Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Inverse scattering by corners and regular transmission eigenfunctions

Chun-Hsiang Tsou

National Central University

6th Young Scholar Symposium, East Asia Section of Inverse Problems International Association

Stability of Polygons 0000000000000 Transmission Eigenfuncitons

Conclusion 00

Introduction

Stability of Polygons

Transmission Eigenfuncitons

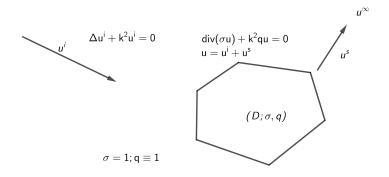
Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ●

Stability of Polygons

Transmission Eigenfuncitons 0000 Conclusion 00

Inverse Scattering Problems



Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Inverse Scattering Problems

Let $k \in \mathbb{R}_+$ be a wavenumber and u^i be an incident wave, i.e. an entire solution to the Helmholtz equation,

$$\Delta u^i + k^2 u^i = 0 \quad \text{in } \mathbb{R}^n. \tag{1}$$

Consider the following scattering problem,

$$\begin{cases} \operatorname{div}(\sigma \nabla u) + k^2 q u = 0 & \text{ in } \mathbb{R}^n, \\ r^{\frac{n-1}{2}}(\partial_r - \mathrm{i}k)(u - u^i) \to 0 & \text{ while } r \to \infty, \end{cases}$$
(2)

where $\sigma, q \in L^{\infty}(\mathbb{R}^n)$. The expansion at $+\infty$ holds,

$$u(x) = u^{i}(x) + rac{e^{ik|x|}}{|x|^{rac{n-1}{2}}} u_{\infty}(\hat{x}; u^{i}) + \mathcal{O}(|x|^{-rac{n}{2}}) \ \ ext{as} \ \ |x| o +\infty,$$

where $u_{\infty} : \mathbb{S}^{n-1} \to \mathbb{C}$ is called the **far-field pattern**. Inverse Problem: Recovery of σ, q from u_{∞} .

Conclusion 00

Recovery of supp(q-1)

Consider the scenario $\sigma \equiv 1$ in \mathbb{R}^n , let $D \in B_R \subset \mathbb{R}^n$ be a polytope, i.e. polygon in 2D or polyhedron in 3D. We assume $q = 1 + \phi \chi_D$ and $\phi(x_c) \neq 1$ at each corner.

Inverse Problem: Recovery of D from a single far-field pattern u_{∞} .

- Uniqueness: if u_∞ = u'_∞ then D = D'.
 E. Blåsten and H. Liu, *Recovering piecewise constant refractive indices by a single far-field pattern*, Inverse Problems, **36(8)** (2020), 085005.
- Stability: d_H(D, D') ≤ C(ln | ln ||u_∞ u'_∞|||)^β.
 E. Blåsten and H. Liu, On corners scattering stably and stable shape determination by a single far-field pattern, Indiana Univ. Math. J., **70(3)**, (2021), pp.907-947.
- D is a smooth domain with high curvature points.
 E. Blåsten and H. Liu, Scattering by curvatures, radiationless sources, transmission eigenfunctions and inverse scattering problems, SIAM J. Math. Anal., 53(4), (2021), pp.3801-3837.

Transmission Eigenfuncitons 0000 Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Recovery of $supp(\sigma - 1)$

Consider the scenario both the supports of $\sigma - 1$ and q - 1 are polytopes. Let D be the convex hull of $supp(\sigma - 1) \cup supp(q - 1)$.

• Uniqueness result

F. Cakoni and J. Xiao, *On corner scattering for operators of divergence form and applications to inverse scattering*, Commun. Partial. Differ. Equ., **46(3)**, (2021), pp. 413–441.

• Stability of polygons in \mathbb{R}^2

H. Liu and C.-H. Tsou, *Stable determination by a single measurement, scattering bound and regularity of transmission eigenfunction*, Calc. Var. Partial. Differ. Equ., **61** (2022), No. 91.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Stability of Polygons - Assumptions

We suppose the following *admissible* assumptions of the medium scatterer $(D; \sigma, q)$.

