Consistency of a Phase Field Regularisation for An Inverse Problem Governed by a Quasilinear Maxwell System

Kei Fong (Andrew) Lam¹ joint work with Irwin Yousept (Duisburg-Essen)

Hong Kong Baptist University

25 Mar 2023 (6th Young Scholar Symposium - Chinese University of Hong Kong)

¹supported by Hong Kong Research Grants Council [HKBU 14302218]

Motivation

Electromagnetic non-destructive/non-invasive testing:

(a) fMRI

(b) Electrical Impedance Tomography

(c) Electrical Resistivity Tomography

The inverse problem

Identify the location of ferromagnetic materials (e.g. iron) in a mixture containing nonmagnetic materials (e.g. copper) from measurements.

Forward model derived from static Maxwell's equations in a medium.

The forward model

Magnetostatic equations in a medium:

 $div\, \pmb{B} = 0 ~~ {\sf Gauss's} ~ {\sf law} ~ {\sf for} ~ {\sf magnetism},$

$$\operatorname{curl} \boldsymbol{H} = \boldsymbol{J}$$
 Ampère law,

with magnetic induction **B** and magnetic field **H** related via μ **H** = **B**.

Magnetostatic equations in a medium:

 $\operatorname{div} \boldsymbol{B} = 0 \quad \text{ Gauss's law for magnetism},$

 $\operatorname{curl} \boldsymbol{H} = \boldsymbol{J}$ Ampère law,

with magnetic induction **B** and magnetic field **H** related via μ **H** = **B**.

Vector potential formulation

There exists unique vector potential y such that

$$\operatorname{curl} \boldsymbol{y} = \boldsymbol{B}, \quad \operatorname{div} \boldsymbol{y} = 0,$$

leading to the forward model

$$\begin{cases} \operatorname{curl} \left(\mu^{-1} \operatorname{curl} \boldsymbol{y} \right) = \boldsymbol{J} & \text{ in } \Omega, \\ \operatorname{div} \boldsymbol{y} = 0 & \text{ in } \Omega, \\ \boldsymbol{y} \times \boldsymbol{n} = 0 & \text{ on } \partial \Omega \end{cases}$$

with perfectly conducting electric boundary conditions.

The B-H curve

Constitutive relation:

$$\boldsymbol{H} = \frac{1}{\mu} \boldsymbol{B} =: \nu \boldsymbol{B},$$

with magnetic permeability μ (or magnetic reluctivity $\nu = \frac{1}{\mu}$).

The B-H curve

Constitutive relation:

$$oldsymbol{H} = rac{1}{\mu}oldsymbol{B} =:
uoldsymbol{B},$$

with magnetic permeability μ (or magnetic reluctivity $\nu = \frac{1}{\mu}$).

- $\nu = \nu_0$ is constant for non-magnetic materials.
- For ferromagnetic materials, ν may depend nonlinearly on $|\boldsymbol{B}|$, i.e., $\boldsymbol{H} = f(\boldsymbol{B})$ where $f(\boldsymbol{s}) = \nu(|\boldsymbol{s}|)\boldsymbol{s}$.

Figure: Left: B-H curve $\frac{1}{f}$ of a ferromagnetic material. Center: Magnetic permeability μ . Right: Magnetic reluctivity ν on log scale. from Ph.D. thesis of P. Gangl

Magnetic hysteresis is neglected here.

Forward model

For $u \in L^1(\Omega; [0,1]) := \{g \in L^1(\Omega) : 0 \le g \le 1\}$ define interpolation reluctivity

$$\nu(u, \mathbf{y}) = \nu_0(1-u) + \nu_1(|\operatorname{curl} \mathbf{y}|)u,$$

so that for $u = \chi_{\Omega_1}$,

$$\nu = \begin{cases} \nu_0 & \text{ in } \Omega_0 = \Omega \setminus \overline{\Omega_1} \text{ (nonmagnetic region)}, \\ \nu_1(|\boldsymbol{B}|) & \text{ in } \Omega_1 \text{ (magnetic region)}. \end{cases}$$

Hence,

knowing $u \Leftrightarrow$ knowing the location of Ω_1 and Ω_0 .

