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Settings @ v:tv @

Ax =y, (1)

® A: a compact linear operator acting between infinite dimensional Hilbert spaces X and .

lll-posedness of type Il in Nashed: R(A) # R(A).
® Deterministic noise model: [|y° — y| < 4.

Model (1) + y° = 2° (Regularization: 2% — 2 as § — 0.)

Variational regularization vs lterative regularization.

Tikhonov, Bakushinskiy, Yagola, Vainikko, Tautenhahn, etc.

i
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Asymptotic regularization © 4+ W

e Landweber iteration (min, ||Az — y||?):
xi+1 = xz + AtA*(y6 - Al‘i), CL'g =y, Ate (072/HAH2)7 (2)

® Asymptotic regularization (Showalter's method)

#(t) = A*(y* — A2°(t)) ®3)
e Holder-type source conditions: zf € R ((A*A)P) =
® QOrder optimal convergence rate & Morozov's discrepancy principle:
128(T,) — 2| = O(6251) and |T, = O 757)| as & — 0. (4)
® Generalized asymptotical regularization:
Dal(t) = A*(y’ — Az’ (1)) (5)
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2. Generalized asymptotical regularization
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Heavy ball model © + @

Motivation: fast dynamic for | min |[Az — y|* |
x

Heavy ball model

() + il (t) + A* Ax(t) = A%yP. (6)

The optimal convergence rate + damped symplectic integrators °.

Zhang Y, Hofmann B, On the second-order asymptotical regularization of linear ill-posed inverse problems.
Applicable Analysis, 2020, 99, 1000-1025.

® Holder-type source conditions: z' € R ((A*A)P) =

® Order optimal convergence rate & Total energy (Morozov's) discrepancy principle:
2°(T,) — 2t = O(6%%T) and T, = O 771) as §— 0.

i
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Literature on asymptotical regularization € v:tv G

® Bot & O. Scherzer [Foundations of Computational Mathematics, 2021; Optimization]

® S. Lu [The CSIAM Transactions on Applied Mathematics, 20; SIAM/ASA J. Uncertainty
Quantification, 2021]

®* W. Wang & Q. Jin [Inverse Problems, 2022; etc.]

® 7Y [Inverse Problems, 2018; IMA Journal of Applied Mathematics, 2019; Journal of
Computational and Applied Mathematics, 2020; Inverse Problems, 2020; SIAM Journal on
Imaging Sciences, 2021]

i
Ye Zhang (SMBU & BIT) Asymptotical Regularization 25 March 2023 7|45



Accelerated regularization © 4+ W

|2%(T.) — at|| = O(6%%T) and T, =O(5 %7) as & 0.

Accelerated regularization

An iterative/dynamical method is called an accelerated order-optimal regularization algorithm
if it exhibits the order-optimal convergence rate of the approximate solution, but requires far fewer

iterations than needed for an ordinary Landweber iteration/asymptotical regularization.
v

Acceleration factor

A method has an acceleration factor o if it is an order-optimal reg. algorithm under Hélder-type
-2
source conditions, and the iteration number/stopping time has the asymptotic O(§~ C+DEFD ),
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Acceleration asymptotical regularization © W

Fractional asymptotical regularization (~ Kaczmarz)

(“D§,2°) (t) + A*Ax°(t) = A*y®, D*2°(0) = bk, k=0,....,n— 1. )

2

Optimal accuracy |29 (T}) — @] = O(627¥1) + Time cost t* = O(5 7777 ) for p < 1 .

2Zhang Y, Hofmann B, On fractional asymptotical regularization of linear ill-posed problems in Hilbert spaces.
Fractional Calculus and Applied Analysis, 2019, 22, 699-721.

Second order asymptotical regularization (~~ Nesterov)

1+ 2s
t

i (t) + () + A*Ax(t) = A*y°, z(0) =z, £(0) =0, s>—1/2. (8)

Optimal accuracy |28 (T}) — @] = O(627¥1) + Time cost t* = O(5~ 771) 2.

