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The column subset selection problem

The column subset selection problem (CSSP) refers the task of using the
column submatrix to approximate the column space of a given matrix A.

The column subset selection problem (CSSP)

Given a matrix A = [a1,...,a4] € R and a positive integer k, the column
subset selection problem (CSSP) aims to find a subset S C {1, ..., d} of size
k, such that the approximation error ||A — AsALA”g is minimized, where £ = 2
or F denotes the spectral or Frobenius norm, respectively.
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The column subset selection problem

The column subset selection problem (CSSP) refers the task of using the
column submatrix to approximate the column space of a given matrix A.

The column subset selection problem (CSSP)

Given a matrix A = [a1,...,a4] € R and a positive integer k, the column
subset selection problem (CSSP) aims to find a subset S C {1, ..., d} of size
k, such that the approximation error ||A — AsALA”g is minimized, where £ = 2
or F denotes the spectral or Frobenius norm, respectively.

As € R™K : the column submatrix of A consisting of columns
indexed in the k-subset S C {1, ...,d}.

A; e Rkxn : the Moore-Penrose pseudoinverse of As

AsALA € R™ : a low rank approximation to A by projecting all the

columns of A to the column space of As.

A — ASALA € R the residual error matrix.
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Why we consider CSSP?

Advantages of CSSP
@ take advantage of the sparsity of the input matrix
@ make the computed results easy to interpret in terms of the input matrix.
Applications
@ machine learning
scientific computing
signal processing
summarizing population genetics
testing electronic circuits
recommendation systems
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In this talk | will mainly focus on the spectral norm version of the CSSP.

The spectral norm version of CSSP

Given a matrix A € R"*? and a positive integer k < rank(A), we aim to find a
k-subset S C [d] := {1,...,d} such that the approximation error
|A — AsALA| 2 is minimized over all possible () choices for the k-subsets S.

The CSSP is shown to be NP-hard.

We mainly focus on finding a k-subset S such that the approximation error
[|A — AsASA||- is well upper bounded.
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Historical background
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Historical background

Prior work mainly focuses on finding a k-subset S C [d] such that the
approximation error ||A — ASALAH% satisfies the multiplicative bound

|A — AsALA|S < p(k,d) - | A — ALf3,

where p(k,d) > 1is a function on kand d, and Ax = Zﬁ;l ouv; is the best
rank k approximation.
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Historical background

@ The algorithm (Gu and Eisenstat, 1996) based on rank-revealing QR
decomposition gives an efficient deterministic algorithm with the
multiplicative bound

IA — AsASA|3 < (1 + c*k(d — k) - [|A — Axl3.
@ The algorithm (Deshpande and Rademacher, 2010) based on the

volume sampling, i.e., picking a subset S C [d] with probability
proportional to det{A§As], outputs a k-subset S C [d] such that

A — AsALA3 < (d = K)(k+ 1) - [|A = Aclf3.

@ A two-stage algorithm (Boutsidis, Drineas and Magdon-Ismail, 2014)
combining RRQR based algorithms and k-leverage score sampling
outputs a k-subset S C [d] such that

A — ASALA[IS < O(K* (d — K)* logk)[|A — Al

@ The algorithm (Belhadji, Bardenet and Chainais, 2020) based on the
projection determinantal point process outputs a k-subset S C [d] such
that

A — AsALA3 < (1 +k(d—k)) - [|A — A«l3,

where d is the number of the nonzero k-leverage scores.
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Overall, the existing multiplicative bounds on ||A — ASA;AH§ are
O(k(d = K)) - [|A — Axl[3 and O(Kk> (d — k) %) - | A — A3

The existing multiplicative bounds have the following drawbacks:
@ Note that the approximation error does not exceed ||A||3 ,i.e.,

IA — AsALAILZ = [|(1n — AsADA[3 < [|AJl3.

However, the existing multiplicative bounds might be larger than ||A||3 if
|A — A«ll3 = o7, is large enough.

@ The existing multiplicative bound are far from optimal. The lower bound
on the approximation error is shown to be ¢ - ||A — A||3, so there is a
large gap between the lower bound and the existing multiplicative
bounds.



