

Let $A = (a_n)_{n=1}^{\infty}$ be a sequence of positive numbers such that

$$a_1+\sum_{n=1}^{\infty}\frac{a_{n+1}}{a_n}<\frac{1}{8}$$

Then the set

$$F = \bigcup_{n=1}^{\infty} 3^{-n} (1+A)$$

is bi-Lipschitz measure universal.

For the sake of time, we are not going to prove this theorem.

Background

Results I

Main Result ●○○

イロト イヨト イヨト イヨト

臣

Main Result

Main Results II: Cantor Sets

Chun-Kit Lai, San Francisco State University On Erdő's similarity problem and its variants

Background	Results I	Main Result ○●○	Main Result
Cantor sets			

Theorem (Gallagher, L. and Weber, 2022)

There exists a dense G_{δ} set G with $\mathcal{L}(\mathbb{R} \setminus G) = 0$ such that it does not contain any Cantor sets of positive Newhouse thickness.

Background	Results I	Main Result ○●○	Main Result
Cantor sets			

Theorem (Gallagher, L. and Weber, 2022)

There exists a dense G_{δ} set G with $\mathcal{L}(\mathbb{R} \setminus G) = 0$ such that it does not contain any Cantor sets of positive Newhouse thickness.

Definition (Newhouse thickness)

Let u be an endpoint of a bounded complement interval G of K. The bridge B is the interval until you hit the interval whose length is at least |G|

$$\tau(K, u) = \frac{|B|}{|G|}, \ \tau(K) = \inf \tau(K, u).$$

Background	Results I 000000000	Main Result ○●○	Main Result
Cantor sets			

Theorem (Gallagher, L. and Weber, 2022)

There exists a dense G_{δ} set G with $\mathcal{L}(\mathbb{R} \setminus G) = 0$ such that it does not contain any Cantor sets of positive Newhouse thickness.

Definition (Newhouse thickness)

Let u be an endpoint of a bounded complement interval G of K. The bridge B is the interval until you hit the interval whose length is at least |G|

$$\tau(K, u) = \frac{|B|}{|G|}, \ \tau(K) = \inf \tau(K, u).$$

Corollary

If a Cantor set is bi-Lipschitz measure universal, then it must have Newhouse thickness zero.

Chun-Kit Lai, San Francisco State University

Background	Results I 000000000	Main Result ○○●	Main Result
Contor sets			

Let K_1, K_2 be two Cantor sets such that $\tau(K_1)\tau(K_2) \ge 1$. Suppose that one is not contained in the gap of the other. Then $K_1 \cap K_2 \neq \emptyset$.

Sketch of Proof of GLW Theorem:

1. Let K_N be Cantor set with $\tau(K_n) \ge N$, $\operatorname{conv}(K_n) = [0, 1]$ and $\mathcal{L}(E) = 0$.

Background	Results I	Main Result ○○●	Main Result
Contor sets			

Let K_1, K_2 be two Cantor sets such that $\tau(K_1)\tau(K_2) \ge 1$. Suppose that one is not contained in the gap of the other. Then $K_1 \cap K_2 \neq \emptyset$.

Sketch of Proof of GLW Theorem:

- 1. Let K_N be Cantor set with $\tau(K_n) \ge N$, $\operatorname{conv}(K_n) = [0, 1]$ and $\mathcal{L}(E) = 0$.
- 2. Define

$$F = \bigcup_{N=1}^{\infty} \bigcup_{r \in \mathbb{Z}} \bigcup_{t \in \mathbb{Z}} N^{r}(K_{N}+t).$$

Background	Results I	Main Result ○○●	Main Result
Contor sets			

Let K_1, K_2 be two Cantor sets such that $\tau(K_1)\tau(K_2) \ge 1$. Suppose that one is not contained in the gap of the other. Then $K_1 \cap K_2 \neq \emptyset$.

Sketch of Proof of GLW Theorem:

- 1. Let K_N be Cantor set with $\tau(K_n) \ge N$, $\operatorname{conv}(K_n) = [0, 1]$ and $\mathcal{L}(E) = 0$.
- 2. Define

лно

$$F = \bigcup_{N=1}^{\infty} \bigcup_{r \in \mathbb{Z}} \bigcup_{t \in \mathbb{Z}} N^{r}(K_{N} + t).$$

3. Using Newhouse gap lemma, any Cantor sets of positive thickness must intersect *F*.

A B K A B K

Background	Results I	Main Result ○○●	Main Result
Contor sets			

Let K_1, K_2 be two Cantor sets such that $\tau(K_1)\tau(K_2) \ge 1$. Suppose that one is not contained in the gap of the other. Then $K_1 \cap K_2 \neq \emptyset$.

