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Background



Supervised Machine Learning

Given training examples from a sample space Z = X × Y

▶ ( ,dog), ( ,car), ( ,airplane), . . .

▶ formally S =
{
zi = (xi , yi ), i = 1, . . . , n

}
, zi ∈ Z

▶ Independently drawn from a probability measure ρ on Z

Aim to find prediction rule gw : X 7→ Y, parameterized by w ∈ W (model space)

▶ linear models: gw(x) = ⟨w, x⟩

▶ neural networks: gw(x) = σL(WLσL−1(WL−1 · · ·σ1(W1x)))



Population and Empirical Risk

Loss function f (w; z) to measure performance of gw on an example z = (x , y)

squares loss: f (w; z) = (y − gw(x))
2 for regression

(x,y)

(x,gw(x))

hinge loss: f (w; z) = max{0, 1− ygw(x)} for binary classification

Aim: build a model with small population risk (testing error) F (w) = Ez [f (w; z)]

F is unknown, which is approximated by empirical risk (training error) on S

FS(w) =
1

n

n∑
i=1

f (w; zi )



Algorithms

A learning algorithm A with an output model A(S) ∈ W
▶ empirical risk minimization: A(S) = arg min

w∈W
training error(w)

▶ regularized risk minimization:

A(S) = arg min
w∈W

{
training error(w) + regularizer(w)

}
▶ gradient descent, stochastic gradient descent, stochastic gradient descent

ascent ...



Generalization Gap

Algorithm A often produces models with a small training error

This does not necessarily mean A(S) has a good prediction

This asks for the study of an important concept called generalization gap

Generalization gap = Test Error− Training Error

Our work: Statistics + Optimization
We focus on generalization issues of optimization algorithms via algorithmic stability

implicit regularization (no regularizer in the objective function)

how to trade off optimization and generalization for good prediction



Stability and Generalization of SGD



Gradient Descent

Gradient Descent (GD)

for t = 1, 2, . . . to T do
wt+1 ← wt − ηt∇FS(wt) for some step sizes ηt > 0

return wT+1 or an average of w1, . . . ,wT+1

simple, works well for many ML problems

computing ∇FS(wt) is O(n), slow if n is large

∇FS(wt) =
1

n

n∑
i=1

∇f (wt ; zi ).

GD requires to go through examples for a gradient computation!



Stochastic Gradient Descent

Stochastic Gradient Descent (SGD)

for t = 1, 2, . . . to T do
it ← random index from {1, 2, . . . , n}
wt+1 ← wt − ηt∇f (wt ; zit ) for some step sizes ηt > 0

return wT+1 or an average of w1, . . . ,wT+1

computation cost per iteration is O(1) instead of O(n)

correct in expectation:

Eit [∇f (wt ; zit )] =
1

n

n∑
i=1

∇f (wt ; zi ) = ∇FS(wt)

widely used in training deep neural networks (DNNs)

Theoretical (especially statistical) behavior of SGD is not well understood!



Excess Population Risk

Let w∗ be the best model parameter

w∗ = arg min
w∈W

F (w).

Target of analysis: excess population risk

E
[
F (A(S))− F (w∗)

]
= E

[
F (A(S))− FS(A(S))︸ ︷︷ ︸

generalization gap

+FS(A(S))− FS(w
∗)︸ ︷︷ ︸

optimization error

]

1 generalization gap: difference between testing error and training error at A(S)

2 optimization error: difference between A(S) and w∗ measured by training error

Y. Lei and Y. Ying. “Fine-Grained Analysis of Stability and Generalization for Stochastic Gradient Descent.” International Conference on Machine
Learning, 2020.



Generalization and Optimization Errors

Optimization errors decrease as we increase the number of iterations

Generalization errors (gap) increase as we increase the number of iterations

We need to balance these two errors by early-stopping



Generalization and Optimization Errors
There is a huge literature on optimization errors in optimization theory (Bach and Moulines,

2013; Duchi et al., 2010; Johnson and Zhang, 2013; Zhang, 2004a; Bottou et al., 2018; Shamir and Zhang,

2013; Rakhlin et al., 2012; Nemirovski et al., 2009; Nesterov, 2015; Ying and Zhou, 2017)

There is a huge literature on generalization gap in statistical learning theory

Stability Approach: estimate sensitivity of model wrt perturbation of sample (Hardt

et al., 2016; Kuzborskij and Lampert, 2018; Charles and Papailiopoulos, 2018; Feldman and Vondrak,

2019; Bousquet et al., 2020)

Uniform Convergence Approach: bound supw∈W
∣∣FS(w)− F (w)

∣∣ (Zhang, 2004b;

Zhou, 2002; Cucker and Smale, 2002; Bartlett and Mendelson, 2002; Lin et al., 2016; Tsybakov, 2004;

Cucker and Zhou, 2007; Vapnik, 2013; Steinwart and Christmann, 2008)

Integral Operator Approach: use the structure of square loss (Smale and Zhou, 2007;

Rosasco and Villa, 2015; Ying and Pontil, 2008; Lin and Rosasco, 2017; Dieuleveut and Bach, 2016; Lin

et al., 2017; Lin and Zhou, 2017; Jin et al., 2021)

There is far less study to consider these two errors together (Bousquet and Bottou, 2008; Hardt

et al., 2016; Lin and Rosasco, 2017; Yao et al., 2007)

Our work: study generalization and optimization error in a framework!