000000000 e

There is also a bulk of papers focus on deriving the following relative-error
bounds:

IA — AsALA|l2 < (1+2) - A — A2,
A — ASA;AHQ < [JA = Akllz + <[|A|l2,

where ¢ > 0 is a given error parameter.

To achieve the relative error bound, the size of S often needs to be larger
than k and it is dependent on the error parameter ¢.

In this talk, | mainly focus on the case when the size of S is given as input, so
the discussion of the relative-error bounds is beyond the scope of this talk.
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Our first result is an asymptotically sharp bound on the approximation error
A — AsAGALf3.
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Reformulate the CSSP

For each subset S C [d] = {1, ..., d}, we define the degree d polynomial
ps(x) := det[x - Is — (A — AsALA)T(A — AsALA)].

A simple observation is that

|A — AsALA||3 = maxroot ps(x).
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Reformulate the CSSP

For each subset S C [d] = {1, ..., d}, we define the degree d polynomial
ps(x) := det[x - Is — (A — AsALA)T(A — AsALA)].
A simple observation is that

|A — AsALA||3 = maxroot ps(x).
Then we can reformulate the spectral norm version of CSSP as follows.

The spectral norm version of CSSP

Given a matrix A € R"*? and a positive integer k < rank(A), we aim to find a

polynomial pg(x) in the set {ps(X) }sc(a),|s/=« Such that the largest root of
Ps(x) is minimized.
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Reformulate the CSSP

For each subset S C [d] = {1, ..., d}, we define the degree d polynomial
ps(x) := det[x - Is — (A — AsALA)T(A — AsALA)].
A simple observation is that
|A — AsALA||3 = maxroot ps(x).
Then we can reformulate the spectral norm version of CSSP as follows.

The spectral norm version of CSSP

Given a matrix A € R"*? and a positive integer k < rank(A), we aim to find a
polynomial pg(x) in the set {ps(X) }sc(a),|s/=« Such that the largest root of
Ps(x) is minimized.

Lemma 1 (Jian-Feng Cai, Zhigiang Xu, Zili Xu)

Let A be a matrix in R"*°. Then for each positive integer k < rank(A), there
exists a k-subset S C [d] such that rank(Ag) = k and

maxroot pg(Xx) < maxroot Z det[ASAs] - ps(x).
scid],|S|=k
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We next estimate the largest root of our expected polynomial.

Lemma 2 (Jian-Feng Cai, Zhigiang Xu, Zili Xu)

Let A € R™*? be a matrix of rank t < min{d, n}. Let \; be the i-th largest

eigenvalue value of ATA. Assume that \; < \;. Define o := ﬁ and
i=1 i

=1l
ﬁ;:%e[o,l]. If -t < k < t, we have
t M1

1
maxroot Z det[ASAs] - ps(x) < Tre . A3,
scld],|S|=k T Ca - YAk

2
where ca := [|A||3/a— 1> 0and yax := (ﬁ— 72 (1 ’{)) € [0,1].

4
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Our main results

Theorem A (Jian-Feng Cai, Zhigiang Xu, Zili Xu)

Let A = [ay,...,a4] € R"™ be a matrix of rank t < min{d, n}. For each
1<i<tlet )\, be the i-th Iargest eigenvalue value of ATA. Assume that
-1
At < A\1. Define a : ﬁ and g := ; Then for any positive
SN A=At

integer k satisfying 3 - t < Kk < t, there exists a subset S C [d] of size k such
that rank(As) = k and
1

A — AsALA — Al 1
I s ”2—1+0Aw -|All2 (1)

where ca == |Al3/a — 1> 0and vk = (/% — /125 e [0, 1].

is decreasing in k. As k increases

@ 4« is increasing in k, so ﬁ
from B - tto t, our bound in (1) decreases from ||A||3 to c.

@ The quantity « is a sharp upper bound on the minimal approximation
error ||A — AsALA||3 for [S| =t — 1.

