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Computed Tomography

Computed Tomography (CT)

A typical clinical CT scanner
Photo by daveynin / CC BY 2.0

An industrial nano CT system
©Fraunhofer IIS, Image from
https://www.iis.fraunhofer.de/en/pr/2020/20200604_ntct.html
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Computed Tomography

Mathematical formulation for parallel beam geometry
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Figure: Parallel beam geometry

Radon transform Ax(s, φ) simulates the
attenuation of a single beam

Ax(s, φ) =
∫
R
x
(
sθ + tθ⊥

)
dt

θ = (cosφ, sinφ)T , φ ∈ [0, π)

Beer-Lambert’s law states:

Ax(s, φ) = − log

(
I1(s, φ)

I0

)
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attenuation of a single beam

Ax(s, φ) =
∫
R
x
(
sθ + tθ⊥

)
dt

θ = (cosφ, sinφ)T , φ ∈ [0, π)

Beer-Lambert’s law states:

Ax(s, φ) = − log

(
I1(s, φ)

I0

)
discrete linear system Ax† + ϵ = yδ

A ∈ Rdφds×d2
n

≥0 , x† ∈ Rd2
n

≥0, yδ ∈ Rdφds
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CT reconstruction

Mildly ill-posed inverse problem:
singular values tend to zero (at
moderate speed), ⇝ unstable
inversion in the presence of noise

Reconstruction approaches:

Analytical inversion formulas, e.g.
filtered back-projection (FBP)
Iterative reconstruction
Deep-learning-based reconstruction
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Reconstruction challenges

Few angles (sparse view)

Limited angle range (limited view)

Low intensity (noise)

Goals

Reduce potentially harmful radiation dose

Reduce scanning time

Meet technical limitations

Reduce reconstruction errors (artifacts)

Sparse view Limited view Noise Ideal

Figure: Reconstructions (FBP with Ram-Lak filter) for different CT measurement setups 5 / 44
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Categories of learned approaches

Learned pre- and/or post-processing

Learned iterative reconstruction

Fully learned reconstruction

Deep image prior

etc.

(citations in the following are examples, usually early works of the kind)
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Learned post-processing
after classical reconstruction

dataset of pairs (x̃i , x
∗
i )i=0,1,...,N−1

x̃i : preliminary reconstructions
x∗i : ground truth images

typical training by minimizing empirical risk [42, 6]:

Remp(θ) = E(x̃i ,x
∗
i )

[
L(Fθ(x̃i ), x

∗
i )
]

L: typically MSE, MAE, SSIM, perceptual loss (or mix of these)

cGAN-based training with both L and discriminator-based adversarial loss, using a
generative adversarial network (GAN) conditioned on the input x̃i [38, 39]

few GAN-based works train on unpaired data (x̃i )i=0,1,...,N−1, (x
∗
j )j=0,1,...,M−1,

while ensuring correspondence of the output via a loss based on x̃i [37, 31]
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Learned pre-processing
before classical reconstruction

dataset of pairs (y δi , y
∗
i )i=0,1,...,N−1

yδ
i : degraded measurements
y∗
i : reference measurements

typical training by minimizing empirical risk [19, 14]:

Remp(θ) = E(yδ
i ,y

∗
i )

[
L(Fθ(y

δ
i ), y

∗
i )
]

L can include both sinogram- and image-domain losses ∥A†Fθ(y
δ
i )− A†y∗i ∥

cGAN-based training with both L and discriminator-based adversarial loss, using a
generative adversarial network (GAN) conditioned on the input x̃i [13, 5]

Pre- and post-processing and be combined, e.g. learned end-to-end [41, 25]
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Learned iterative reconstruction

inspired by iterative reconstruction while introducing learned components

several approaches:
unrolling a finite number of layers

end-to-end training [2, 1]
greedy iteration-wise training [24, 7]

Plug-and-Play priors / Regularization by denoising [40, 36]
iterative reconstruction with a learned regularization term [8, 28]
alternating a predefined and a relaxed “projection” network step [15, 34]
. . .