Uniform Stability Approach
A randomized algorithm A is ϵ-uniformly stable if, for any two datasets S and S ′ that
differ by one example (neighboring dataset), we have (Bousquet and Elisseeff, 2002)

sup
z

EA

[
f (A(S); z)− f (A(S ′); z)

]
≤ ϵ. (1)

Figure Taken in Kuzborskij and Lampert (2018)

If A is uniformly stable, then it is generalizable!

if z ∈ S ′\S , then z is a test point for A(S) and a training point for A(S ′)

f (A(S); z) is testing error and f (A(S ′); z) is training error



Uniform Stability Approach

Existing results (Hardt et al., 2016)

Let {wt}t and {w′
t} be SGD sequences on neighboring S and S ′. Let f be convex

strongly smooth, i.e,
∥∥∇f (w, z)−∇f (w′, z)

∥∥
2
≤ L∥w − w′∥2,

B-Lipschitz, i.e., ∥∇f (w; z)∥2 ≤ B.

For SGD with step size ηt , informally we have

generalization gap ≤ uniform stability ≤ E[∥wT − w′
T∥2]︸ ︷︷ ︸

argument stability

≤ 2B

n

T∑
t=1

ηt .

Assumptions are Restrictive
Lipschitz continuity fails for the square loss

f (w; z) = (⟨w, x⟩ − y)2

∇f (w; z) = 2
(
⟨w, x⟩ − y

)
x

Smoothness fails for the hinge loss

f (w; z) = max
{
0, 1− y⟨w, x⟩

}
not even differentiable

Can we remove these assumptions and explain the real power of SGD?



On-Average Model Stability

To handle the general setting, we propose a new concept of stability.

S = {z1, z2, . . . , zn}
S ′ = {z ′1, z ′2, . . . , z ′n}

perturbation
======⇒

S = {z1, z2, . . . , zn}
A−→ A(S)

S (1) = {z ′1, z2, . . . , zn}
A−→ A(S (1))

S (2) = {z1, z ′2, . . . , zn}
A−→ A(S (2))

...

S (n) = {z1, z2, . . . , z ′n}
A−→ A(S (n))

On-Average Model Stability

We say a randomized algorithm A : Zn 7→ W is on-average model ϵ-stable if

ES,S′,A

[1
n

n∑
i=1

∥A(S)− A(S (i))∥22
]
≤ ϵ2. (2)



Generalization by On-average Model stability

Hölder Continuous Gradients
We say f has α-Hölder continuous gradients (α ∈ [0, 1]) if∥∥∇f (w, z)−∇f (w′, z)

∥∥
2
≤ ∥w − w′∥α2 . (3)

α = 0 means that f is Lipschitz and α = 1 means strong smoothness.

Generalization by On-average Model stability
If A is on-average model ϵ-stable, then

generalization gap = O
(
ϵ1+α + ϵ

(
training error

) α
1+α

)
. (4)

Can handle both Lipschitz functions and un-bounded gradients!

If training error = 0, then generalization gap = O
(
ϵ1+α

)
.

This is much faster than generalization gap = O(ϵ).



Main Results for SGD

On-Average Model Stability for SGD

If ∇f is α-Hölder continuous with α ∈ [0, 1], then

ϵ2T+1 = O
( T∑

t=1

η
2

1−α
t +

1 + T/n

n

( T∑
t=1

η2
t

) 1−α
1+α

( T∑
t=1

η2
tE[FS(wt)]

) 2α
1+α

)
(5)

Weighted sum of training errors (i.e.
∑T

t=1 η
2
tE

[
FS(wt)

]
) can be estimated using

tools of analyzing optimization errors

Generalization error ≤ On-average model stability ≤ Weighted sum of training errors

Recall, for uniform stability with Lipschitz and smooth f , that

generalization gap ≤ uniform stability ≤ 2B

n

T∑
t=1

ηt (6)



SGD with Smooth and Convex Functions

Stability bound: ϵ2T = O
(

1
n

∑T
t=1 η

2
tE[FS(wt)]

)
=⇒ generalization bound

Implicit Regularization

Let A(S) be the model given by SGD with ηt = η. There is C > 0 such that

E
[
F (A(S))

]
= min

w

{
F (w) +

C∥w∥22
ηT

+ CηF (w)
}
.