- 1. $\sigma := 1 + (\gamma 1)\chi_D$ in \mathbb{R}^2 .
- 2. $D \Subset B_R$ is a convex polygon with certain R > 0.
- 3. $\gamma \in \mathbb{R}$ satisfying $0 < \gamma_m \leq \gamma \leq \gamma_M$.
- 4. For any vertex x_c of D, the opening angle a satisfies $0 < a_m \le a \le a_M < \pi$.
- 5. The length of each edge of D is at least l > 0.
- 6. supp $(q-1) \Subset D$, i.e. $q \equiv 1$ in $\mathbb{R}^2 \setminus \overline{D}$.
- 7. $\|q\|_{L^{\infty}(\mathbb{R}^2)} \leq \mathcal{Q}$ where $\mathcal{Q} > 0$ is a constant.

The parameters k_m, k_M, a_m, a_M, l, Q are called the a-priori data. Let $u^i \in H^2_{loc}(\mathbb{R}^2)$ be an incident wave. We denote by S > 0 the *amplitude* of the incident wave u^i , which is defined by $||u^i||_{H^2(B_{2R})} \leq S$

Conclusion 00

Stability Estimation

- Let $k \in \mathbb{R}_+$ and $u^i \in H^2_{loc}(\mathbb{R}^2)$ be an incident wave.
- Let $(D; \sigma, q)$ and $(D'; \sigma', q')$ be admissible scatterers.
- $d_{\mathcal{H}}(D, D')$ designs the Hausdorff distance between D and D'.
- Let *u* and *u'* be the total waves respectively corresponding to $(D; \sigma, q)$ and $(D'; \sigma', q')$.
- Suppose that *u* and *u'* admit the non-degenerate corner singularities.

Theorem 1 (Liu and Tsou 22')

lf

$$\|u_{\infty}-u'_{\infty}\|_{L^{2}(\mathbb{S}^{1})}\leq \varepsilon,$$

then the stability estimation holds

$$d_{\mathcal{H}}(D,D') \leq C \left(\ln |\ln \varepsilon| \right)^{-\beta}, \qquad (3)$$

where $\beta > 0$ and

$$C = \widetilde{C} \left(1 + \frac{S}{K_m} \right)^{\widetilde{\beta}}$$

900

Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Ingredients of the Proof

• **Corner Singularity**: Genetically, *u*, *u*' don't admit the *H*² regularity near each edge and ∇*u*, ∇*u*' blow up near each corner. Key observation.

Propagation of Smallness:

- 1. From the far-field to the near-field: Quantitative Rellich's theorem.
- 2. Propagation from near-field to the scatterer: Quantitative unique continuation property.

Estimation of u - u' near $D \cup D'$.

Micro-local Analysis: convex polygons ⇒ d_H(D, D') = |x_c - x'| with x_c a corner of D and x' ∈ ∂D'. Reasoning in the phase space of CGO solutions defined near the corner x_c. Link between the singularities and the estimations of u - u'.

Stability of Polygons

Transmission Eigenfuncitons

Conclusion 00

Corner Singularity

Theorem 2 (Grisvard 85', Dauge and Nicaise 89')

Let $u \in H^1_{loc}(\mathbb{R}^2)$ be the solution to (2) with $(D; \sigma, q)$ satisfying the admissible assumptions. We denote by S_D the set of vertices of D. Then the following decomposition holds,

$$u = u_{reg} + u_{sing} = u_{reg} + \sum_{x_i \in S_D} K_i r^{\eta_i} \phi_i(\theta) \zeta_i.$$
(4)

- *u_{reg}* ∈ *PH*²(*B_R*) and satisfies ||*u_{reg}*||_{*H*²(*D*)} ≤ *C*||*u*||_{*H*¹(*B_R*)} with *C* depending only on the *a-priori data*.
- The exponent η_i ∈ (0, 1) depends explicitly on the parameter γ and the opening angle a at the vertex x_i.