Forward model

For $u \in L^1(\Omega; [0,1]) := \{g \in L^1(\Omega) : 0 \le g \le 1\}$ define interpolation reluctivity

$$u(u, \mathbf{y}) = \nu_0(1-u) + \nu_1(|\operatorname{curl} \mathbf{y}|)u,$$

so that for $u = \chi_{\Omega_1}$,

$$\nu = \begin{cases} \nu_0 & \text{ in } \Omega_0 = \Omega \setminus \overline{\Omega_1} \text{ (nonmagnetic region),} \\ \nu_1(|\boldsymbol{B}|) & \text{ in } \Omega_1 \text{ (magnetic region).} \end{cases}$$

Forward model

$$\begin{cases} \operatorname{curl} \left([\nu_0(1-u) + u\nu_1(|\operatorname{curl} \boldsymbol{y}|)]\operatorname{curl} \boldsymbol{y} \right) = \boldsymbol{J} & \text{ in } \Omega, \\ \operatorname{div} \boldsymbol{y} = 0 & \text{ in } \Omega, \\ \boldsymbol{y} \times \boldsymbol{n} = 0 & \text{ on } \partial\Omega. \end{cases}$$

A quasilinear curl-curl system with divergence-free constraint, and the implicit constraint div J = 0!

Properties

Let $\Omega \subset \mathbb{R}^3$ be Lipschitz polyhedral, simply connected, and $\nu_1 \in C^0(\mathbb{R})$. Assume

• \exists constants $\underline{\nu} \in (0, \nu_0), \overline{\nu} \in [\nu_0, \infty)$ such that $\underline{\nu} \leq \nu_1(s) \leq \nu_0$ and

$$(
u_1(s)s - \nu_1(r)r)(s - r) \ge \underline{\nu}|s - r|^2$$
 (strong monotoncity),
 $|
u_1(s)s - \nu_1(r)r| \le \overline{\nu}|s - r|$ (Lipschitz continuity).

• $\boldsymbol{J} \in \boldsymbol{L}^2(\Omega)$ and $\boldsymbol{u} \in L^1(\Omega; [0, 1])$.

Let $\Omega \subset \mathbb{R}^3$ be Lipschitz polyhedral, simply connected, and $\nu_1 \in C^0(\mathbb{R})$. Assume

• \exists constants $\underline{\nu} \in (0, \nu_0), \overline{\nu} \in [\nu_0, \infty)$ such that $\underline{\nu} \leq \nu_1(s) \leq \nu_0$ and

$$(
u_1(s)s - \nu_1(r)r)(s - r) \ge \underline{\nu}|s - r|^2$$
 (strong monotoncity),
 $|
u_1(s)s - \nu_1(r)r| \le \overline{\nu}|s - r|$ (Lipschitz continuity).

•
$$\boldsymbol{J} \in \boldsymbol{L}^2(\Omega)$$
 and $u \in L^1(\Omega; [0, 1])$.

Via a nonlinear saddle point formulation, for $Z = H_0(\text{curl}) \cap H(\text{div} = 0)$

- (Well-posedness) \exists ! weak solution pair $(\mathbf{y}, \phi) \in \mathbf{Z} \times H_0^1(\Omega)$.
- (Continuity) If $u_k \to u$ in $L^1(\Omega)$, then

 $\mathbf{y}_k \to \mathbf{y}$ strongly in \mathbf{Z} , $\phi_k \to \phi$ weakly in $H_0^1(\Omega)$.

• Induces a solution mapping $\boldsymbol{S} : u \mapsto \boldsymbol{y}(u)$.

Inverse problem:

$$(I) \quad \text{ find } u \in L^1(\Omega, \{0,1\}) \text{ s.t. } \boldsymbol{G} \circ \boldsymbol{S}(u) = \boldsymbol{y}_m \text{ in } \mathcal{O}$$

where

- **y**_m is a measurement;
- O is a Hilbert space;
- $\boldsymbol{G}: \boldsymbol{Z} \rightarrow \mathcal{O}$ Lipschitz continuous and bounded observation operator.