9 / 44
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Fully learned reconstruction

using little operator knowledge

learning to directly reconstruct an image x from measurements y δ

e.g. [23, 16]
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Deep Image Prior (DIP)[20]

Forward Model yδ = Ax + ϵ

DIP Reconstruction Framework

yδ Measurement
z Network input image, usually i.i.d. noise
θ Network parameters, initialized randomly (default of the DL framework)

θ⋆ ∈ argmin
θ
∥Aφθ(z)− yδ∥2 unsupervised, only requires yδ

φθ⋆(z) Reconstruction (obtained with early stopping, “regularized” by architecture)

[20] V. Lempitsky et al. “Deep Image Prior”. In: 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition. June 2018, pp. 9446–9454
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A benchmark of learned reconstruction methods
Journal paper

Johannes Leuschner, Maximilian Schmidt, Poulami Somanya Ganguly,
Vladyslav Andriiashen, Sophia Bethany Coban, Alexander Denker, Dominik Bauer,
Amir Hadjifaradji, Kees Joost Batenburg, Peter Maass and Maureen van Eijnatten:
Quantitative Comparison of Deep Learning-Based Image Reconstruction

Methods for Low-Dose and Sparse-Angle CT Applications
(2021) Journal of Imaging, vol. 7, no. 3,

doi: 10.3390/jimaging7030044

Code: https://github.com/jleuschn/dival
https://github.com/jleuschn/learned_ct_reco_comparison_paper

Parameters: https://github.com/jleuschn/supp.dival,
https://zenodo.org/record/4460055
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Applications

Clinical CT

Diagnostics

Screening

Virtual treatment
planning

. . .

Industrial CT

Non-destructive
testing (NDT)

Assembly analysis

. . .

Scientific CT

Micro CT / Nano CT

Material science
Biomedical
research

. . .

Benchmark data (large-scale simulated datasets with over 30 000 training pairs)

LoDoPaB-CT [21]
low-dose

Apples-CT [9]
sparse-angle
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Included Methods - From Modeling to Data-driven

Classical reconstruction: Filtered back-projection (FBP), Total variation (TV), CGLS

Learned iterative schemes: Learned Primal-Dual[1] x [l+1] = Fθl (x
[l ], yδ), l = 1, ..., L, x̂ = x [L]

Unsupervised: Deep Image Prior + TV[4] θ̂ = minθ ∥AFθ(z)− yδ∥, x̂ = F θ̂(z)

Generative models: Conditional INN [10] x̂ = 1
n

∑n
i Fθ (zi ,FBP (yδ)) , zi ∼ N (0, I )

Postprocessing: U-Net[17], U-Net++[43], ISTA U-Net[27], MS-D-CNN[32] x̂ = Fθ (FBP (yδ))

Fully learned: iCTU-Net[22] x̂ = Fθ (yδ)

13 / 44



33
Overview and benchmark of learned methods

Included Methods - From Modeling to Data-driven

Classical reconstruction: Filtered back-projection (FBP), Total variation (TV), CGLS

Learned iterative schemes: Learned Primal-Dual[1] x [l+1] = Fθl (x
[l ], yδ), l = 1, ..., L, x̂ = x [L]

Unsupervised: Deep Image Prior + TV[4] θ̂ = minθ ∥AFθ(z)− yδ∥, x̂ = F θ̂(z)

Generative models: Conditional INN [10] x̂ = 1
n

∑n
i Fθ (zi ,FBP (yδ)) , zi ∼ N (0, I )

Postprocessing: U-Net[17], U-Net++[43], ISTA U-Net[27], MS-D-CNN[32] x̂ = Fθ (FBP (yδ))

Fully learned: iCTU-Net[22] x̂ = Fθ (yδ)

[1] Adler et al., 2018, “Learned Primal-Dual Reconstruction”

13 / 44



33
Overview and benchmark of learned methods

Included Methods - From Modeling to Data-driven

Classical reconstruction: Filtered back-projection (FBP), Total variation (TV), CGLS

Learned iterative schemes: Learned Primal-Dual[1] x [l+1] = Fθl (x
[l ], yδ), l = 1, ..., L, x̂ = x [L]

Unsupervised: Deep Image Prior + TV[4] θ̂ = minθ ∥AFθ(z)− yδ∥, x̂ = F θ̂(z)

