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Background: Recurrence

Theorem (Poincaré Recurrence Theorem)

Let (X ,X ,µ,T ) be a m.p.s. Let A ∈X with µ(A)> 0. Then there exists
n ∈ N such that

µ(A∩T−nA)> 0.

Theorem (Birkhoff Recurrence Theorem)

Let (X ,T ) be a t.d.s. Then there exists x ∈ X and a sequence ni↗+∞

such that
T nix→ x, i→ ∞.

Multiple recurrence: T1,T2, . . . ,Td : X → X ,x ∈ X ,ni↗+∞

T ni
1 x→ x, T ni

2 x→ x, . . . , T ni
d x→ x, i→ ∞.

That is
(T1×T2× . . .×Td)

ni(x,x, . . . ,x)→ (x,x, . . . ,x).
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Minimal points and syndetic sets

Definition

A subset S of Z is syndetic if it has bounded gaps, i.e. there is some
N ∈ N such that {i, i+1, · · · , i+N}∩S 6= /0 for all i ∈ Z.

Theorem (Gottschalk-Hedlund, 1955)

Let (X ,T ) be a t.d.s. Then x ∈ X is a minimal point if and only if for any
neighborhood U of x,

NT (x,U) = {n ∈ Z : T nx ∈U}

is syndetic.
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Piecewise syndetic sets: M-system

Definition

A set S⊂ Z is called thick if it contains arbitrarily long intervals or,
equivalently, if it has nonempty intersection with every syndetic set.

A subset B of Z is called piecewise syndetic if it is the intersection of a
syndetic set and a thick set. That is, there is a syndetic subset S such that
∀L ∈ N, ∃aL s.t. aL +(S∩ [1,L])⊂ B.

Theorem

Let (X ,T ) be a t.d.s. x ∈ X . The minimal points are dense in Orb(T,x) if
and only if for any neighborhood U

N(x,U) = {n ∈ Z : T nx ∈U}

is piecewise syndetic.

In this case, Orb(T,x) is called M-system.
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van der Waerden Theorem: Multiple Recurrence

Theorem (Furstenberg-Weiss, J. Anal. Math., 1978 )

Let (X ,T ) be a t.d.s. and d ∈ N. Then there exists some x ∈ X and a
sequence ni↗+∞ such that

(T ×T 2× . . .×T d)ni(x,x . . . ,x)→ (x,x, . . . ,x), i→ ∞.

> If (X ,T ) is minimal, then the set of multiple recurrent points is residual.

Theorem (van der Waerden, 1927 )

For any r ∈ N and any partition Z=
⋃r

i=1Ci, one of Ci contains arbitrarily
long arithmetic progressions.

• van der Waerden: Any piecewise syndetic set contains arbitrarily long arithmetic

progressions.
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Polynomial van der Waerden theorem

Theorem (Bergelson-Leibman, JAMS, 1996)

Let (X ,T ) be a t.d.s. and d ∈ N. Suppose p1, p2, . . . , pd are integral
polynomials with p j(0) = 0, 1≤ j ≤ d. Then there exists some x ∈ X and
a sequence ni↗+∞ such that

(T p1(ni)×T p2(ni)× . . .×T pd(ni))(x,x . . . ,x)→ (x,x, . . . ,x), i→ ∞.

Theorem (Bergelson-Leibman, JAMS, 1996)

Let r,d ∈ N and suppose p1, p2, . . . , pd are integral polynomials with
p j(0) = 0, 1≤ j ≤ d. For any r ∈ N and any partition Z=

⋃r
i=1Ci, one of

Ci contains the form

{m+ p1(n),m+ p2(n), . . . ,m+ pd(n)},

where m,n ∈ Z,n 6= 0.
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Bergelson-Hindman Question

Question (Bergelson-Hindman, 2001)

Let B⊆ Z and k ∈ N, and let p1, p2, . . . , pk be integral polynomials with
pi(0) = 0,1≤ i≤ k. If B is piecewise syndetic in Z, then

{(m,n) ∈ Z2 : m+ p1(n),m+ p2(n), . . . ,m+ pk(n) ∈ B}

is piecewise syndetic in Z2.

Theorem (Furstenberg-Glasner, 1998)

Let B⊆ Z and k ∈ N. If B is piecewise syndetic in Z, then

{(m,n) ∈ Z2 : m,m+n, . . . ,m+(k−1)n ∈ B}

is piecewise syndetic in Z2.
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Piecewise syndetic sets

Definition

A subset S of a countable abelian group (G,+) is piecewise syndetic if it
is the intersection of a syndetic set and a thick set. That is, there exists a
finite subset F of G such that ⋃

i∈F

(S− i)

is thick in G, i.e. it contains a shifted copy of any finite subset of G.
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A question by Furstenberg

Furstenberg, Bulletin of AMS (1981)

Let (X ,T ) be a t.d.s. Does there always exist a point x such that

(x,x, . . . ,x) ∈ ∆d(X)

is a minimal point for T ×T 2× . . .×T d?