Inverse problem:

$$(I) \quad \mathsf{ find } u \in L^1(\Omega, \{0,1\}) \mathsf{ s.t. } \boldsymbol{ \boldsymbol{ G} } \circ \boldsymbol{ \boldsymbol{ S} }(u) = \boldsymbol{ \boldsymbol{ y} }_m \mathsf{ in } \mathcal{O}$$

where

- **y**_m is a measurement;
- O is a Hilbert space;
- $\boldsymbol{G}: \boldsymbol{Z} \rightarrow \mathcal{O}$ Lipschitz continuous and bounded observation operator.

Examples:

- Ω Lipschitz polyhedral, $\mathcal{O} = L^2(D)$ for subdomain $D \subset \Omega$, $G(\mathbf{y}) = \mathbf{y}|_D$ (Interior measurements).
- Ω convex polyhedral/of class $C^{1,1}$, $\mathcal{O} = L^2(\Sigma)$ for $\Sigma \subset \partial \Omega$, $G(\mathbf{y}) = \mathbf{y}|_{\Sigma}$ (Boundary measurements).

Likely that (I) is ill-posedness \therefore regularization is needed!

Perimeter/Total variation regularization

Overcome illposedness of (I) with

$$(I^{\alpha}) \quad \text{find } u^{\alpha} = \arg\min_{\boldsymbol{v}\in BV(\Omega;\{0,1\})} \left(\alpha TV(\boldsymbol{v}) + \frac{1}{2} \|\boldsymbol{G} \circ \boldsymbol{S}(\boldsymbol{v}) - \boldsymbol{y}_{m}\|_{\mathcal{O}}^{2} \right),$$

where $TV(v) = \sup\{\int_{\Omega} v \operatorname{div}\phi \text{ s.t. } \phi \in C_0^1(\Omega; \mathbb{R}^3), \|\phi\|_{\infty} \leq 1\}.$

This is perimeter regularization, i.e., the boundary $\partial \{u^{\alpha} = 1\}$ should have finite perimeter.

Perimeter/Total variation regularization

Overcome illposedness of (I) with

$$(I^{\alpha}) \quad \text{find } u^{\alpha} = \arg\min_{v \in BV(\Omega; \{0,1\})} \left(\alpha TV(v) + \frac{1}{2} \| \boldsymbol{G} \circ \boldsymbol{S}(v) - \boldsymbol{y}_m \|_{\mathcal{O}}^2 \right),$$

where $TV(v) = \sup\{\int_{\Omega} v \operatorname{div}\phi \text{ s.t. } \phi \in C_0^1(\Omega; \mathbb{R}^3), \|\phi\|_{\infty} \leq 1\}.$

Standard analysis yields

- (Existence) For any $\alpha > 0$, $\exists u^{\alpha} \in BV(\Omega, \{0, 1\})$ to (I^{α}) .
- (Continuity) If $y_m^n \to y_m$ in \mathcal{O} , and u_n^{α} solves (I^{α}) with data y_m^n . Then,

$$u_n^{lpha}
ightarrow u^{lpha} ext{ in } L^1(\Omega), \quad TV(u_n^{lpha})
ightarrow TV(u^{lpha}),$$

with u^{α} solves (I^{α}) with data y_m .

Perimeter/Total variation regularization

Overcome illposedness of (I) with

$$(I^{\alpha}) \quad \text{find } u^{\alpha} = \arg\min_{v \in BV(\Omega; \{0,1\})} \left(\alpha TV(v) + \frac{1}{2} \| \boldsymbol{G} \circ \boldsymbol{S}(v) - \boldsymbol{y}_m \|_{\mathcal{O}}^2 \right),$$

where $TV(v) = \sup\{\int_{\Omega} v \operatorname{div}\phi \text{ s.t. } \phi \in C_0^1(\Omega; \mathbb{R}^3), \|\phi\|_{\infty} \leq 1\}.$

Standard analysis yields

- (Existence) For any $\alpha > 0$, $\exists u^{\alpha} \in BV(\Omega, \{0, 1\})$ to (I^{α}) .
- (Continuity) If $y_m^n \to y_m$ in \mathcal{O} , and u_n^{α} solves (I^{α}) with data y_m^n . Then,

$$u_n^{lpha}
ightarrow u^{lpha} ext{ in } L^1(\Omega), \quad TV(u_n^{lpha})
ightarrow TV(u^{lpha}),$$

with u^{α} solves (I^{α}) with data y_m .