Sketch of Proof of GLW Theorem:

- 1. Let K_N be Cantor set with $\tau(K_n) \ge N$, $\operatorname{conv}(K_n) = [0, 1]$ and $\mathcal{L}(E) = 0$.
- 2. Define

лно

$$F = \bigcup_{N=1}^{\infty} \bigcup_{r \in \mathbb{Z}} \bigcup_{t \in \mathbb{Z}} N^{r}(K_{N} + t).$$

- 3. Using Newhouse gap lemma, any Cantor sets of positive thickness must intersect *F*.
- 4. $\mathcal{L}(F) = 0$, the complement is the desired set.

Background

Results I

Main Result

Main Result

伺下 イヨト イヨト

臣

Main Result

Main Results III: Topological universality

Chun-Kit Lai, San Francisco State University On Erdő's similarity problem and its variants

• • = • • = •

Topological universality

Definition

.

Topological universality

Definition

We say that a set $E \subset \mathbb{R}^d$ is **topologically universal** if E is universal in the collection of all dense G_δ sets in \mathbb{R}^d

1. a set of positive Lebesgue measure may be nowhere dense (e.g Fat Cantor sets).

.

Topological universality

Definition

- 1. a set of positive Lebesgue measure may be nowhere dense (e.g Fat Cantor sets).
- 2. a dense G_{δ} set may be of measure zero (e.g. Set of all Liouville's numbers, Hausdorff dimension 0 indeed!).

.

Topological universality

Definition

- 1. a set of positive Lebesgue measure may be nowhere dense (e.g Fat Cantor sets).
- 2. a dense G_{δ} set may be of measure zero (e.g. Set of all Liouville's numbers, Hausdorff dimension 0 indeed!).
- 3. All countable set are topologically universal.

• • = • • = •

Topological universality

Definition

- 1. a set of positive Lebesgue measure may be nowhere dense (e.g Fat Cantor sets).
- 2. a dense G_{δ} set may be of measure zero (e.g. Set of all Liouville's numbers, Hausdorff dimension 0 indeed!).
- 3. All countable set are topologically universal.
- 4. Sets with interior is not topologically universal.

• • = • • = •

Topological Erdős universality problem

Theorem (Gallagher, L. Weber, 2022)

There is no topologically universal Cantor sets on \mathbb{R}^d .

・ 同 ト ・ ヨ ト ・ ヨ ト

Topological Erdős universality problem

Theorem (Gallagher, L. Weber, 2022)

There is no topologically universal Cantor sets on \mathbb{R}^d .

Idea of the Proof:

- 1. For every gauge function g, there exists a dense G_{δ} set E such that $\mathcal{H}^{g}(E) = 0$.
- For every Cantor set K, there always exists a gauge function such that H^g(K) > 0.
- 3. Need Baire Category theorem to take care of all affine transformations.

• • = • • = •

Topological Erdős universality problem

This is a classical definition traced back to Borel.

Definition

A subset X of \mathbb{R} is a strong measure zero set if for each sequence $(\epsilon_n)_n$ of positive reals, there exists a sequence of intervals $(I_n)_n$ such that $X \subset \bigcup_{n \in \mathbb{N}} I_n$ and $|I_n| < \epsilon_n$.

向下 イヨト イヨト

Topological Erdős universality problem

This is a classical definition traced back to Borel.

Definition

A subset X of \mathbb{R} is a strong measure zero set if for each sequence $(\epsilon_n)_n$ of positive reals, there exists a sequence of intervals $(I_n)_n$ such that $X \subset \bigcup_{n \in \mathbb{N}} I_n$ and $|I_n| < \epsilon_n$.

Theorem (Galvin-Mycielski-Solovay, 1973)

A set is strong measure zero if and only for every meagre set M, $X + M \neq \mathbb{R}$.

Observation: A set A is topologically non-universal if and only if there exists a meager set M such that for all r > 0,

 $A + rM = \mathbb{R}.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

臣

Observation: A set A is topologically non-universal if and only if there exists a meager set M such that for all r > 0,

$A + rM = \mathbb{R}.$

(Reason: (\Leftarrow) \exists meager M such that $A \cap (rM + t) \neq \emptyset \ \forall r \neq 0$ and $t \in \mathbb{R}$)

・ 何 ト ・ ヨ ト ・ ヨ ト

Э

Observation: A set A is topologically non-universal if and only if there exists a meager set M such that for all r > 0,

 $A + rM = \mathbb{R}.$

(Reason: (\Leftarrow) \exists meager M such that $A \cap (rM + t) \neq \emptyset \ \forall r \neq 0$ and $t \in \mathbb{R}$)

Theorem (Jung and Lai, 2023 in preparation) A subset A of \mathbb{R} is topologically universal if and only if A is a set of strong measure zero.