Generative models: Conditional INN [10] x̂ = 1
n

∑n
i Fθ (zi ,FBP (yδ)) , zi ∼ N (0, I )

Postprocessing: U-Net[17], U-Net++[43], ISTA U-Net[27], MS-D-CNN[32] x̂ = Fθ (FBP (yδ))

Fully learned: iCTU-Net[22] x̂ = Fθ (yδ)

[4] Baguer et al., 2020, “Computed tomography reconstruction using deep image prior and learned
reconstruction methods”

13 / 44



33
Overview and benchmark of learned methods

Included Methods - From Modeling to Data-driven

Classical reconstruction: Filtered back-projection (FBP), Total variation (TV), CGLS

Learned iterative schemes: Learned Primal-Dual[1] x [l+1] = Fθl (x
[l ], yδ), l = 1, ..., L, x̂ = x [L]

Unsupervised: Deep Image Prior + TV[4] θ̂ = minθ ∥AFθ(z)− yδ∥, x̂ = F θ̂(z)

Generative models: Conditional INN[10] x̂ = 1
n

∑n
i Fθ (zi ,FBP (yδ)) , zi ∼ N (0, I )

Postprocessing: U-Net[17], U-Net++[43], ISTA U-Net[27], MS-D-CNN[32] x̂ = Fθ (FBP (yδ))

Fully learned: iCTU-Net[22] x̂ = Fθ (yδ)

[10] Denker et al., 2020, Conditional Normalizing Flows for Low-Dose Computed Tomography Image
Reconstruction
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[17] Jin et al., 2017, “Deep convolutional neural network for inverse problems in imaging”
[43] Zhou et al., 2018, “Unet++: A nested u-net architecture for medical image segmentation”
[27] Liu et al., 2020, “Interpreting U-Nets via Task-Driven Multiscale Dictionary Learning”
[32] Pelt et al., 2018, “Improving Tomographic Reconstruction from Limited Data Using Mixed-Scale

Dense Convolutional Neural Networks”
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Reconstruction performance on LoDoPaB-CT

Method PSNR SSIM #Params
Learned Primal-Dual 36.25± 3.70 0.866± 0.115 874,980
ISTA U-Net 36.09± 3.69 0.862± 0.120 83,396,865
U-Net 36.00± 3.63 0.862± 0.119 613,322
MS-D-CNN 35.85± 3.60 0.858± 0.122 181,306
U-Net++ 35.37± 3.36 0.861± 0.119 9,170,079
CINN 35.54± 3.51 0.854± 0.122 6,438,332
DIP + TV 34.41± 3.29 0.845± 0.121 hyperp.
iCTU-Net 33.70± 2.82 0.844± 0.120 147,116,792
TV 33.36± 2.74 0.830± 0.121 (hyperp.)
FBP 30.19± 2.55 0.727± 0.127 (hyperp.)
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Sparse-view reconstruction on Apples-CT with Gaussian noise

50

Learned PD ISTA U-Net U-Net MS-D-CNN CINN iCTU-Net TV Ground truth

10

5

2
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Sparse-view reconstruction on Apples-CT with Gaussian noise

Gaussian Noise PSNR SSIM

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 36.62 33.76 29.92 21.41 0.878 0.850 0.821 0.674
ISTA U-Net 36.04 33.55 28.48 20.71 0.871 0.851 0.811 0.690
U-Net 36.48 32.83 27.80 19.86 0.882 0.818 0.789 0.706
MS-D-CNN 36.67 33.20 27.98 19.88 0.883 0.831 0.748 0.633
CINN 36.77 31.88 26.57 19.99 0.888 0.771 0.722 0.637
iCTU-Net 32.90 29.76 24.67 19.44 0.848 0.837 0.801 0.747
TV 32.36 27.12 21.83 16.08 0.833 0.752 0.622 0.637
CGLS 27.36 21.09 14.90 15.11 0.767 0.624 0.553 0.616
FBP 27.88 17.09 15.51 13.97 0.695 0.583 0.480 0.438
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Sparse-view reconstruction on Apples-CT with scattering