• (Consistency) If (1) has a solution $u^* \in BV(\Omega; \{0, 1\})$, and u^{α}_{δ} solves (I^{α}) with data \mathbf{y}^{δ}_m such that $\|\mathbf{y}^{\delta}_m - \mathbf{y}_m\|_{\mathcal{O}} \leq \delta$. Then, choosing $(\alpha_{\delta})_{\delta>0}$ such that $\delta^2/\alpha_{\delta} \to 0$, it holds that

$$u^{lpha_{\delta}}
ightarrow w$$
 in $L^1(\Omega)$

and w is a minimum-variation solution to (I).

Non-convexity of $BV(\Omega, \{0, 1\})$ is difficult for numerical implementation. Thus, approximate $TV(\cdot)$ by the Ginzburg–Landau functional

$$E_arepsilon(\mathbf{v}^arepsilon) = rac{8}{\pi}\int_\Omega rac{arepsilon}{2}\left|
abla \mathbf{v}^arepsilon
ight|^2 + rac{1}{arepsilon}\mathbf{v}^arepsilon(1-\mathbf{v}^arepsilon).$$

Well-known result of Modica (1987) shows $E_{\varepsilon}(\cdot) \xrightarrow{\Gamma} TV(\cdot)$ as $\varepsilon \to 0$.

Formally: as $\varepsilon \to 0$, $v^{\varepsilon} \to v \in BV(\Omega, \{0, 1\})$ in suitable sense.

Non-convexity of $BV(\Omega, \{0, 1\})$ is difficult for numerical implementation. Thus, approximate $TV(\cdot)$ by the Ginzburg–Landau functional

$$E_arepsilon(v^arepsilon) = rac{8}{\pi} \int_\Omega rac{arepsilon}{2} \left|
abla v^arepsilon
ight|^2 + rac{1}{arepsilon} v^arepsilon (1-v^arepsilon).$$

Well-known result of Modica (1987) shows $E_{\varepsilon}(\cdot) \xrightarrow{\Gamma} TV(\cdot)$ as $\varepsilon \to 0$.

Formally: as $\varepsilon \to 0$, $v^{\varepsilon} \to v \in BV(\Omega, \{0, 1\})$ in suitable sense.

Benefits?

- Change solution space from (non-convex) BV(Ω, {0,1}) to a convex space K := {f ∈ H¹(Ω) : 0 ≤ f(x) ≤ 1 a.e. in Ω}.
- Easier to devise numerical algorithms involving first order optimality conditions.

Properties of the Phase field inverse problem

$$(I_{\varepsilon}^{\alpha})$$
 find $u_{\varepsilon}^{\alpha} = \operatorname*{arg\,min}_{v \in \mathcal{K}} \left(\alpha E_{\varepsilon}(v) + \frac{1}{2} \| \boldsymbol{G} \circ \boldsymbol{S}(v) - \boldsymbol{y}_{m} \|_{\mathcal{O}}^{2} \right),$

where $\mathcal{K} = \{ f \in H^1(\Omega) : 0 \le f \le 1 \text{ a.e. in } \Omega \}.$

Note: $E_{\varepsilon}(v) = \frac{8}{\pi} \int_{\Omega} \frac{\varepsilon}{2} |\nabla v|^2 + \frac{1}{\varepsilon} v(1-v)$ is nonnegative over the set \mathcal{K} !

$$(I_{\varepsilon}^{\alpha})$$
 find $u_{\varepsilon}^{\alpha} = \operatorname*{arg\,min}_{v \in \mathcal{K}} \left(\alpha E_{\varepsilon}(v) + \frac{1}{2} \| \boldsymbol{G} \circ \boldsymbol{S}(v) - \boldsymbol{y}_{m} \|_{\mathcal{O}}^{2} \right),$

where $\mathcal{K} = \{ f \in H^1(\Omega) : 0 \le f \le 1 \text{ a.e. in } \Omega \}.$

Note: $E_{\varepsilon}(v) = \frac{8}{\pi} \int_{\Omega} \frac{\varepsilon}{2} |\nabla v|^2 + \frac{1}{\varepsilon} v(1-v)$ is nonnegative over the set \mathcal{K} !