•
$$\phi_i(\theta) = \cos(\eta_i \theta + \Phi_{i,\pm}).$$

• The coefficient K_i depends linearly on the incident wave u_i . we assume genetically that $K_i \neq 0$ for all vertex x_i and set $K_m := \min_{x_i \in S_D} |K_i|$.

Propagation of smallness: far-field to near-field

- Let $w^s \in H^2_{loc}(\mathbb{R}^2)$ be a solution to (1) in $\mathbb{R}^2 \setminus B_R$.
- w^s satisfy the Sommerfeld radiation condition at infinity.
- *a-priori* bound $||w^s||_{L^2(B_{2R}\setminus B_R)} \leq S$.

Proposition 3

If the far-field pattern $\|w^s_{\infty}\|_{L^2(\mathbb{S}^1)} = \varepsilon$ is small enough, then

$$\|w^{s}\|_{H^{p}(\mathcal{A})} \leq C \max(\varepsilon, \mathcal{S}e^{-c\sqrt{\ln(\mathcal{S}/\varepsilon)}}).$$
(5)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proof: Elliptic interior regularity and estimations of Hankel functions.

Propagation of smallness: from near-field to the scatterer

Let u be a solution to $\operatorname{div}(\sigma \nabla u) + k^2 q u = 0$ in a bounded domain, we use the unique continuation property¹ to estimate $||u||_N$ in Ω from the knowledge of $(u|_{\Gamma_0}, \partial_{\nu} u|_{\Gamma_0})$.

- 1. Three-spheres inequality.
- 2. Iteration of three spheres inequality from boundary to interior.
- 3. Extension of the solution near Γ_0 .
- 4. Conclusion with interior/global estimations.

Lemma 4 (Three-sphere Inequality, Alessandrini 09')

Let $0 < r_1 < r_2 < r_3 < R$, and $w \in H^1_{loc}(B_R)$ be a solution to (1) in B_R . Then there exists $\tilde{\alpha} \in (0, 1)$, which depends only on r_2/r_1 and r_3/r_2 , such that

$$\|w\|_{L^{\infty}(B_{r_2})} \leq C \|w\|_{L^{\infty}(B_{r_3})}^{1-\tilde{\alpha}} \|w\|_{L^{\infty}(B_{r_1})}^{\tilde{\alpha}}.$$

Conclusion 00

Propagation of smallness

- Let u, u' ∈ H¹_{loc}(ℝ²) be the solutions of the scattering problems (2) under the assumptions of Theorem 1.
- Let x_c be a vertex of Q, which is the convex hull of $D \cup D'$.
- u u' is of class C^{α_0} in $B_{2R} \setminus \overline{Q}$.
- The function $x \mapsto |x x_c| \nabla (u u')(x)$ is of class \mathcal{C}^{α_1} in $B_{2R} \setminus \overline{Q}$.

Proposition 5

If
$$\|u_{\infty} - u'_{\infty}\|_{L^{2}(\mathbb{S}^{1})} \leq \varepsilon$$
 for ε small enough, it holds that

$$|u(x) - u'(x)| \le \widetilde{C_0} T_0 \left(\ln \ln \frac{S}{\varepsilon} \right)^{-\alpha_0},$$
 (6)

$$|
abla(u-u')(x)| \leq rac{\widetilde{C_1}T_1}{\operatorname{dist}(x,\partial Q)} \left(\ln\lnrac{S}{arepsilon}
ight)^{-lpha_1},$$
(7)

for $x \in B_{3R/2} \setminus \overline{Q}$.

Fransmission Eigenfuncitons

Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Micro-local Analysis

Main Steps

- 1. Establish an integral identity.
- 2. Choose adaptable complex geometric optical solutions (CGO)

$$u_0(x) = e^{\rho(\tau) \cdot x} (1 + \psi(x)).$$

- 3. Estimate of each terms in the integral identity.
- 4. Delicate balancing the parameter τ in the phase of the CGO solutions.
- 5. Conclusion by deducing the stability result.