Theorem (Furstenberg, 1978)

Let (X ,T ) be a distal t.d.s. Then for each point x ∈ X , (x,x, . . . ,x) ∈ Xd is
a minimal point for T ×T 2× . . .×T d .
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A question by Furstenberg

Theorem (H.-Shao-Ye, ISR, 2022)

There is a minimal t.d.s. (X ,T ) such that for all p 6= q ∈N with (p,q) = 1,
and for any x ∈ X , (x,x) is a transitive but not minimal point of T p×T q.
In particular, this gives a negative answer to Furstenberg’s question!

Let G = SL(2,R) and Γ0 be a lattice of G. For t,s ∈ R let

ht =

(
1 t
0 1

)
, gs =

(
e−s 0
0 es

)
.

Then (X ,B(X),µ0,{ht}t∈R) is called the horocycle flow on X = G/Γ0 and
(X ,B(X),µ0,{gs}s∈R) is called the geodesic flow. If we denote h = h1,
then it is well known that (X ,B(X),µ0,h) is a strictly ergodic system.

gshtg−1
s = he−2st , ∀t,s ∈ R.
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A question by Furstenberg

Question

Let (X ,T ) be a minimal t.d.s. and d ∈ N. Is there a point x ∈ X such that
(x,x, . . . ,x) is T ×T 2× . . .×T d-piecewise syndetic recurrent? That is, for
any neighborhood U of x,

Nτd (x
(d),Ud) = {n ∈ Z+ : (T nx,T 2nx, . . . ,T dnx) ∈U× . . .×U}

is piecewise syndetic.

Theorem (H.-Shao-Ye, ISR, 2022)

Let (X ,T ) be a minimal t.d.s. and d ∈ N. Then for any nonempty open
set U of X , there is some x ∈U such that

Nτd (x
(d),Ud) = {n ∈ Z+ : (T nx,T 2nx, . . . ,T dnx) ∈U× . . .×U}

is piecewise syndetic.
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Question

Problem

Let (X ,T ) be a t.d.s. and d ∈ N. Let pi be integral polynomials with
pi(0) = 0, i = 1,2, . . . ,d. Is there a point x ∈ X such that for any
neighborhood U of x, is the set

N{p1,...,pd}(x,U) = {n ∈ Z : (T p1(n)x, . . . ,T pd(n)x) ∈U× . . .×U}

piecewise syndetic?
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Polynomial case

Theorem (H.-Shao-Ye, 2022)

Let (X ,T ) be a minimal t.d.s. and d ∈ N. Let pi be integral polynomials
with pi(0) = 0, i = 1,2, . . . ,d. If one of the following conditions is satisfied,

deg(pi)≥ 2,1≤ i≤ d;

(X ,T ) is weakly mixing;

(X ,T ) is distal,

then there is a dense Gδ set X0 such that for each x ∈ X0 and each
neighbourhood U of x

N{p1,...,pk}(x,U) = {n ∈ Z : (T p1(n)x, . . . ,T pd(n)x) ∈U× . . .×U}

is piecewise syndetic.
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Polynomial case

Theorem (H.-Shao-Ye, 2022)
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A combinatorial consequence

Theorem (H.-Shao-Ye, 2022)

Let d ∈ N and pi be an integral polynomial with pi(0) = 0, 1≤ i≤ d. If S
is piecewise syndetic in Z, then there is is piecewise syndetic subset A⊆ Z
such that for any N ∈ N, there is some aN ∈ Z with

A∩ [−N,N]⊆ {n ∈ Z : aN + p1(n),aN + p2(n), . . . ,aN + pd(n) ∈ S}.

Corollary (Bergelson-Leibman, 1996)

Let p1, p2, . . . , pd be integral polynomials with pi(0) = 0, 1≤ i≤ d. If S is
piecewise syndetic in Z, then

{n ∈ Z : ∃ a ∈ Z s.t. a+ p1(n),a+ p2(n), . . . ,a+ pd(n) ∈ S}

is piecewise syndetic in Z.
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Our results: Polynomial version of FG-Theorem

Theorem (H.-Shao-Ye, 2022)

Let B⊆ Z and k ∈ N, and let p1, p2, . . . , pk be integral polynomials with
pi(0) = 0,1≤ i≤ k. If B is piecewise syndetic in Z, then

{(m,n) ∈ Z2 : m+ p1(n),m+ p2(n), . . . ,m+ pk(n) ∈ B}

is piecewise syndetic in Z2.