Properties

- (Existence) For $\alpha, \varepsilon > 0$, $\exists u_{\varepsilon}^{\alpha} \in \mathcal{K}$ to $(I_{\varepsilon}^{\alpha})$.
- (Continuity) If $\mathbf{y}_m^n \to \mathbf{y}_m$ in \mathcal{O} , and $u_{\varepsilon,n}^{\alpha} \in \mathcal{K}$ solves $(I_{\varepsilon}^{\alpha})$ with data \mathbf{y}_m^n . Then,

$$u_{\varepsilon,n}^{\alpha} \to u_{\varepsilon}^{\alpha}$$
 in $H^{1}(\Omega)$,

with u_{ε}^{α} a solution to $(I_{\varepsilon}^{\alpha})$ with data \mathbf{y}_{m} .

Behavior as $\varepsilon ightarrow 0$

For fixed $\alpha, \varepsilon > 0$, let $u_{\varepsilon}^{\alpha} \in \mathcal{K}$ be a solution to $(I_{\varepsilon}^{\alpha})$. Then, there exists a solution $u_*^{\alpha} \in BV(\Omega, \{0, 1\})$ to (I^{α}) such that

$$u^{lpha}_{arepsilon} o u^{lpha}_{*} ext{ in } L^{1}(\Omega), \quad J_{arepsilon}(u^{lpha}_{arepsilon}) o J(u^{lpha}_{*}) \quad ext{ as } arepsilon o 0.$$

- Classical result using Gamma convergence $E_{\varepsilon}(\cdot) \xrightarrow{\Gamma} TV(\cdot)$.
- $J_f(u) = \frac{1}{2} \| \boldsymbol{G} \circ \boldsymbol{S}(u) \boldsymbol{y}_m \|_{\mathcal{O}}^2$ is a continuous perturbation.
- This shows consistency of the phase field regularisation and validates its use.

Consistency as $\varepsilon, \alpha \to 0$

New result

If (1) has a solution $u_* \in BV(\Omega, \{0, 1\})$ with $\partial \{u_* = 1\}$ smooth and $\operatorname{curl} S(u_*) \in L^{2+}(\Omega)$. For any $(\varepsilon_k)_{k \in \mathbb{N}} \to 0$, choose $(\alpha_k)_{k \in \mathbb{N}} \to 0$ s.t.

$$\limsup_{k\to\infty}\frac{\varepsilon_k^2}{\alpha_k}=0,\qquad (\star$$

then there exists a solution $u \in BV(\Omega, \{0,1\})$ to (1) such that

$$u_{\varepsilon_k}^{\alpha_k} \to u \text{ in } L^1(\Omega), \quad TV(u) \leq TV(u_*).$$

Compare to the Consistency of TV solutions

If (1) has a solution $u^* \in BV(\Omega; \{0, 1\})$, and u^{α}_{δ} solves (I^{α}) with data \mathbf{y}^{δ}_m s.t. $\|\mathbf{y}^{\delta}_m - \mathbf{y}_m\|_{\mathcal{O}} \leq \delta$. Then, choosing $(\alpha_{\delta})_{\delta>0}$ s.t. $\delta^2/\alpha_{\delta} \to 0$, it holds

 $u^{\alpha_{\delta}} \rightarrow w$ in $L^{1}(\Omega)$

and w is a minimum-variation solution to (I).

Consistency as $\varepsilon, \alpha \to 0$

New result

If (1) has a solution $u_* \in BV(\Omega, \{0, 1\})$ with $\partial \{u_* = 1\}$ smooth and $\operatorname{curl} S(u_*) \in L^{2+}(\Omega)$. For any $(\varepsilon_k)_{k \in \mathbb{N}} \to 0$, choose $(\alpha_k)_{k \in \mathbb{N}} \to 0$ s.t.

$$\limsup_{k \to \infty} \frac{\varepsilon_k^2}{\alpha_k} = 0, \qquad (\star)$$

then there exists a solution $u \in BV(\Omega, \{0,1\})$ to (1) such that

$$u_{\varepsilon_k}^{\alpha_k} \to u \text{ in } L^1(\Omega), \quad TV(u) \leq TV(u_*).$$

Remark:

Smoothness assumption "with ... L²⁺(Ω)" can be dropped, but the relation (*) is replaced with something less explicit:

$$\limsup_{\varepsilon_k\to 0}\frac{1}{\alpha_k}\|(w_{\varepsilon_k}-u_*)\operatorname{curl}\boldsymbol{S}(u_*)\|_{\boldsymbol{L}^2(\Omega)}^2=0,$$

where $w_{\varepsilon_k} \to u_*$ in $L^1(\Omega)$ as $k \to \infty$ is a recovery sequence in Gamma convergence.

