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Meta-material

» A Material made of artificially designed atoms

» exhibit new material properties that cannot be found in nature.
(the Greek word ‘meta’ means beyond.)

» A new paradigm of materials sciences.
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atom
Ordinary Materials Meta-materials

(made of atoms) (made of small artificial structures)

figures from wikipedia.org
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Designing Meta-materials

» Controlling physical waves in subwavelength scales overcoming the diffraction limit

( Electro-Magnetic, Acoustic, Elastic Waves )

» How? : use sub-wavelength resonators
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wave fronts
A Sub-wavelength Resonance: a small ordinary scatterer a sub-wavelength resonator
a resonance of a structure whose size — a negligible scattering — 3 strong scattering

is small compared to wavelength

» Examples of meta-materials : negative refraction, cloaking, super-resolution,
topological waveguides and so on---
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Acoustic Metamaterials

» Depending on the geometry of structures, meta-materials can have very different macroscopic
behaviors
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» A series of mathematical works on meta-materials
(by Habib Ammari, Bryn Davies, Brian Fitzpatrick, David Gontier, Erik O. Hiltunen, Hyundae Lee, SY, Hai Zhang)

Super-resolution imaging, Negative Refraction, High frequency homogenization,

Dirac Points in Honeycomb Crystals, Topological edge states,
Absorbing Metasurfaces, Exceptional points, Fano Resonances, etc..
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Localization of waves by defects

» In this talk, we focus on the localization of waves by defects

1. Point defect (SIAP 2018) 2. Line defect (JEMS 2022)
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(joint works with H. Ammari, B. Fitzpatrick, E.O. Hiltunen)

» Previous works: A. Figotin, A. Krein, V. Goren, M.A. Hoefer, M.l. Weinstein, ---

> not valid for high-contrast coeff PDEs (hence not vaid for metamaterials)
> mostly qualitative, quantitative results only for low-contrast coeffs PDE

» We develop an integral equation approach to characterize the defect modes
motivated by the Fictitious Sources Superposition method (Wilcox et al, PRE 2005)

> valid for general-contrast coeff PDEs (including metamaterials)
> quantitative characterization
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Acoustic Scattering by Bubbles

» Problem formulation
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mass density distribution bulk modulus distribution

» Bubbles satisfy the high-contrast condition 0 < 1
(breakdown of the ellipticity when 6 — 0)
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air bubbles (2 Q
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u : pressure field

p=1r=1

w : frequency

u(x,t) ~ u(x)e ™"



Resonances of Acoustic Bubbles

» Resonances : suppose that, for some frequency w”, there exists air bubbles Q
a non-trivial solution ©™ to the scattering problem i Q
with no incident wave Q
( 1 * * 21 * .
V-(;Vu)Jr(w);u =0 in R? (d = 2,3), p=1,k=1

= O(|x|_(d+1)/2) as |z| — oo.

)
d|£l?| W u

Then w*is called the resonance frequency

\

u” is called the resonance mode

. . . o 1
» it can be considered as the eigenvalue problem of the elliptic operator — xkV .-V
P

( — KV - %V)u* = (w*)*u*

small frequency w <1
or

» sub-wavelength resonances: large wavelength A > 1
a resonance mode ™ with a small resonance frequency w* _————~_ .
h O\/
<+—>
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Acoustic Scattering by Bubbles (integral equation)

» Integral Equation approach

- Green’s function for (homogenous) Helmholtz equation: (A + wQ)G“’ = Jp

ezw|:zz|

G (z) = —%Hél)(wkc —y)) (D) G(@) =~ (3D

- Single layer potential
Salel = | @ —y)plu)doly) for o € 120

- The scattered field can be represented using the single layer potentials

Y u'™ + SY[1)] in R?\ Q
Sg ] in

» How can we determine the source density functions (v, ¢)?
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Acoustic Scattering by Bubbles (integral equation)