PSNR SSIM

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 37.80 34.19 27.08 20.98 0.892 0.866 0.796 0.540
ISTA U-Net 35.94 32.33 27.41 19.95 0.881 0.820 0.763 0.676
U-Net 34.96 32.91 26.93 18.94 0.830 0.784 0.736 0.688
MS-D-CNN 38.04 33.51 27.73 20.19 0.899 0.818 0.757 0.635
CINN 38.56 34.08 28.04 19.14 0.915 0.863 0.839 0.754
iCTU-Net 26.26 22.85 21.25 18.32 0.838 0.796 0.792 0.765
TV 21.09 20.14 17.86 14.53 0.789 0.649 0.531 0.611
CGLS 20.84 18.28 14.02 14.18 0.789 0.618 0.547 0.625
FBP 21.01 15.80 14.26 13.06 0.754 0.573 0.475 0.433

18 / 44
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Sparse-view reconstruction on Apples-CT with scattering

50

Learned PD ISTA U-Net U-Net MS-D-CNN CINN iCTU-Net TV Ground truth

10

5

2
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Discussion

Most learned methods performed similarly well on LoDoPaB-CT (a similar
observation has been reported from the fastMRI challenge [18])

Learned Primal-Dual (an unrolled iterative method) is among the best-performing
methods

Other important aspects:

Data requirements
Computational efficiency (and scalability to 3D)
Model knowledge (forward operator A, noise model, calibration, . . . )
Target application

20 / 44
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Number of training samples[4]

Learned methods usually rely
on large datasets

Fully learned approaches
require much more data,
Learned Primal-Dual also
works well with few training
samples

DIP+TV performs well in
the low-data regime
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[4] D. O. Baguer et al. “Computed tomography reconstruction using deep image prior and learned
reconstruction methods”. In: Inverse Problems 36.9 (Sept. 2020), p. 094004. url:
https://doi.org/10.1088%2F1361-6420%2Faba415
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Feature summary
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Requirements in target applications

PSNR and SSIM do not fully represent reconstruction quality

Different target applications require different reconstruction features, e.g.
Medical imaging:

TV-smoothed reconstructions to see overall organ shape
Detail-preserving reconstruction to see texture inside organs

Industrial CT:

Indicative reconstructions for a subsequent defect detection task
. . .
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Educated Deep Image Prior

Journal paper

Riccardo Barbano, Johannes Leuschner, Maximilian Schmidt, Alexander Denker,
Andreas Hauptmann, Peter Maass and Bangti Jin:

An Educated Warm Start For Deep Image Prior-Based Micro CT
Reconstruction

(2022) IEEE Trans. Comput. Imaging, vol. 8, pp. 1210-1222,
doi: 10.1109/TCI.2022.3233188, arXiv:2111.11926

Code: https://github.com/educating-dip/educated_deep_image_prior
Experiments: https://zenodo.org/record/7234749
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DIP: Features and limitations

θ⋆ ∈ argmin
θ
∥Aφθ(z)− yδ∥2 + γTV(φθ(z))

+ Unsupervised learning: no training data needed, just the measurement yδ

+ Loss motivated by classical variational formulation

◦ Good reconstruction quality, > classical, < learned on in-distribution data

− Computationally expensive: re-“training” for every reconstruction

− Need to identify point for early-stopping
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DIP Architecture
φθ: typically a CNN,

e.g. U-Net [33]
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An Educated Warm Start For DIP-Based µCT Reconstruction

Can DIP be accelerated by pretraining on synthetic data?
How does pretraining impact a subsequent unsupervised DIP reconstruction?

Proposed approach (Educated Deep Image Prior, EDIP):

1. Supervised pretraining (simulated data)

θ⋆s ∈ argmin
θ

{
ls(θ) :=

1

N

∑
(xn,yn

δ )∈D

∥φθ(A
†ynδ )− xn∥22

}
2. Unsupervised reconstruction (real-measured data)

Init. θ ← θ⋆s , θ⋆t ∈ argmin
θ

{
lt(θ) := ∥Aφθ(z)− yδ∥22 + γ TV (φθ(z))