Let $\boldsymbol{G}: \boldsymbol{Z} \to \mathcal{O}$ be continuously Fréchet differentiable, and let $u_{\varepsilon}^{\alpha} \in \mathcal{K}$ be a solution to $(I_{\varepsilon}^{\alpha})$. Then,

$$\begin{split} &\int_{\Omega} \Big((\nu_0 - \nu_1(|\operatorname{curl} \boldsymbol{y}_{\varepsilon}^{\alpha}|)) \operatorname{curl} \boldsymbol{y}_{\varepsilon}^{\alpha} \cdot \operatorname{curl} \boldsymbol{q}_{\varepsilon}^{\alpha} + \frac{\alpha 8}{\pi \varepsilon} (1 - 2u_{\varepsilon}^{\alpha}) \Big) (w - u_{\varepsilon}^{\alpha}) \\ &+ \int_{\Omega} \alpha \frac{8}{\pi} \nabla u_{\varepsilon}^{\alpha} \cdot \nabla (w - u_{\varepsilon}^{\alpha}) \geq 0 \quad \forall w \in \mathcal{K}, \qquad (\dagger) \end{split}$$

where the adjoint $\boldsymbol{q}_{\varepsilon}^{\alpha}$ satisfies a linear saddle point problem.

Let $\boldsymbol{G}: \boldsymbol{Z} \to \mathcal{O}$ be continuously Fréchet differentiable, and let $u_{\varepsilon}^{\alpha} \in \mathcal{K}$ be a solution to $(I_{\varepsilon}^{\alpha})$. Then,

$$\begin{split} &\int_{\Omega} \Big((\nu_0 - \nu_1(|\operatorname{curl} \boldsymbol{y}_{\varepsilon}^{\alpha}|)) \operatorname{curl} \boldsymbol{y}_{\varepsilon}^{\alpha} \cdot \operatorname{curl} \boldsymbol{q}_{\varepsilon}^{\alpha} + \frac{\alpha 8}{\pi \varepsilon} (1 - 2u_{\varepsilon}^{\alpha}) \Big) (w - u_{\varepsilon}^{\alpha}) \\ &+ \int_{\Omega} \alpha \frac{8}{\pi} \nabla u_{\varepsilon}^{\alpha} \cdot \nabla (w - u_{\varepsilon}^{\alpha}) \geq 0 \quad \forall w \in \mathcal{K}, \qquad (\dagger) \end{split}$$

where the adjoint $\boldsymbol{q}_{\epsilon}^{\alpha}$ satisfies a linear saddle point problem.

Does optimality condition (†) converge as $\varepsilon \rightarrow 0$?

Problems:

- Q1 What is the optimality condition for (I^{α}) ?
- Q2 Can we pass to the limit $\varepsilon \rightarrow 0$ rigorous?

A1 - Express (I^{α}) as a shape optimization problem, and derive the shape gradient.

Figure: Perturb Ω by suitable velocity fields *V* and compute the change of the solution $y(\Omega)$ with respect to *V*. Figure taken from book by S. Walker.

A2 - Derive a related optimality conditions for $(I_{\varepsilon}^{\alpha})$ using domain variation, and then pass to the limit $\varepsilon \to 0$.

Some details...

Admissible domain variation

Velocity field $V \in C^0([0, \tau]; C^2_c(\Omega; \mathbb{R}^3))$ induces transformation $T : [0, \tau] \times \Omega \to \Omega$ with $T_t(x) = T(t, x), T(0, x) = x$.