Theorem (H.-Shao-Ye, 2022)

Let (X ,T ) be a minimal t.d.s. and k ∈ N. Let pi be an integral polynomial
with pi(0) = 0, 1≤ i≤ k. Then for each x ∈ X and each neighbourhood U
of x

NZ2

{p1,...,pk}(x,U) = {(m,n) ∈ Z2 : T m+p1(n)x ∈U, . . . ,T m+pk(n)x ∈U}

is piecewise syndetic in Z2.
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Topological dynamical systems induced by polynomials

H Let (X ,T ) be a t.d.s., A = {n2} and x ∈ X . Define

ωA
x = (T n2

x)n∈Z = (. . . ,T (−1)2
x,x
•
,T 12

x,T 22
x, . . .) ∈ XZ

HWA
x =O((T n2

x)n∈Z,σ)= {(. . . ,T (n−1)2x,T
•

n2x,T (n+1)2x, . . .) : n ∈ Z}⊂XZ,

H N∞(X ,A ) = O((T n2
x)n∈Z,〈T ∞,σ〉)

= {(. . . ,T m+(n−1)2x,T
•

m+n2x,T m+(n+1)2x, . . .) : n,m ∈ Z} ⊂ XZ,

where σ is the shift, T ∞ = · · ·×T ×T ×·· · , and 〈T ∞,σ〉 is the group
generated by T ∞ and σ .
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General case

I Let d ∈ N and A = {p1, p2, · · · , pd} be polynomials with pi(0) = 0,
1≤ i≤ d. The point of (Xd)Z is denoted by

x = (xn)n∈Z =
(
(x(1)n ,x(2)n , · · · ,x(d)n )

)
n∈Z
∈ (Xd)Z.

I Let σ : (Xd)Z→ (Xd)Z be the shift map, i.e., for all (xn)n∈Z ∈ (Xd)Z

(σx)n = xn+1, ∀n ∈ Z.

I For each x ∈ X , put

ω
A
x ,

(
(T p1(n)x,T p2(n)x, . . . ,T pd(n)x)

)
n∈Z ∈ (Xd)Z,

N∞(X ,A ) =
⋃
{O(ωA

x ,σ) : x ∈ X} ⊆ (Xd)Z.

I Note that (N∞(X ,A ),〈T ∞,σ〉) is a Z2-t.d.s.
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Condition (♠)

Definition

Let A = {p1, p2, . . . , pd} be a family of integral polynomials. We say A
satisfies condition (♠) if p1(0) = . . .= pd(0) = 0 and

1 p1(n) = a1n, p2(n) = a2n, . . . , ps(n) = asn, where s≥ 0, and
a1,a2, . . . ,as are distinct non-zero integers;

2 deg p j ≥ 2,s+1≤ j ≤ d;

3 any two of ps+1, . . . , pd will not appear in the same sequence(
q(n),q(n+1)−q(1),q(n+2)−q(2), . . . ,

)
for some integral

polynomial q with q(0) = 0.
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An equivalent statement: Density of Minimal points

Theorem

Let (X ,T ) be a minimal t.d.s. Then the following statements are
equivalent:

1 For any family A = {p1, p2, · · · , pd} of integral polynomials satisfying
(♠), (N∞(X ,A ),〈T ∞,σ〉) is an M-system.

2 For any integral polynomials p1, . . . , pd with pi(0) = 0, 1≤ i≤ d, we
have that for each x ∈ X and any neighbourhood U of x

NZ2

A (x,U) = {(m,n) ∈ Z2 : T m+p1(n)x ∈U, . . . ,T m+pd(n)x ∈U}

is piecewise syndetic in Z2.
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Saturation theorem for polynomials

Theorem (H.-Shao-Ye, 2022 (Glasner-H.-Shao-Weiss-Ye, JEMS))

Let (X ,T ) be a minimal t.d.s., and π : X → X∞ be the factor map from X
to its maximal ∞-step pro-nilfactor X∞. Then we have

X
ς∗←−−−− X∗yπ

yπ∗

X∞

ς←−−−− X∗∞

such that there is a T -invariant residual subset X∗0 of X∗ having the
following property: for all x ∈ X∗0 , for any non-empty open subsets
V1, . . . ,Vd of X∗ with π(x) ∈

⋂d
i=1 π∗(Vi) and essentially distinct

non-constant integral polynomials p1, p2, . . . , pd with pi(0) = 0,
i = 1,2, . . . ,d, there is some n ∈ N such that

x ∈ T−p1(n)V1∩T−p2(n)V2∩ . . .∩T−pd(n)Vd .
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Reducing to Pro-nilsystems

Theorem

Let (X ,T ) be a minimal pro-nilsystem. Let A = {p1, p2, . . . , pd} be a
family of non-constant essentially distinct integral polynomialswith
p1(0) = · · ·= pd(0) = 0. Then we have

1 The system (N∞(X ,A ),〈T ∞,σ〉) is a minimal pro-nilsystem.

2 For each x ∈ X , the system (O(ωA
x ,σ),σ) is a minimal pro-nilsystem.

Theorem (H.-Shao-Ye, 2022)

Let (X ,T ) be a minimal t.d.s. and let A = {p1, p2, · · · , pd} be an family of
integral polynomials satisfying (♠). Then (N∞(X ,A ),〈T ∞,σ〉) is an
M-system.
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Thank You!
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