» Integral Equation

« The source density functions satisfy
Sw _Sw © Uin‘aQ
0 (7) = (o —sas,) (7) = (o)

» Resonances (integral equation formulation)

- We look for a frequency w™ such that there exists a nontrivial solution (¢™,9™) to

e (5)-(0

- w* is the resonance frequency

0+S8 [1*] inRY\Q
S [#*] in

*

 (©*,1") gives the resonance mode {
u =
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Sub-wavelength Resonances of Bubbles

» It can be shown that a bubble can have a “sub-wavelength” resonance whose resonance frequency

is small when the high contrast parameter ¢ is small

» a single bubble case

* sub-wavelength resonance frequency wg

B Capg% ,Cap?z s
ws = 4/ 0 J ZSW‘Q‘5+O<5) as 0 — 0

Capg, : capacity associated to the domain ()

* A single bubble is a strong monopole scatterer

Capg

(u — u'™)(x) ~ u'™(0)G¥(x), for large |z|.
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— “a bubble is a good
sub-wavelength resonator”
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Subwavelength localized modes for acoustic waves

1. Point defect (SIAP 2018) 2. Line defect (JEMS 2022)
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(joint works with H. Ammari, B. Fitzpatrick, E.O. Hiltunen)
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Localized Modes by Defects

» Before considering the defects, let us briefly review wave propagation
in the perfectly periodic structures

O O €9
O0C

periodic (no defect)
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Localized Modes by Defects
- Point Defect Case

» a perfectly periodic structure Bloch waves
v(z) = w(x)e'™®, w: periodic in Y

« : Bloch momentum

( 1 w2 —
Pws Rw V:—Vv+ —v=0 in Y\D7
Pw R
1 2
OO0 et
Pb Kb
Y vli-v|_=0 on 8D,
1
pw OV |,  ppOV|_
; | e %y is periodic.

» Integral equation formulation

_)SpTv] in Y\D N e\ [ 8% ~SH ) (goo‘) B (O)
! {S%[gpo‘] in D A w) (¢a> = (a,,sg|_ 650,55, ) Lo ) = \o

Here, S5 is the quasi-periodic single layer potential with the kernel G**(z) = Z G¥(x —n)e™®
n€R?
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Localized Modes by Defects
- Point Defect Case

» We begin with a perfectly periodic crystal

: 5.0 ——
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Lok
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a=(m,7) (¥

We can prove that a band-gap opens in the sub-wavelength regime
(in the band-gap, waves cannot propagate)

- the first sub-wavelength band
(waves can propagate)
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Localized Modes by Defects
- Point Defect Case

» We next introduce a point defect !

» No periodicity — the Bloch wave analysis is not directly applicable

» We apply an integral equation approach to characterize the defect modes
motivated by the Fictitious Sources Superposition method (Wilcox et al, PRE 2005)
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Localized Modes by Defects
- Point Defect Case

» STEP 1 Fictitous Sources Characterization

@@@m elel=
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1
V-~ Vut+Zu=0 in R2\Cy, V. —Vi+24=0 in R2\C,
Pw Raw Pw K
1 w? , 1. w?. :
V:-—Vu+—u=0 in (4, V:-—Viu+ —u=0 in C,
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- geometry : non-periodic - geometry : periodic

. . - interface conditions: fictitious sources at
- interface conditions: standard

central bubble
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Localized Modes by Defects
- Point Defect Case

» STEP 1 Fictitous Sources Characterization

OO @
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 — H"—S%d[wd] inY\D—d
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(A+w) )H=0inY
where

o ()
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Localized Modes by Defects

- Point Defect Case

» STEP 1 Fictitous Sources Characterization

O O &

SOICHOR

000 &

_JH+8p, e inY\Dy
'Slc%d [g@d] in Dd

(A+w )H=0inY

O O &m

= H + S [v] inY \ D
Sple] in D
(A+w?’ )H=0inY

000 ¢

where In order to mimic the defect, we want to have
H w w w w
Ap, (i;l) = (ay ]5?; ) the same scattered waves Sp,[val = Splel S5, [1ba] = SB[
for the same incident waves H
S(f)d —S%ld Ap = D S
Apq (0 Shal- —50u81‘%d\+) b \a,,sgy_ —00,8%|+ )
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Localized Modes by Defects
- Point Defect Case