If u^{α} solves (I^{α}) with $\partial \{u^{\alpha} = 1\}$ Lipschitz then

$$u^{lpha} \circ T_t^{-1} \in BV(\Omega, \{0, 1\})$$

and

$$J(u^{\alpha}) \leq J(u^{\alpha} \circ T_t^{-1}) \quad \Rightarrow \quad \partial_t J(u^{\alpha} \circ T_t^{-1})|_{t=0} =: \mathrm{D}J(u^{\alpha})[V] = 0.$$

From shape calculus

- $\dot{y}^{\alpha}[V] = \partial_t S(u^{\alpha} \circ T_t^{-1})|_{t=0}$ (shape derivative) satisfies a linear saddle point problem;
- $DJ(u^{\alpha})[V] = \partial_t J(u^{\alpha} \circ T_t^{-1})|_{t=0}$ (shape gradient) yields the optimality condition $DJ(u^{\alpha})[V] = 0$.

Domain variation optimality condition

Similarly, for the PF inverse problem, if u_{ε}^{α} is a solution to $(I_{\varepsilon}^{\alpha})$, then $J_{\varepsilon}(u_{\varepsilon}^{\alpha}) \leq J_{\varepsilon}(u_{\varepsilon}^{\alpha} \circ T_{t}^{-1}) \quad \Rightarrow \quad \partial_{t}J_{\varepsilon}(u_{\varepsilon}^{\alpha} \circ T_{t}^{-1})|_{t=0} =: \mathrm{D}J_{\varepsilon}(u_{\varepsilon}^{\alpha})[V] = 0.$

From shape calculus

- $\dot{y}_{\varepsilon}^{\alpha}[V] = \partial_t S(u_{\varepsilon}^{\alpha} \circ T_t^{-1})|_{t=0}$ (shape derivative) satisfies a linear saddle point problem;
- $DJ_{\varepsilon}(u_{\varepsilon}^{\alpha})[V] = \partial_t J_{\varepsilon}(u_{\varepsilon}^{\alpha} \circ T_t^{-1})|_{t=0}$ (shape gradient) yields the optimality condition $DJ_{\varepsilon}(u_{\varepsilon}^{\alpha})[V] = 0$.

Example - $C^{1,1}$ -boundary and $\mathcal{O} = L^2(\partial \Omega)$ (boundary measurement):

$$DJ_{\varepsilon}(u_{\varepsilon}^{\alpha})[V] = \int_{\partial\Omega} (\mathbf{y}_{\varepsilon}^{\alpha} - \mathbf{y}_{m}) \cdot \dot{\mathbf{y}}_{\varepsilon}^{\alpha}[V] + \int_{\Omega} \frac{8\varepsilon}{\pi} \nabla u_{\varepsilon}^{\alpha} \cdot (\nabla V) \nabla u_{\varepsilon}^{\alpha} + \frac{8}{\pi} \int_{\Omega} \left(\frac{\varepsilon}{2} \left| \nabla u_{\varepsilon}^{\alpha} \right|^{2} + \frac{1}{\varepsilon} u_{\varepsilon}^{\alpha} (1 - u_{\varepsilon}^{\alpha}) \right) \mathrm{div} V$$

With more regularity, can be shown to be equivalent to the variational inequality $(\dagger)!$

Convergence of optimality conditions

Problems:

Q1 What is the optimality condition for (I^{α}) ? \checkmark

Q2 Can we pass to the limit $\varepsilon \rightarrow 0$ rigorous? \checkmark

Theorem: All the important things converge

Fix $\alpha > 0$, then

$$u^{lpha}_{arepsilon} o u^{lpha} ext{ in } L^1(\Omega), \quad J_{arepsilon}(u^{lpha}_{arepsilon}) o J(u^{lpha}) ext{ in } \mathbb{R},$$

and for any $V \in C^0([0, \tau]; C^2_c(\Omega; \mathbb{R}^3))$, it holds that

(shape derivative) $\dot{\boldsymbol{y}}_{\varepsilon}^{\alpha}[V] \rightharpoonup \dot{\boldsymbol{y}}^{\alpha}[V]$ in $\boldsymbol{H}^{1}(\Omega)$, (optimality condition) $\mathrm{D}J_{\varepsilon}(u_{\varepsilon}^{\alpha})[V] \rightarrow \mathrm{D}J(u^{\alpha})[V]$ in \mathbb{R} .

Summary

Thank you for your attention!