@ A deterministic polynomial-time algorithm that achieves the bound in (1)
is designed.
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Comparison to the multiplicative bounds

Advantages:

@ Our bound is strictly less than ||A’\|§, while the multiplicative bounds
O(k(d — k)) - ||A — Ax]|3 and O(k3 (d — k)Z) - ||A — Ax||3 might be larger
than ||A||3.

@ Our bound is asymptotically sharp when the matrix A € R obeys a
spectral power-law decay.
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Overview of the proof
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Proof of Lemma 1

Recall that we define ps(x) := det[x - Iy — (A — AsALA)T(A — AsALA)] for
each subset S C [d].

Lemma 1 (Jian-Feng Cai, Zhigiang Xu, Zili Xu)

Let A € R"*? be a matrix of rank t < min{d, n}. Then for each positive integer
k < t, there exists a subset S C [d] of size k such that rank(A3) = k and

maxroot pg(X) < maxroot Z det[ALAs] - ps(x). (2)
Scld],|S|=k
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Proof of Lemma 1

A key observation is the following formula

K> det[AZAs]ps(X)
Scld],|S|=k

d
:Z Z Z Z det[A{il,...,ik}TA{il,“..ik}]P{il...4,ik}(X)-

ih=Yigg{in} izg¢{ir,i2} i@ i1y esik—1}

Our proof of Lemma 1 is algorithmic:

Based on the above formula, we design a greedy algorithm which iteratively
add columns to S, and we show that the output S of our greedy algorithm
satisfies (2).
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Proof of Lemma 1

Our greedy algorithm (iteratively select k columns from A € R"*9):

Step 1 Set S = (). Observe that

K> det{A§As]ps(X)
scld],|S|=k

d
=N > > detfAl; in A i IP i (0

W=1ling{i}is¢{inin}  ik@{i,.rik_1}

d
= Z f}l (X)

h=1
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Proof of Lemma 1

Our greedy algorithm (iteratively select k columns from A € R"*9):

Step 1 Set S = (). Observe that

K> det{A§As]ps(X)
scld],|S|=k

d
= Z Z Z T Z det[ALl ..... Ik}A{Il ..... /k}}p{il ..... i} (X)

ilzlzzg{/l}/gg{h,/g} i@ i1, k1 }

Zf(x

I11

We next investigate the interlacing property of the polynomials fi (x), . . ., fa(x).
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The method of interlacing polynomials

Definition of interlacing

Let g(x) = ao - [12,' (x — &) and f(x) = bo - [, (x — b;) be two real-rooted
polynomials. We say that g(x) interlaces f(x) if

b1 <ar <hy<ay<---<ag 1 < b

-

Definition of common interlacing

We say that real-rooted degree d polynomials fi(x), ..., fn(x) have a
common interlacing if there exists a polynomial g(x) such that g(x) interlaces
fi(x) foreachie {1,...,m}.

v

Figure 1: g(x) interlaces f(x)  Figure 2: f;(x) and f5(x)
have a common interlacing

fx)

fut)
A NWKE i
Fa(x)
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The method of interlacing polynomials

The method of interlacing polynomials is a useful tool to control the largest
root of polynomials.

Theorem (Marcus-Spielman-Srivastava, 2014)

Let F = {fi(x),...,fm(x)} be a collection of real-rooted polynomials with the
same degree and positive leading coefficients.
If fi(x),...,fn(x) have a common interlacing, then there exists an integer

i€ {1,...,m} such that

m
maxroot fi(x) < maxroot Z fi(x). (3)

=1

4

@ The above theorem basically says that the largest root of the expected
polynomial provides an upper bound on the smallest largest root of fi(x).

@ Iffi(x),...,fm(x) fail to have a common interlacing, then (3) may not
hold. For example, consider the case where
fi(x) = (x+5)(x—9)(x — 10) and f(x) = (x + 6)(x — 1)(x — 8). The
largest root of fi(x) + f2(x) is approximately 7.4.
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Proof of Lemma 1

Our greedy algorithm (iteratively select k columns from A e R"*9):

Step 1: S = (). Observe that

koo >7 detfAgAslps(x) = E Do DD delAl g AG PG, ()
SCd].IS|=k [ TS YIRS S T2 (SO

d
= > (.