Stability of Polygons

Transmission Eigenfuncitons

Conclusion 00

CGO solutions

Up to a rigid motion, we choose the coordination $x_c = 0, D \subset \{x > 0\}.$ Let $\tau > 0$, we set $\rho = \rho(\tau) := \tau(-\hat{x} + i\hat{y}) \in \mathbb{C}^2.$ For all $x \in \mathbb{R}^2$,

$$u_0(x) = e^{\rho \cdot (x-x_c)}.$$
 (8)

Integral identity

$$(1-\gamma)\int_{\Gamma^{\pm}} u_0\partial_{\nu} u\,ds = \int_{\partial S^i_{Q}\cup\partial S^e} (u-u')\partial_{\nu} u_0 - u_0\partial_{\nu} (u-u')\,ds - k^2 \int_{\widetilde{D}^e} (u-u')u_0dx - \frac{k^2q}{\gamma} \int_{\widetilde{D}} u_0 u\,dx$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Conclusion 00

Estimations

Corner singularity decomposition near a vertex x_c :

$$u = u_{sing}\zeta + u_{reg}$$
 with $u_{sing}(r, \theta) = Kr^{\eta}\cos(\eta\theta + \Phi).$

Proposition 6 (upper bound)

Let $\tau > 0$, u_0 be a CGO solution defined by (8). Then, the estimation holds,

$$C|\int_{\Gamma_{\infty}^{\pm}} u_{0}\partial_{\nu}u_{sing}\,ds| \leq |K|\tau^{-\eta}e^{-\alpha'\tau h/2} + he^{-\alpha'\tau h}||u_{reg}||_{H^{2}(\widetilde{D})} + he^{-\alpha'\tau h}(||\partial_{\nu}(u-u')||_{L^{\infty}(\partial S_{Q}^{i})} + \tau||u-u'||_{L^{\infty}(\partial S_{Q}^{i})}) + \tau^{-1}||u_{reg}||_{H^{2}(\widetilde{D})} + h(||\partial_{\nu}(u-u')||_{L^{\infty}(\partial S^{e})} + \tau||u-u'||_{L^{\infty}(\partial S^{e})}) + h^{2}||u-u'||_{L^{\infty}(\widetilde{D}^{e})} + (\tau^{-1} + he^{-\alpha'\tau h})||u||_{H^{1}(\widetilde{D})},$$
(9)

where C depends only a-priori data.

Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Estimations

Corner singularity decomposition near a vertex x_c :

$$u = u_{sing}\zeta + u_{reg}$$
 with $u_{sing}(r, \theta) = Kr^{\eta}\cos(\eta\theta + \Phi)$.

Proposition 7 (lower bound)

Let $\tau > 0$, u_0 be a CGO solution defined by (8). Then, the estimation holds,

$$\left| \int_{\Gamma_{\infty}^{\pm}} u_0 \partial_{\nu} u_{sing} d\sigma \right| = K \Gamma(\eta) \left| \phi'(\theta^+) e^{ia\eta} - \phi'(\theta^-) \right| \tau^{-\eta} \ge K \Gamma(\eta) \sin(a\eta) \tau^{-\eta},$$
(10)
where θ^{\pm} signify the arguments of the vectors along Γ^{\pm}

Transmission Eigenfuncitons 0000 Conclusion 00

Proof of the Stability

Using the corner singularity theorem and the unique continuation property to estimate the L^{∞} or H^2 norms in the right-hand-side of (9), the inequalities (9),(10) imply

$$C|K|\tau^{-\eta} \leq |K|\tau^{-\eta}e^{-\alpha'\tau h/2} + (|K|h^{\eta-1} + Sh^{\eta'-1} + S + S\tau)he^{-\alpha'\tau h} + (|K| + S)h\tau\delta(\varepsilon) + (|K| + S)h^2\delta(\varepsilon) + S\tau^{-1} + She^{-\alpha'\tau h}.$$

Calculations and trivial inequalities lead to

$$C \leq (1 + rac{S}{|\mathcal{K}|})(h^{-1} au^{\eta-1} + h au^{\eta+1}\delta(arepsilon)).$$

We next determine a minimum modulo constants of the right hand side. Set $\tau = \tau_e$ with

$$\tau_e = h^{-1} \delta(\varepsilon)^{-1/2}$$

Solving for h, it gives

$$h \leq C (1 + \frac{S}{|\mathcal{K}|})^{\frac{1}{\eta}} \left(\ln \ln \frac{S}{\varepsilon} \right)^{\frac{\eta_m(\eta-1)}{2\eta}}.$$

Conclusion 00

Corner Always Scatter

The presence of the corner singularities induces non zero far-field patterns.

