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Inverse Scattering Problems

Let k ∈ R+ be a wavenumber and ui be an incident wave, i.e. an entire
solution to the Helmholtz equation,

∆ui + k2ui = 0 in Rn. (1)

Consider the following scattering problem,div(σ∇u) + k2qu = 0 in Rn,

r
n−1
2 (∂r − ik)(u − ui ) → 0 while r → ∞,

(2)

where σ, q ∈ L∞(Rn). The expansion at +∞ holds,

u(x) = ui (x) +
eik|x|

|x | n−1
2

u∞(x̂ ; ui ) +O(|x |− n
2 ) as |x | → +∞,

where u∞ : Sn−1 → C is called the far-field pattern.
Inverse Problem: Recovery of σ, q from u∞.
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Recovery of supp(q − 1)

Consider the scenario σ ≡ 1 in Rn, let D ⋐ BR ⊂ Rn be a polytope, i.e.
polygon in 2D or polyhedron in 3D. We assume q = 1 + ϕχD and
ϕ(xc) ̸= 1 at each corner.
Inverse Problem: Recovery of D from a single far-field pattern u∞.

• Uniqueness: if u∞ = u′∞ then D = D ′.
E. Bl̊asten and H. Liu, Recovering piecewise constant refractive
indices by a single far-field pattern, Inverse Problems, 36(8) (2020),
085005.

• Stability: dH(D,D ′) ≤ C (ln | ln ∥u∞ − u′∞∥|)β .
E. Bl̊asten and H. Liu, On corners scattering stably and stable shape
determination by a single far-field pattern, Indiana Univ. Math. J.,
70(3), (2021), pp.907-947.

• D is a smooth domain with high curvature points.
E. Bl̊asten and H. Liu, Scattering by curvatures, radiationless
sources, transmission eigenfunctions and inverse scattering problems,
SIAM J. Math. Anal., 53(4), (2021), pp.3801-3837.
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Recovery of supp(σ − 1)

Consider the scenario both the supports of σ− 1 and q− 1 are polytopes.
Let D be the convex hull of supp(σ − 1) ∪ supp(q − 1).

• Uniqueness result
F. Cakoni and J. Xiao, On corner scattering for operators of
divergence form and applications to inverse scattering, Commun.
Partial. Differ. Equ., 46(3), (2021), pp. 413–441.

• Stability of polygons in R2

H. Liu and C.-H. Tsou, Stable determination by a single
measurement, scattering bound and regularity of transmission
eigenfunction, Calc. Var. Partial. Differ. Equ., 61 (2022), No. 91.
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Stability of Polygons - Assumptions

We suppose the following admissible assumptions of the medium
scatterer (D;σ, q).

1. σ := 1 + (γ − 1)χD in R2.

2. D ⋐ BR is a convex polygon with certain R > 0.

3. γ ∈ R satisfying 0 < γm ≤ γ ≤ γM .

4. For any vertex xc of D, the opening angle a satisfies
0 < am ≤ a ≤ aM < π.

5. The length of each edge of D is at least l > 0.

6. supp(q − 1) ⋐ D, i.e. q ≡ 1 in R2 \ D.

7. ∥q∥L∞(R2) ≤ Q where Q > 0 is a constant.

The parameters km, kM , am, aM , l ,Q are called the a-priori data.
Let ui ∈ H2

loc(R2) be an incident wave. We denote by S > 0 the
amplitude of the incident wave ui , which is defined by ∥ui∥H2(B2R ) ≤ S
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Stability Estimation
• Let k ∈ R+ and ui ∈ H2

loc(R2) be an incident wave.
• Let (D;σ, q) and (D ′;σ′, q′) be admissible scatterers.
• dH(D,D ′) designs the Hausdorff distance between D and D ′.
• Let u and u′ be the total waves respectively corresponding to

(D;σ, q) and (D ′;σ′, q′).
• Suppose that u and u′ admit the non-degenerate corner singularities.

Theorem 1 (Liu and Tsou 22’)

If
∥u∞ − u′∞∥L2(S1) ≤ ε,

then the stability estimation holds

dH(D,D ′) ≤ C (ln | ln ε|)−β
, (3)

where β > 0 and

C = C̃

(
1 +

S

Km

)β̃

.
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Ingredients of the Proof

• Corner Singularity: Genetically, u, u′ don’t admit the H2 regularity
near each edge and ∇u, ∇u′ blow up near each corner. Key
observation.

• Propagation of Smallness:

1. From the far-field to the near-field: Quantitative Rellich’s theorem.
2. Propagation from near-field to the scatterer: Quantitative unique

continuation property.

Estimation of u − u′ near D ∪ D ′.