» STEP 1 Fictitous Sources Characterization

@@@m elel==
QQQ& QQQL

- It is possible to construct the operator AfDiCt on the unperturbed bubble 0D
which mimics the behavior of the defect bubble operator Ap,

S« ¢d = S¥% w . .
A (cpd> _ ( H|sp, > iet (9 _ Hlon ljd[ ] 13[ | in apPrODrlate
"\ 0y H|op, b\ OvHlop Spyleal = Splyp]  resions
the same incident waves the same scattered waves
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Localized Modes by Defects

- Point Defect Case

» STEP 1 Fictitous Sources Characterization

OO @
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e\ _( Hlop —f
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So the fictitious sources (f, g) should satisfy
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Localized Modes by Defects
- Point Defect Case

» STEP 2 Quasi-periodization by Floquet-Bloch transform

fezm a’ge
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fr9 |
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— a quasi-periodic problem!
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Localized Modes by Defects
- Point Defect Case

» STEP 2 Quasi-periodization by Floquet-Bloch transform

femOé

Q Q pw,nw apply the Floquet-Bloch transform O O ‘pw Ko

-0 Q;Q
olele

Flu](z, a)

Z i(x — m)e™®

OO0

 [H+S88[y] mY\D aa:{sg’“[w“] in Y\ D
YT sy in D Sple®] D

()= @ fut 2 (0) () = (5)

(271T)2 /BZ u*(z, a)do

apply the inverse transform

FU () =
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Localized Modes by Defects
- Point Defect Case

» STEP 3 Integral equation for fictitious sources

elel=
D00 ¢

STEP 1
(AfDict —Ap) (z) _ («5) integral equation for fictitious sources
fic 1 o\ — f B 0
STEP 2 (1~ Ay [, (a07taa) (1) = ()
2 — 1 / Aoz —1 (f) d
(¢> (27)2 BZ( ) g “ Gohberg-Sigal theory can be applied
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Localized Modes by Defects

- Point Defect Case

Main results 1T (H. Ammari, B. Fitzpatrick, E. Hiltunen & S.Y., SIAP 2018)

- the existence of the the defect localized mode:
1. dilute case: the defect should be smaller
2. non-dilute case: the defect should be larger

- the quantitative asymptotic formula:

A2 R3w*
d *
w® —wr ~exp | —c as 0 — 0
p( "5(Rs— R)
where w* := maxw{
(8
5.0 ———
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X ]\I/f T X
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Localized Modes by Defects

- Line Defect Case
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» periodic in the Zi-direction — the Bloch wave decomposition w.r.t. 1

- reduced to the problem on the single strip Y,

» On the single strip Y, the defect bubble D, is a point defect

— the fictitious sources method can be applied

(14 (3 [ 0 am) e - a0 (1) - )

» the defect mode propagates in the Z1-direction

and localized in the o -direction — the guided modes along the line defect
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- Line Defect Case

Main result 2 (H. Ammari, E. Hiltunen & S.Y., JEMS 2022)

Localized Modes by Defects

- the existence of the line defect guided mode

- the quantitative asymptotic formula for the dispersion relation:

w (1) ~ w*(aq) +

where w*(aq)
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Conclusion

1. We quantitatively characterized the defect modes (point defect & line defect)
at deep sub-wavelength scales

2. asymptotic formulas are useful for optimal geometry design of defect modes

3. numerical illustrations validating theoretical results

4. future works: topologically protected guided modes

Sanghyeon Yu (Korea Univ.)

27



Sanghyeon Yu (Korea Univ.)

Thank you
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