- Let D be a Lipschitz domain in \mathbb{R}^2 , not necessarily a convex polygon.
- ∂D admits a convex polygonal point.
- Let u be the solution to the scattering problem with the far-field pattern u_{∞} .

Theorem 8 (Liu and Tsou 22')

Under the assumptions of Theorem 1, it holds

$$\|u_{\infty}\|_{L^{2}(\mathbb{S}^{1})} \geq \frac{S}{\exp \exp \left(C(1+\frac{S}{|K|})^{\frac{2}{\eta(1-\eta)}}\right)}.$$
 (11)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proof: Taking $D' = \emptyset$ and $q' \equiv 1$ in \mathbb{R}^2 , then apply the stability estimate result.

Conclusion 00

Transmission Eigenvalue Problems

If $u_{\infty} = 0$ on \mathbb{S}^1 occurs, the following equation admits a nontrivial solution.

$$\begin{cases} \operatorname{div}(\sigma \nabla u) + k^2 q u = 0 & \text{in } D, \\ \Delta v + k^2 v = 0 & \text{in } D, \\ u = v, \quad \sigma \partial_{\nu} u = \partial_{\nu} v & \text{on } \partial D. \end{cases}$$
(12)

The solution (u, v) is called the **transmission eigenfunction** associated to the **transmission eigenvalue** k.

Herglotz wave approximation²: For any $\varepsilon \ll 1$, there exists $g_{\varepsilon} \in L^2(\mathbb{S}^1)$ such that

$$\|v_{g_{\varepsilon}} - v\|_{H^{1}(D)} \leq \varepsilon, \quad v_{g_{\varepsilon}}(x) := \int_{\mathbb{S}^{1}} e^{\mathrm{i}kx \cdot d} g_{\varepsilon}(d) \, ds(d),$$
 (13)

Implications of polytope supports

Let (u, v) the transmission eigenfunction associated to the eigenvalue k. If $\sigma \equiv 1$ and supp(q - 1) is a polytope in \mathbb{R}^n , n = 2, 3.

- v cannot extended to an entire solution to (1) in Rⁿ.
 E. Blåsten, L. Päivärinta and J. Sylvester, *Corners always scatter*, Comm. Math. Phys., **331** (2014), pp. 725–753.
- If v can be approximated by Herglotz wave functions, then $v(x_c) = 0$ at each corner.

E. Blåsten and H. Liu, *On vanishing near corners of transmission eigenfunctions*, J. Functional Analysis, **273** (2017), pp. 3616–3632. Addendum is available at arXiv:1710.08089.

Transmission Eigenfuncitons

Conclusion 00

Regularity Result

- Let (D, σ, q) be a convex polygonal scatter satisfying the assumptions in Theorem 1.
- Let u, v ∈ H¹(D) be a nontrivial eigenfunctions of the transmission eigenvalue problem (12).

Theorem 9 (Liu and Tsou 21')

- 1. If v can be extended outside D to be an entire solution to (1), then $u \in H^2(D)$.
- 2. If v can be approximated by Herglotz wave functions and those functions are uniformly bounded, then it holds

$$\lim_{x \neq x' \in D, x, x' \to x_c} \frac{|u(x) - u(x')|}{|x - x'|^{\eta}} = 0.$$
 (14)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Conclusion •O

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Conclusions and Perspectives

Conclusions

- Stability estimates for polygonal scatterer.
- Application of micro-local analysis and corner singularity decomposition to the study of inverse scattering problems.
- Implication to the transmission eigenvalue problems.

Perspectives

- Combination of the recovery of the conductivity σ and the potential q.
- Extension three dimensional polyhedrons, variable or anisotropic conductivity $\sigma.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

THANKS FOR YOUR ATTENTION !