2Gong R, Hofmann B, Zhang Y. A new class of accelerated regularization methods, with application to
bioluminescence tomography. Inverse Problems, 2020, 36, 055013.
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Super acceleration asymptotical regularization € v;L» G4

Super Acceleration Regularization of order n (SAR™). n>—1

ti%(t) + (¢ —n) 20(t) +t"TTAT A (t) + A* A2 (t) = A*y°,  (0) = 20, #(0)=0.  (9)

Optimal accuracy ||2%(T.) — 2t = (9(523%) + Time cost t* = 0(67<2P+1?<"+‘>) 2

Zhang Y. On the acceleration of optimal regularization algorithms for linear ill-posed inverse problems. Calcolo,
2022, 60(1).

v
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3. Stochastic Asymptotical Regularization
3.1. Introduction
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Stochastic Asymptotical Regularization (SAR) © 4+ @

SAR (linear: Az = y)

dx® = A*(y° — Ax®)dt + f(t)dB;, 2°(0) = o, (10)

where 2y € X is non-random, B, is an X-valued cylindrical Wiener process B, = >~ ;[ (t).
i=1

{u;}: the orthorgomal basis of X. {§3,}: independent R-valued Brownian motions.

?Ye Zhang, Chuchu Chen, Stochastic asymptotical regularization for linear inverse problems,
Inverse Problems, 39(1), 2022, 015007.

SAR (nonlinear: F(x) = y)
da® (t) = F'(2° (1)) [y° — F (z° (t))] dt + £ (¢)dBs,  2°(0) = 2o. F (11)

?Haie Long, Ye Zhang, Stochastic asymptotical regularization for nonlinear ill-posed problems, 2022.

* Goal: E(||a°(t*(8)) — xTHQ) — 0 as § — 0, and convergence rates?
i
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3. Stochastic Asymptotical Regularization

3.2. Simulations
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Uncertainty Quantification: | © W

s Stochastic asymptotical regularization
T T T T T T T
——Exact solution
Expectation of SAR
Lower bound of the 85% confidence interval
- - ~Upper bound of the 85% confi interval
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Figure: The expectation of SAR and the 85% confidence interval for problem (with § = 1%)

Azx(s) = /0 K(s,t)z(t)dt = y(s), K(s,t) =5(1—1t)xs<t + (1 — 8)Xs>t-

i
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Uncertainty Quantification: 1l © W

Stochastic asymptotical regularization
T T T T T T

TR

i,

Lower bound of the 70% confidence interval
Upper bound of the 70% confidence interval

2 L L L L L L L L L
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Figure: The expectation of SAR and the 70% confidence interval for problem (with § = 5%)

Ax(s) = /0 K(s,t)z(t)dt = y(s), K(s,t) =5(1—1t)xs<t + (1 — 8)xs>t.

i
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Nonlinear problem: the model problem © 4+ W

—Au+cu=w in €,

12
@ =0 on 09, (12)
on
Problem (12) can be described as
F(c)=ul(c) (13)

D(F) = {c € L*(Q) : [le — & y2(q < Co for some & > 0, a.e.}

F'(0)g=~A()" (aF (), F'(0)'w=—u(c)Ale) 'w,
where A (c): H>N D (F) — L? is defined by A (c)u = —Au + cu.

i L
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RMSE := E[||z" — 2[%]2, RMSR := E[||F(«}) — 4°||?]*.
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Merits of SAR @ —&_ @

In comparison with the Bayesian methods, our method has the following merits:

® The basic model is quite general. Though it is proposed in infinite dimensional Hilbert
spaces, it can be easily extended to some more general abstract spaces e.g. Banach spaces,
metric spaces. The Bayesian method is usually constructed in a finite Euclidian space. An
infinite dimensional generalization is difficulty since there is no Lebesgue measure on infinite
dimensional spaces.

® The operator equation serves as a deterministic model. The noise structure is almost
arbitrary, and we only require the noise level assumption for the noisy data. The Bayesian
method usually requires a strong assumption on the noise structure, e.g. the Gaussian noise.

® The Bayesian method requires a prior probability distribution of the exact solution
(unavailable in practice). Only in very special cases, e.g. a Gaussian prior, one can obtain the
closed form of the posteriori distribution. The requirements of SAR are much more slight: it
does not need any a priori distribution for the unknown z'. For rigorously quantifying the
uncertainty of the SAR solution, some source conditions of z' are required.

i L
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3. Stochastic Asymptotical Regularization

3.3. Uncertainty quantification of SAR
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Well-posedness of SAR © 4+ &

Proposition

For any f € L*°(R,.), the stochastic differential equation (50) has a unique mild solution
x°(t) € X, given by

t t
2o(t) = e~ 4 Aty —|—/ e~ AT A=) g* 0 s +/ e~ A A=) £(5)dB(s). (14)
0 0
The random variable % (t) is Gaussian on X with mean
* t *
Ex’(t) = e~ 4 4txg —|—/ e ATAl=) g* 0 s (15)
0

and variance operator given by

Var(a:‘s(t)) _ /t e_A*A(t_s)Qe_A*A(t_S)[f(S)]QdS. (16)