=1

We prove that the polynomials fi(x), ..., fs(x) have a common interlacing.
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Proof of Lemma 1

Our greedy algorithm (iteratively select k columns from A e R"*9):

Step 1: S = (). Observe that

Ko DD det[AgAsIps(x) = 2 D> > detlAl, AL iR i (0

SCld],|S|=k W= g (i} gLt k@, )
d
= > (.
=1
We prove that the polynomials fi(x), ..., fs(x) have a common interlacing.

Then there exists an integer j; € [d] such that

d
maxroot f, (x) < maxroot » _f, (x) = maxroot Y det[A§As]ps(x).
=1 SCld],|S|=k

Then we set S = {1 }.
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Proof of Lemma 1

Step 2: S = {j,}. Observe that

6'1 (x) = Z Z e Z del[AL‘\.lﬁ,v.v,rk}A{/\J'.r ,,,,, ’k}]p{jwii ,,,,, ’k}(x)
@ {i}is & i} i@ {ivsizs sl }

= > g,(0.

i@ {i}
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Proof of Lemma 1

Step 2: S = {j,}. Observe that

6'1 (x) = Z Z e Z del[AL‘\.lﬁ,v.v,rk}A{/\J'.r ,,,,, ’k}]p{jwii ,,,,, ’k}(x)
@ {i}is & i} i@ {ivsizs sl }

= > g,(0.

i@ {i}

We prove that the polynomials g, (x),V i> ¢ {i1 } have a common interlacing.
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Proof of Lemma 1

Step 2: S = {j,}. Observe that

6'1 (x) = Z Z e Z del[AL‘\.lﬁ,v.v,rk}A{/\J'.r ,,,,, ’k}]p{jwii ,,,,, ’k}(x)
@ {i}is & i} i@ {ivsizs sl }

= > g,(0.
&}
We prove that the polynomials g, (x),V i> ¢ {i1 } have a common interlacing.
Then there exists j> ¢ {i1} such that
maxroot gj, (x) < maxroot » " gj,(X) = maxrootf, (x) o Sgtem maxroot Y det{AgAs]ps(X).
iz {ir } Scd],|S|=k
Then we set S = {j1, 2}

Repeat the above argument for another k — 2 times.
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Proof of Lemma 1

Stepk: S= {j1;---,jk—1}. We prove that the polynomials

T . . .
det[A g, e i Atk i PG ki () Vi & s fk-1}

have a common interlacing.
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Proof of Lemma 1

Stepk: S= {j1;---,jk—1}. We prove that the polynomials
det[AZI,H.,jk,l,ik}A{h7-4- l'k-hik}]p{h,ka—L"k} (), Vik & {jas - Jk-1}
have a common interlacing.

Then there exists jx ¢ {j1,...,jk—1} such that

;
maxroot py; . ;3 (X) < maxroot > AetfA L A e P L i (O
iy Ji—1}
by Step k-1 by Step 1
< -+ < maxoot > det[AZAs]ps(X).
sc[d),151=

Then we set S = {j1;J2s - - - ,jx}- This finishes the proof of Lemma 1.
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Polynomial Selection Problem

The method of interlacing polynomials is a useful tool for the Polynomial
Selection Problem.

Polynomial Selection Problem

Let F = {fi(x), ..., fn(x)} be a collection of degree d polynomials with
positive leading coefficients. Each polynomial in F is real-rooted, i.e., all of
the coefficients and roots are real numbers. We aim to select a polynomial
fi(x) from F such that the largest root of fi(x) is as small as possible.

When m is large, it is very inefficient to calculate the largest root of each
polynomial and then compare them to choose the smallest one.
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Polynomial Selection Problem

The method of interlacing polynomials is a useful tool for the Polynomial
Selection Problem.