}
,

x⋆ = φθ⋆t
(z)
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Synthetic Training Dataset of Ellipses/Ellipsoids

images of ellipses with random position, shape,
rotation and intensity values, generated
”on-the-fly”

simulated measurements

geometry of target reconstruction task
5% white noise
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X-Ray Walnut Dataset[11]

cone-beam µCT measurements using 3 source positions

1200 equidistant angles over [0, 360◦)

reduce geometry to 2D volume slice, selecting a
subset of measurement pixels

assemble forward operator as a sparse matrix for
image resolution (501 px)2 from given geometry

sparse-view task: reconstruct from 120 angles (10×
subsampling)

ground truth publicly available

[11] H. Der Sarkissian et al. Cone-Beam X-Ray CT Data Collection Designed for Machine Learning:
Samples 1-8. Zenodo. 2019. url: https://doi.org/10.5281/zenodo.2686726
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Walnut Reconstruction

Videos

PSNR: 33.31 dB, SSIM: 0.7748

EDIP (FBP)

PSNR: 33.92 dB, SSIM: 0.7686

DIP (noise) Ground truth

PSNR: 25.67 dB, SSIM: 0.7584

EDIP (FBP) initial

PSNR: 33.68 dB, SSIM: 0.8170

EDIP (FBP) iter. 4500

PSNR: 16.21 dB, SSIM: 0.1398

FBP

PSNR: 27.18 dB
SSIM: 0.9274

PSNR: 26.90 dB
SSIM: 0.9001

PSNR: 27.30 dB
SSIM: 0.9124

PSNR: 26.44 dB
SSIM: 0.8857

PSNR: 18.67 dB
SSIM: 0.5813

PSNR: 18.71 dB
SSIM: 0.5448

PSNR: 27.16 dB
SSIM: 0.9202

PSNR: 26.34 dB
SSIM: 0.8871

PSNR: 17.35 dB
SSIM: 0.5888

PSNR: 18.29 dB
SSIM: 0.6233
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Walnut in 3D

3D geometry:

reduce image dimension from (501 px)3 to (167 px)3 and
sub-sample projections by a factor of 3
use approximate adjoint via back-projection
(cannot assemble sparse matrix)
sparse-view task: reconstruct from 20 angles (60× subsampling)

adapted architecture:

reduce channels in encoder

add conv. layers before output

24GB VRAM constraint
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Walnut 3D Reconstruction
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Singular Value Analysis
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SVD-DIP: optimization by singular value fine-tuning

Conference paper

Marco Nittscher, Michael Falk Lameter, Riccardo Barbano, Johannes Leuschner,
Bangti Jin, Peter Maass:

SVD-DIP: Overcoming the Overfitting Problem in DIP-based CT
Reconstruction

(2023) will be presented at MIDL 2023 Conference

Code: https://github.com/anonsvddip/svd_dip
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Singular value fine-tuning for few-shot segmentation [35]

Adapt pretrained network for segmentation on unseen classes with few samples

Simply continuing training on few samples risks overfitting

Classical paradigm: freeze backbone parameters

Idea: compute SVD of pretrained backbone parameters and only fine-tune SVs

Can we adopt this idea for the pretrained EDIP?

[35] Y. Sun et al. “Singular Value Fine-tuning: Few-shot Segmentation requires Few-parameters
Fine-tuning”. In: Advances in Neural Information Processing Systems. Ed. by A. H. Oh et al. 2022.
url: https://openreview.net/forum?id=LEqYZz7cZOI
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Singular value fine-tuning

SVD decomposition of 2D convolutional weights following [35]:

W ∈ RCout×Cin×K×K ⇝W ′ ∈ RCout×CinK
2

W ′ = U ′S ′V ′ with U ′ ∈ RCout×R , S ′ ∈ RR×R ,V ′ ∈ RR×CinK
2

with S ′ diagonal, R = min{Cout,CinK
2}

Implementation of 2D convolution with W ′ = U ′S ′V ′:
reshape U ′ and V ′ as weight tensors, in between multiply channel-wise with S ′

Compute SVD of pretrained DIP parameters and only fine-tune SVs
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SVs on Lotus data of two layers
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Results on Mayo data

pretrained on LoDoPaB-200 data (using different FBP filter)
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Stein’s unbiased risk estimator (SURE) loss to prevent overfitting?
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Subspace DIP: optimization on linear parameter manifolds