• Micro-local Analysis: convex polygons ⇒ dH(D,D ′) = |xc − x ′|
with xc a corner of D and x ′ ∈ ∂D ′. Reasoning in the phase space
of CGO solutions defined near the corner xc . Link between the
singularities and the estimations of u − u′.
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Corner Singularity

Theorem 2 (Grisvard 85’, Dauge and Nicaise 89’)

Let u ∈ H1
loc(R2) be the solution to (2) with (D;σ, q) satisfying the

admissible assumptions. We denote by SD the set of vertices of D. Then
the following decomposition holds,

u = ureg + using = ureg +
∑
xi∈SD

Ki r
ηiϕi (θ)ζi . (4)

• ureg ∈ PH2(BR) and satisfies ∥ureg∥H2(D) ≤ C∥u∥H1(BR ) with C
depending only on the a-priori data.

• The exponent ηi ∈ (0, 1) depends explicitly on the parameter γ and
the opening angle a at the vertex xi .

• ϕi (θ) = cos(ηiθ +Φi,±).

• The coefficient Ki depends linearly on the incident wave ui . we
assume genetically that Ki ̸= 0 for all vertex xi and set
Km := min

xi∈SD

|Ki |.
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Propagation of smallness: far-field to near-field

• Let w s ∈ H2
loc(R2) be a solution to (1) in R2 \ BR .

• w s satisfy the Sommerfeld radiation condition at infinity.

• a-priori bound ∥w s∥L2(B2R\BR ) ≤ S.

Proposition 3

If the far-field pattern ∥w s
∞∥L2(S1) = ε is small enough, then

∥w s∥Hp(A) ≤ C max(ε,Se−c
√

ln(S/ε)). (5)

Proof: Elliptic interior regularity and estimations of Hankel functions.
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Propagation of smallness: from near-field to the scatterer

Let u be a solution to div(σ∇u) + k2qu = 0 in a bounded domain, we
use the unique continuation property1 to estimate ∥u∥N in Ω from the
knowledge of (u|Γ0 , ∂νu|Γ0).

1. Three-spheres inequality.

2. Iteration of three spheres inequality from boundary to interior.

3. Extension of the solution near Γ0.

4. Conclusion with interior/global estimations.

Lemma 4 (Three-sphere Inequality, Alessandrini 09’)

Let 0 < r1 < r2 < r3 < R, and w ∈ H1
loc(BR) be a solution to (1) in BR .

Then there exists α̃ ∈ (0, 1), which depends only on r2/r1 and r3/r2, such
that

∥w∥L∞(Br2
) ≤ C∥w∥1−α̃

L∞(Br3
)∥w∥α̃L∞(Br1

).

1G. Alessandrini et al. The stability for the Cauchy problem for elliptic equations,
Inverse Problems, 25, (2009), 123004
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Propagation of smallness

• Let u, u′ ∈ H1
loc(R2) be the solutions of the scattering problems (2)

under the assumptions of Theorem 1.

• Let xc be a vertex of Q, which is the convex hull of D ∪ D ′.

• u − u′ is of class Cα0 in B2R \ Q.

• The function x 7→ |x − xc |∇(u − u′)(x) is of class Cα1 in B2R \ Q.

Proposition 5

If ∥u∞ − u′∞∥L2(S1) ≤ ε for ε small enough, it holds that

|u(x)− u′(x)| ≤ C̃0T0

(
ln ln

S

ε

)−α0

, (6)

|∇(u − u′)(x)| ≤ C̃1T1

dist(x , ∂Q)

(
ln ln

S

ε

)−α1

, (7)

for x ∈ B3R/2 \ Q.
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Micro-local Analysis

Main Steps

1. Establish an integral identity.

2. Choose adaptable complex geometric optical solutions (CGO)

u0(x) = eρ(τ)·x(1 + ψ(x)).

3. Estimate of each terms in the integral identity.

4. Delicate balancing the parameter τ in the phase of the CGO
solutions.

5. Conclusion by deducing the stability result.
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CGO solutions
Up to a rigid motion, we choose
the coordination
xc = 0, D ⊂ {x > 0}.
Let τ > 0, we set
ρ = ρ(τ) := τ(−x̂ + i ŷ) ∈ C2. For
all x ∈ R2,

u0(x) = eρ·(x−xc ). (8)

Integral identity

(1− γ)

�
Γ±

u0∂νu ds =

�
∂S i

Q∪∂Se

(u−u′)∂νu0−u0∂ν(u−u′) ds−k2

�
D̃e

(u−u′)u0dx−
k2q

γ

�
D̃

u0u dx
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Estimations

Corner singularity decomposition near a vertex xc :

u = usingζ + ureg with using (r , θ) = Krη cos(ηθ +Φ).

Proposition 6 (upper bound)

Let τ > 0, u0 be a CGO solution defined by (8). Then, the estimation
holds,

C |
�
Γ±
∞

u0∂νusingds| ≤ |K |τ−ηe−α′τh/2 + he−α′τh∥ureg∥H2(D̃)

+ he−α′τh(∥∂ν(u − u′)∥L∞(∂S i
Q )

+ τ∥u − u′∥L∞(∂S i
Q )
) + τ−1∥ureg∥H2(D̃)

+ h(∥∂ν(u − u′)∥L∞(∂Se) + τ∥u − u′∥L∞(∂Se))

+ h2∥u − u′∥L∞(D̃e) + (τ−1 + he−α′τh)∥u∥H1(D̃), (9)

where C depends only a-priori data.
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Estimations

Corner singularity decomposition near a vertex xc :

u = usingζ + ureg with using (r , θ) = Krη cos(ηθ +Φ).