0

i
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Quantity ((z0(t*)) © 4+ @

£: Dirac delta distribution 55 at the point f

® |t is a unbounded linear functional on LQ(Rd). Smooth compactly supported functions are
dense in L2(R%), and the action of dz on such functions is well-defined.

o X = H"(R?) with r > d/2, og € H~"(R%) is a bounded linear functional on H"(R4).
°
.
El(z0(t*)) = <6A*At*xo —|—/ e ATAW =) A0 €> . (17)
0
.
Var(¢(z°)(t)) = < / e AL =) Qe A AL = [ (5)]2ds €, £> : (18)
0

i
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Moments @ —&_ @

® A set of points © = {F;};~, C R%.

® Uncertainty quantification of quantities {x°(t*,7)}]" .

¢
%; = B2 (t*,7%) = [e‘A*Atxo—l-/ e_A*A(t_S)A*y‘sds} (7%) (19)
0
¢ 2
oifVar t 7’2 qu uj Tz / 672/\j(t75)[f(5)}2d8' (20)
0
R P _ 1+p p 1 i2
O (% )
Ble’ (¢ )P = 2Ew -t (52 ) ofa (<555 ). (1)

where I'(:) and 1 F (-, -, ) are gamma function and Kummer's function of the first kind.
® Application in Biosensor Tomography.

L
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Confidence interval | @ —&_ @

° )A(z = %2?21 X5 and 81'2 = ﬁ Z;L:l(xivj — )A(Z)2
® 100(1 — )% confidence interval of Ex? (t*,7):

Ez’ (t*,7;) € {f{i - X+t

Si

n 1L,1-5— ~ \/~ n— 1,1—3\/E:| )
where ¢, _11_g represents the (1 — §)-th quantile of the t-distribution.
® By the asymptotic distributions of x;, the approximate formula for (22):

B A s s
Ea’ (t*,7) € |:Xi - |Za/2|7% X+ |Za/2\/%:| ; (23)

where z, /5 is the standard normal quantile. For a = 0.05, |24 /2| =~ 1.96.

L
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Confidence interval Il @ v&» @

Definition

®:(0,00) — (0,00) is called an index function if it is continuous and strictly increasing, and
limy_,0+ ©(A\) = 0. Let Z denote the set of all index functions.

Proposition

Suppose that zt, 2o € H"(R?) with r > d/2. Let 3, the solution of (50) without random term
(ie. f(t)=0)2. If
ngs(t*) - xTHH?‘(Rd) S Cas : QD((;)a (24)

where Cys is a constant and ¢ € Z. Then, there holds

P (J5 - o] < G- (G +9(0)) 21, (25)

1
n

where C; := max (tn71,17% - Sy |07, ||H7T(Rd)C’as).

25 | 45




Confidence interval @ —&_ @

Proposition

Consequently, if n = c1[¢(8)] =2 with a fixed ¢; > 0, then
P (J —o(7)] < Ci-0(6)) 21— 0 (26)

with C; := max (201_1/2&-, |07 ||H—r(Rd)Ca5>.
Furthermore, if « = ¢(8) with ¢ € Z, and n = [¢(6)] " In ([¢(6)] "), then

P (% — 2! (7)| < G 0(0)) > 1 - w(9), (27)

where C:'z ‘= max (2\/§si, |07 H—T(Rd)C’as).

i L
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Confidence interval @ —&_ @

Proposition

As a consequence, x; — x1(7;) in probability when § — 0.

Example

® 100(1 — )% confidence interval (with o = §7) of the estimate x; for IP (1) under
Holder-type source conditions 2 € R((A*A)P).

® By the standard argument, the inequality (24) holds with ¢(§) = §7. Hence, if we set
n = 3d2PIn(67), for small enough § it holds

P (| - a'(7)| < Ci-87) 2 1%,

i
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Error estimation | @ —&_ @

® Approximate lower/upper estimator.

o Si
= zapal 72 = CaslOr |- ey p(9), xi":= it B \F + Cas |07, | -+ (reyp () (28)
For fixed 0 the probability that xf(7) fall outside of the interval

[iz - Oas ||5FL

converges to 0 as n — 0.
® 100(1 — a)% confidence L3-error as

g-r@HP(0) , Xi + Cus| 07,

H—T(Rd)80(5)] [xi’xz]

A? = %Z(x —x})? (29)
® For a =1(6) and n = [p(8)]*In ([¢(8)]~") with ¢, 0 € T,
A< 2\/7}1 i_n: (V28; + Cas |67, || - T(Rd)) w(0) = 0as d — 0.