Preprint

Riccardo Barbano, Javier Antorán, Johannes Leuschner,
José Miguel Hernández-Lobato, Željko Kereta and Bangti Jin:

Fast and Painless Image Reconstruction in Deep Image Prior Subspaces
(2023) arXiv:2302.10279

Code: https://github.com/anonsubdip/subspace_dip
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Subspace DIP

DIP parameterizes the image as x(θ) = φθ(z), θ ∈ Rdθ , with large dθ

EDIP starts optimization with pretrained parameters θpre

Subspace DIP: restrict θ to a low-dimensional affine linear subspace around θpre,

θ(c) = θpre +

dsub∑
k=1

B:,k ck = θpre + B c,

with a basis B ∈ Rdθ×dsub , coefficients c ∈ Rdsub , and relatively small dsub
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Determining the sparse subspace

save dpre checkpoints during EDIP pretraining, Θpre ∈ Rdθ×dpre

compute truncated top-dsub SVD, Θpre ≈ U S V⊤, to obtain U ∈ Rdθ×dsub

apply a masking M that sparsifies U in the dθ dimension by only keeping dlev rows
with the highest ℓ2 norm (“leverage score” [12])

The resulting sparse basis

B := M U

is used to form the subspace

θ(c) = θpre + B c.
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Optimization opportunities

DIP optimization uses batch size 1, so the gradient descent is not stochastic.

The low-dimensionality of c ∈ Rdsub allows to construct the local curvature needed
for second order optimization.

We compare

Adam

L-BFGS [26] – based on Hessian approximation

NGD [3, 29] – based on Fisher information approximation
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Natural gradient descent (NGD) [3]

NGD: c [t+1] = c [t] − α[t]F̃−1
(
c [t]

)
∇L

(
c [t]

)
F̃−1 inverse Fisher information matrix, L loss function

excluding the TV regularizer term, which does not depend on the observations, we
have F̃ (c) = (AJφB)

⊤AJφB

use online approximation of the Fisher using stochastic estimate

include damping and scaling parameter for quadratic loss term

choose momentum and step size via exact Fisher

[3] S.-i. Amari. “Natural Gradient Works Efficiently in Learning”. In: Neural Computation 10.2 (Feb.
1998), pp. 251–276. issn: 0899-7667. eprint:
https://direct.mit.edu/neco/article-pdf/10/2/251/813415/089976698300017746.pdf. url:
https://doi.org/10.1162/089976698300017746
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Comparison on Mayo data (using loss-based early stopping, averaged over 10 images)
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Comparison on Mayo data (300 angles)
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Experiments on CartoonSet
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CT Recon. with DL: Overview of Approaches and Extensions for DIP

Thank you for your attention!
Comments or questions?
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NGD: Quadratic loss

To compute the step c [t+1] = c [t] + δ, consider the quadratic model of the loss

M [t](δ) = L(c [t]) +
(
∇cL(c

[t])
)⊤

δ +
s

2
δ⊤

(
λIdsub + F̃ (c [t])

)
δ,

which due to F̃ is not a Taylor expansion, but a (maybe poor) convex approximation.

Two parameters introduced:

λ > 0: damping, avoids numerical instabilities, adds isotropic curvature

s ∈ (0, 1]: scaling, can reduce effect of curvature, allows for larger steps (novel)

λ, s updated by Levenberg-Marquardt style rule, clamped with minimum values
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NGD: Add momentum [30]

δ = α[t]∆[t] + µ[t]δ0

with ∆[t] = −
(
F [t]

)−1∇cL(c
[t]) and previous update direction δ0

choose α[t], µ[t] to minimize M [t](δ) via 2D linear system using the exact Fisher
information matrix via matrix-vector multiplication

[30] J. Martens et al. “Optimizing Neural Networks with Kronecker-factored Approximate Curvature”.
In: Proceedings of the 32nd International Conference on Machine Learning. Ed. by F. Bach et al.
Vol. 37. Proceedings of Machine Learning Research. Lille, France: PMLR, July 2015, pp. 2408–2417.
url: https://proceedings.mlr.press/v37/martens15.html
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