Polynomial Selection Problem

Let F = {fi(x), ..., fn(x)} be a collection of degree d polynomials with
positive leading coefficients. Each polynomial in F is real-rooted, i.e., all of
the coefficients and roots are real numbers. We aim to select a polynomial
fi(x) from F such that the largest root of fi(x) is as small as possible.

When m is large, it is very inefficient to calculate the largest root of each
polynomial and then compare them to choose the smallest one.

Example 1: Spectral norm version of CSSP

Let F = {ps(x)}sC[d]7‘s‘:k, where
ps(x) := det[x - Is — (A — AsALA)"(A — AsALA)].

We aim to find a polynomial ps(x) in F, such that the largest root of pg(x) is
minimized.




0000000000000 000e00

Polynomial Selection Problem

Example 2: Matrix Spencer Conjecture

For all matrices A1, ..., A, € R?9 with ||Aj||]2 < 1, there exists

e = (e1,...,en) € {£1}" such that || X7 | £iAi||l2 < O(y/nlog(d/n)).

An equivalent statement is as follows.

Let F = {f.(X)}ccqr13n, Where

F(x) :=det[x - Iy — (2“: €;A,-)T(§n: iAy)].

i=1

There exists a polynomial f:(x) in F, such that the largest root of f:(x) is
O(nlog(d/n)).

Recently some special cases of Matrix Spencer Conjecture is proved by
using the method of interlacing polynomials.
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Proof of Lemma 2: Estimate the largest root of the
expected polynomial

Let A be a matrix in R™*¢. For any nonnegative integer k, we have

Kl >~ det{ASAs] - ps(x) = (=1)* - Ra- 8 - Ry det[x - Is — ATA],
Scld],|S|=k

where operator R, is defined as Ry f(x) := x9 - f(L) for any degree d
polynomial f(x).
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Proof of Lemma 2: Estimate the largest root of the
expected polynomial

Let A be a matrix in R™*¢. For any nonnegative integer k, we have

Kl >~ det{ASAs] - ps(x) = (=1)* - Ra- 8 - Ry det[x - Is — ATA],
Scld],|S|=k

where operator R, is defined as Ry f(x) := x9 - f(L) for any degree d
polynomial f(x).

Observe that, if all roots of a degree d polynomial f(x) are positive, then

1

4)

Combining Lemma 3 and (4), we obtain

1
minroot 9f - Rg det[x - Iy — ATA]

maxroot > det[AgAs] - ps(x) =
Sc(d],IS|=k
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Proof of Lemma 2

The following lemma shows how the largest root of a univariate polynomial
shrink after taking derivatives.

Lemma (Ravichandran 2020)

Assume that p(x) = []._, (x — \)) is a real-rooted polynomial of degree ¢,
where ), € [0,1] foreach i € [f]. Lety = 1 S A Then, for each k > v - t,

maxroot 8§ p(x) < (W—F A (A=) (1— It(>>2

With some slight modification, we are able to use this lemma to estimate
minroot 5 - Ry det[x - I, — ATA] and prove Lemma 2.
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Our second results

We show that our method also works in the context of the column
partition problem .

The column partition problem

Given a matrix A € R"<? and a positive integer r > 2, the column
partition problem aims to find an r partition S; LI - - - LI S, = [d] such
that the following residual

A—AcAl A
e | seAgeAll2

is minimized over all possible r partitions of [d]. Here, we use S¢ to
denote the complement of a subset S of [d].




Our results

We show that our method also works in the context of the column partition
problem .

Assume that n > d > 1. Let A € R"*9 be a matrix of rank d. For each
Jj€{1,...,d}, let ) be the j-th largest eigenvalue value of ATA. Define

1 -1
Ay —«

a:= max & (I — Ap,an Al g )y and Bi= T T
d 1

IJ d
Then for any integer r > 2 satisfying that 5 < (’7721)2 there exists an r partition
S u---uS,={1,...,d} such that

1
Yar+ (1 —var) - ?\*;

1A — AscAL A3 < -|IAll3, Vi€, (5)

where yar = (y/1 — £ +VB)? € [1/r,1].

r r—




Thanks for your attention!
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