イロト イポト イヨト イヨト

э

Background	Results I 000000000	Main Result	Main Result ○○○○○●○○○			
Topological Erdős universality problem						

Conjecture (Borel Conjecture)

There is no uncountable strong measure zero sets.

< E

Background	Results I 000000000	Main Result	Main Result ○○○○○●○○○			
Topological Erdős universality problem						

Conjecture (Borel Conjecture)

There is no uncountable strong measure zero sets.

Theorem **BC** *is independent of* **ZFC***.*

Topological Erdős universality problem

Conjecture (Borel Conjecture)

There is no uncountable strong measure zero sets.

Theorem

BC is independent of ZFC.

1. Consistency of negation of Borel Conjecture in **ZFC**. is proven by Sierpiński (1928).

Main Result

Conjecture (Borel Conjecture)

There is no uncountable strong measure zero sets.

Theorem

BC is independent of ZFC.

- 1. Consistency of negation of Borel Conjecture in **ZFC**. is proven by Sierpiński (1928).
- Consistency of Borel Conjecture in ZFC. was proven by Carlson (1993).

Topological Erdős universality problem

Conjecture (Borel Conjecture)

There is no uncountable strong measure zero sets.

Theorem

BC is independent of ZFC.

- 1. Consistency of negation of Borel Conjecture in **ZFC**. is proven by Sierpiński (1928).
- Consistency of Borel Conjecture in ZFC. was proven by Carlson (1993).

Theorem (Jung and L.)

Existence of uncountable topologically universal set is independent of **ZFC**.

A set A is full-measure non-universal if and only if there exists a meager set M, with $\mathcal{L}(M) = 0$ such that for all r > 0,

 $A + rM = \mathbb{R}.$

• (1) • (2) • (3) • (3) • (3)

A set A is full-measure non-universal if and only if there exists a meager set M, with $\mathcal{L}(M) = 0$ such that for all r > 0,

 $A + rM = \mathbb{R}.$

Theorem (Erdős-Kunen-Mauldin, 1981)

Let C be a Cantor set on \mathbb{R}^1 . Then there exists a Cantor set M with m(M) = 0 such that $C + M = \mathbb{R}$.

• • = • • = •

A set A is full-measure non-universal if and only if there exists a meager set M, with $\mathcal{L}(M) = 0$ such that for all r > 0,

 $A + rM = \mathbb{R}.$

Theorem (Erdős-Kunen-Mauldin, 1981)

Let C be a Cantor set on \mathbb{R}^1 . Then there exists a Cantor set M with m(M) = 0 such that $C + M = \mathbb{R}$.

• • = • • = •

Background

Results I

Main Result

イロト イヨト イヨト イヨト

æ

Main Result

Thank you for your time!

Chun-Kit Lai, San Francisco State University On Erdő's similarity problem and its variants

イロト イヨト イヨト イヨト

臣

A Week in the Life of a Mathematician

(with apologies to Michael Flanders and Donald Swann)

Twas on a Monday morning I had a bright idea, I was lying in the bath tub and the strategy seemed clear, For a problem posed by Erdös back in nineteen forty nine, On sequences dilated into subsets of the line

Twas on a Tuesday morning I jotted down my thoughts, I covered backs of envelopes with surds and aleph noughts. After several cups of coffee I began to feel inspired, And a lengthy calculation gave the answer I desired.

Twas on a Wednesday morning I wrote the details out. My lemmas and corollaries left little room for doubt. I filled up many pages just to get the logic right, And with epsilons and deltas I made it watertight.

Twas on a Thursday morning I typed the paper up, With "slash subset" and "slash mapsto" to say nothing of "slash cup". My LaTeXing was perfect, printed out it looked so good, Should I send it to the *Annals*? I rather thought I would!

Twas on a Friday morning I read the paper through, I checked out every detail as good authors ought to do. At the bottom of page twenty in an integral I found, I'd divided through by zero and the proof crashed to the ground.

On Saturday and Sunday I was too depressed to care, So 'twas on a Monday morning that I had my next idea.

KJF