Ye Zhang (SMBU & BIT) Asymptotical Regularization 25 March 2023 28|45



Error estimation || @ 5 @

® Pointwise error estimate

Xl,u Xl,u Xl,ur xl,u r
L s s S i i+l T Al .
vt (r) = r , T E[rTiga], =1, ,m.
Tiv1 — T4 Tiy1 — T4

xl(r) <az(r)<z“(r), Vre R,

A(r) == z%(r) — 2l (r) = O (p(d)), VreR%
® for v =(6) and n = [p(8)] 2 In ([1*(6)] ") with ¥, ¢ € Z, for smoothing z' and a small
enough interval [r;,r;41], for all r € [r;,r;41] it holds

A(r) < max (x¥ —x}, xl ) —xt,,) <2 'E?‘lafi-(l} (\[28]' + Cas |07, ||H—T(Rd)) ~p(6) =0
je{ii

i L
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3. Stochastic Asymptotical Regularization

3.4. Regularization property of SAR
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Spectral analysis © 4+ @

® 19 € N(A)J‘
o {)\j;uj,vj};?‘;l: singular system for A: Au; = \jv;, A*v; = Aju;,
||A||:)\12)\222)\32)\]4_12*}035]4)00

o () = 5, & (t)u; + (1),
o E|z°(t) — zo||? < E||#°(t) — 20| for zg € N(A)* and 2(t) € N(A).

<dx5,uj> = (A*(y — Aa:‘s)dt,uﬁ + (f(t)dBe,uj), j=1,2,---. (30)

dg; (1) = (A {y”,v5) — A& (1)) dt + f(£)dB; (1), &(0) = (w0, uy). (31)

i
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Spectral analysis

Proposition

The stochastic differential equation (31) has a unique solution

-2t 1— et
§(t) = e "% (wo, u;) + ———
Aj

@ 2
(°,v;) + /0 e (%) f(s)dB, (s),

where [/ e~ 5(t=9) £(5)dpB; (s) is Gaussian N (0, N e=2Xj(t=9) [f(s)]2d3>. &;(t) is also Gaussian

with mean

_22¢ 1-— e_AJgt F)
B (1) = 4w, u5) + T {9 ) (3)
j

and variance .
E(6(t) ~ B&(0)° = [ 209l (s)ds (33)

0

(v° ;)
Consequently, if f € S, then &;(t) ~ N (y/\ijJ,O) ast — 0.
25 March 2023 32145
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Regularization © + @

Regularized solution

22(t) = 3, &ty =

t
2°(t) = (1 — A*Ag(t, A*A))zo + g(t, A*A) A*y® + / e~ A" AW=9) £(5)dB;, (34)
0
1—e M
g(t,\) = — (35)

v

Theorem on Regularization

If the terminating time t* = t*(6,%°) is chosen so that

limt* =00, limd-¢* =0, (36)
6—0 6—0

the 9(t*) converges to x' in the sense of mean square as § — 0.
o

i L
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Proof @ v}l\ @

* El|lz°(t) — 21| = |[E2®(t) — 27| + E[l2° () — E2°()|*.

[E2’(t) — 2| = [Ir(t, A" A)(zo — o) + g(t, A" A)A*(y° — y)| (37)
< le7t Az — 2t) || + vt1/25,
where we have used
.
lg(t, A"A)A* () =)l < sup Vgt Ny’ =yl <6 sup  ——— < 921/,
€0, AlI2) re(o A2 VA
where ¥ = sup,cg, VA — e*) ~ 0.6382. Hence,
||Em6(t) —z'| =0 as &—0. (38)
® |to-isometry: E Hfo = Ef(f lg(s)|I>ds + f(t) e S =
. 2
Ell2? () - B (0)]1 e~ A f(5)aB, | (39)
71Ef [[e=A"AC= S)f || dstEf tr(e=2A"AU=9)[f(5)]?)ds — 0
. as t — oo. .
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3. Stochastic Asymptotical Regularization

3.5. Convergence rates with noisy data
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Convergence rates with noisy data © 4+ W

A priori stopping rule

Let 2°(t) be solution of (50) with f(t) € Sc.4. Then, under the source condition
xo — 2t = p(A* A)v, ||v]| < p,p € So,, if t* = O71() with O(t) = t~/2p(t~ 1), we have

Ela’(t*) — 2> = O([p((© () 7H)]*) as 0.

If o = ,(A) = AP, we have E[z°(t*) — t||2 = O(57T)
If o = (A) =log #(1/)), we have E||z?(t*) — 2T||> = O(log (67 1)).