SGD actually finds a minimizer of the L2-regularization with λ = 1
ηT

!

Choosing ηt = 1/
√
T and T ≍ n implies E

[
F (w̄T )

]
− F (w∗) = O

(
1/
√
n
)

Under a low noise condition F (w∗) = 0, we can take ηt = 1,T ≍ n and get the
first-ever fast bound O(1/n) by stability analysis: E[F (A(S))] = O(1/n).

We remove bounded gradient assumptions.



SGD with Lipschitz and Convex Functions

On-average model stability bounds are simplified as ϵ2T+1 = O
((

1 + T/n2
)∑T

t=1 η
2
t

)
.

Key idea: gradient update is approximately nonexpansive∥∥(w − η∇f (w; z)
)
−

(
w′ − η∇f (w′; z)

)∥∥2

2
= ∥w − w′∥22 + O(η2). (7)

Implicit Regularization

Let A(S) be the model given by SGD with ηt = η. There are C1,C2 such that

E
[
F (A(S))

]
= min

w

{
F (w) + C1(Tη)−1∥w∥22

}
+ C2η

(√
T + T/n

)
.

SGD actually finds a minimizer of the L2-regularization with λ = 1
Tη

!

We can take ηt = T− 3
4 and T ≍ n2 and get E[F (w̄T )]− F (w∗) = O(n− 1

2 ).

We get the first risk bound O(1/
√
n) for SGD with non-differentiable functions

based on stability analysis.



SGD with α-Hölder Continuous Gradients

Let f be convex and have α-Hölder continuous gradients with α ∈ (0, 1).

Key idea: gradient update is approximately nonexpansive∥∥(w − η∇f (w; z)
)
−

(
w′ − η∇f (w′; z)

)∥∥2

2
= ∥w − w′∥22 + O(η

2
1−α ).

Theorem (Excess risk bounds)

If α ≥ 1/2, we take ηt = 1/
√
T, T ≍ n and get

E[F (w̄T )]− F (w∗) = O(n− 1
2 ).

If α < 1/2, we take ηt = T
3α−3
2(2−α) , T ≍ n

2−α
1+α and get

E[F (w̄T )]− F (w∗) = O(n− 1
2 ).

Theorem (Fast risk bounds)

If F (w∗)=O( 1
n
), we let ηt =T

α2+2α−3
4 , T ≍n

2
1+α and get E[F (w̄T )]=O(n− 1+α

2 ).



Extension



Complexity Analysis of SGD in a Convex Setting
Complexity bound: If

∑∞
t=1 η

2
t <∞, then with high probability

max
t=1,...,T

∥wt∥2 = Õ
( 1√

n

T∑
t=1

ηt
)
.

Generalization bound: If
∑∞

t=1 η
2
t <∞, then with high probability

max
t=1,...,T

[
F (wt)− FS(wt)

]
= Õ

(1

n

T∑
t=1

ηt
)
.

Excess risk bound: If T ≍ n and ηt = Õ(1/
√
t), then with high probability

F (wT )− F (w∗) = Õ(1/
√
n).

High probability risk bound for SGD!

Implicit regularization is achieved by tuning the number of passes and the step size

No bounded gradient & smoothness assumptions and extended to kernel methods

Fast rates can be obtained under capacity assumption

Y. Lei, T. Hu and K. Tang. “Generalization Performance of Multi-pass Stochastic Gradient Descent with Convex Loss Functions.” Journal of Machine
Learning Research, 22(25):1-41, 2021.



Stability and Generalization for Non-convex Learning

We assume training errors are gradient-dominated (can be non-convex)

E
[
FS(w)−min

w
FS(w)

]
≤ 1

2β
E
[
∥∇FS(w)∥22

]
, ∀w ∈ W. (8)

Examples of gradient-dominated functions are found in dictionary learning, matrix
completion, neural networks, etc (Arora et al., 2015; Sun and Luo, 2016; Allen-Zhu et al., 2019)

Theorem (Generalization bounds)

If FS satisfies (8) and f is smooth, then

generalization gap ≤ stability ≤ 1

nβ
+

optimization error

β
. (9)

It applies to any algorithm: SGD, SVRG, ADAM...

Optimization helps generalization: run A until optimization error ≤ 1/n

Regularizer is not required for gradient-dominate problems

Y. Lei and Y. Ying. “Sharper Generalization Bounds for Learning with Gradient-dominated Objective Functions.” In International Conference on Learning
Representations, 2021.



Conclusion



Summary

Stability analysis of SGD

novel stability measures

remove restrictive assumptions

better generalization bounds

implicit regularization

Extensions

complexity approach

non-convex learning
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