Proposition 7 (lower bound)

Let τ > 0, u0 be a CGO solution defined by (8). Then, the estimation
holds,∣∣∣∣�

Γ±
∞

u0∂νusingdσ

∣∣∣∣ = KΓ(η)
∣∣ϕ′(θ+)e iaη − ϕ′(θ−)

∣∣ τ−η ≥ KΓ(η) sin(aη)τ−η,

(10)
where θ± signify the arguments of the vectors along Γ±.
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Proof of the Stability
Using the corner singularity theorem and the unique continuation
property to estimate the L∞ or H2 norms in the right-hand-side of (9),
the inequalities (9),(10) imply

C |K |τ−η ≤|K |τ−ηe−α′τh/2 + (|K |hη−1 + Shη
′−1 + S + Sτ)he−α′τh

+ (|K |+ S)hτδ(ε) + (|K |+ S)h2δ(ε) + Sτ−1 + She−α′τh.

Calculations and trivial inequalities lead to

C ≤ (1 +
S

|K |
)(h−1τη−1 + hτη+1δ(ε)).

We next determine a minimum modulo constants of the right hand side.
Set τ = τe with

τe = h−1δ(ε)−1/2.

Solving for h, it gives

h ≤ C (1 +
S

|K |
)

1
η

(
ln ln

S

ε

) ηm(η−1)
2η

.
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Corner Always Scatter

The presence of the corner singularities induces non zero far-field
patterns.

• Let D be a Lipschitz domain in R2, not necessarily a convex polygon.

• ∂D admits a convex polygonal point.

• Let u be the solution to the scattering problem with the far-field
pattern u∞.

Theorem 8 (Liu and Tsou 22’)

Under the assumptions of Theorem 1, it holds

∥u∞∥L2(S1) ≥
S

exp exp
(
C (1 + S

|K | )
2

η(1−η)

) . (11)

Proof: Taking D ′ = ∅ and q′ ≡ 1 in R2, then apply the stability estimate
result.
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Transmission Eigenvalue Problems

If u∞ = 0 on S1 occurs, the following equation admits a nontrivial
solution. 

div(σ∇u) + k2qu = 0 in D,

∆v + k2v = 0 in D,

u = v , σ∂νu = ∂νv on ∂D.

(12)

The solution (u, v) is called the transmission eigenfunction associated
to the transmission eigenvalue k .
Herglotz wave approximation2: For any ε≪ 1, there exists gε ∈ L2(S1)
such that

∥vgε − v∥H1(D) ≤ ε, vgε(x) :=

�
S1
eikx·dgε(d) ds(d), (13)

2N. Weck, Approximation by Herglotz wave functions, Math. Methods Appl. Sci.,
27(2), (2004), pp.155-162
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Implications of polytope supports

Let (u, v) the transmission eigenfunction associated to the eigenvalue k.
If σ ≡ 1 and supp(q − 1) is a polytope in Rn, n = 2, 3.

• v cannot extended to an entire solution to (1) in Rn.
E. Bl̊asten, L. Päivärinta and J. Sylvester, Corners always scatter,
Comm. Math. Phys., 331 (2014), pp. 725–753.

• If v can be approximated by Herglotz wave functions, then
v(xc) = 0 at each corner.
E. Bl̊asten and H. Liu, On vanishing near corners of transmission
eigenfunctions, J. Functional Analysis, 273 (2017), pp. 3616–3632.
Addendum is available at arXiv:1710.08089.
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Regularity Result

• Let (D, σ, q) be a convex polygonal scatter satisfying the
assumptions in Theorem 1.

• Let u, v ∈ H1(D) be a nontrivial eigenfunctions of the transmission
eigenvalue problem (12).

Theorem 9 (Liu and Tsou 21’)

1. If v can be extended outside D to be an entire solution to (1), then
u ∈ H2(D).

2. If v can be approximated by Herglotz wave functions and those
functions are uniformly bounded, then it holds

lim
x ̸=x′∈D,x,x′→xc

|u(x)− u(x ′)|
|x − x ′|η

= 0. (14)
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Conclusions and Perspectives

Conclusions

• Stability estimates for polygonal scatterer.

• Application of micro-local analysis and corner singularity
decomposition to the study of inverse scattering problems.

• Implication to the transmission eigenvalue problems.

Perspectives

• Combination of the recovery of the conductivity σ and the potential
q.

• Extension three dimensional polyhedrons, variable or anisotropic
conductivity σ.
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THANKS FOR YOUR ATTENTION !
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