Proof.
El|lz?(t) — z'||? = ||Bz®(t) — z'||*> + E[|z°(¢) — E«’(2)||?
< (e 4" A(zo — zh)|| + 19151/25)2 +E [} tr(e 24 A9 f(s)]?)ds (40)
< 2CFp*[p(1/1)) + 20%t6° + C2[p(1/1)]2.
O
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Convergence rates with noisy data © 4+ W

® Discrepancy principle:
tii=inf{t >0:x(t) <0}, i=1,2 (41)

K2

xi(t) = A2’ (t) — o’ =78, xa(t) :=E[|A2’(t) —¢°|I* — 76%,  f(t) e S, 7> 1L

Existence

If ||[Azg — y®| > 76, there always exists a unique ¢ in (41).

A posteriori stopping rule, f(t) € Sc.¢
(i) Under the Holder-type source conditions ¢,:

=0 (5*2#) and  E|5(t") —2t2=0 (57) . (42)

(i) Under the logarithmic source conditions ¢,

=0 (5-# 1og—ﬁ(5*1)) and E[a’(t") — 2|2 = O (log 2*(67Y)).  (43)

i L
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3. Stochastic Asymptotical Regularization

3.6. Converse results and the best worst case mean square error
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Converse results @ —&_ @

® Spectral tail:

wA) = Y (wo—at,u;)uy. (44)
J: )\§<)\
lAl2
|Ex(t) — | = / M (N), (45)

Convergence rates with exact data and converse results

Let p € §Z,. Then, the following two statements are equivalent:
(i) |Ex(t) — 2t|* < Csp(1/t) forall t > 0.

(i) w(X) < Cyp(A) forall A > 0.

If f € Sc./z, every one of above statements is also equivalent to:

(ii)) E||a(t) — 2| < Csp(1/t) for all t > 0.

i L
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Remark @ — 3(\ @

® The following two statements are equivalent:
(i) There exists a constant C' > 0 with

w(A) < C® (X)) forall A > 0.
(ii) There exists a constant C}, > 0 such that
(o — zh,2)| < Cyllp(L*L)z||”||z||*™ for all z € X. (46)

® 19—l € R(1¥(A*A)) implies the variational inequality.
e Conversely the variational inequality implies that the relation 2y — =7 € R(¢(L*L)) holds
for every continuous function ¢ with ¥ > cp# for ¢ > 0 and u € (0,v).

i L
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The best worst case mean square error

® Bs(y) ={g€Y: l§—yll <4}
® z(t;9): solution of (50) with y° replaced § € Bs(y).

Convergence rates

Let ¢(1/-) = ¢(-) € 8¢ and denote by ¢(t) = /t~16(t) and 1)(5) = 626~ (9).

Then, the following two statements are equivalent:
(a) There exists a constant ¢ > 0 such that

sup infE|z(t,9) — 2> < cyp(8) forall § > 0.
GEBs (y) =0

(b) There exists a constant ¢ > 0 such that

E|jz(t) — zT||> < ép(t) for all t > 0.

Ye Zhang (SMBU & BIT) Asymptotical Regularization
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3. Stochastic Asymptotical Regularization

3.7. Discrepancy principle
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Discrepancy principle

Stochastic discrepancy principle for two stochastic regularization methods, namely

® Optimal stopping time
t* =min{t>0: ||[Az(t) — Yo < KO},
for generalized stochastic asymptotical regularization:
dz® = ¢(A*A)A* (y° — Ax®)dt + f(t)dB(t),
® QOptimal stopping iteration
k* =min{k >0: ||Az) — P < KO},
for generalized stochastic Landerweber iteration:

zh =) + QAT A)A*(y° — Ax)) + wi1,

Ye Zhang (SMBU & BIT) Asymptotical Regularization

K>1,
2°(0) = xo
Kk>1,
2°(0) = o,
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Discrepancy principle € v:t\ G

Theorem (Hint: &* is a martingale)

Assume that

o)) €[5, 81, VAG(N) <7, A6(N) < 1, dnf AP) >0, e <nd. (53)
€(a,
Then, ;
* on — T ”2 . 2 *
< — = 0.
E(k*) < 52 , %1_1)%6 E(k*(0)) =0 (54)
Assume further that
e < mpd?. (55)
Then, we have
lim E(||zx- — z'||) = 0. (56)
6—0 )
Proof.
Doob's optional stopping theorem + inequalities. ]
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Thank you for your attention!
Questions?
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