## Consistency of a Phase Field Regularisation for An Inverse Problem Governed by a Quasilinear Maxwell System

Kei Fong（Andrew）Lam ${ }^{1}$<br>joint work with Irwin Yousept（Duisburg－Essen）<br>Hong Kong Baptist University

25 Mar 2023 （6th Young Scholar Symposium－Chinese University of Hong Kong）

［1］
香港浸會大學
HONG KONG BAPTIST UNIVERSITY
${ }^{1}$ supported by Hong Kong Research Grants Council［HKBU 14302218］

## Motivation

Electromagnetic non-destructive/non-invasive testing:

(a) fMRI

(b) Electrical Impedance Tomography

(c) Electrical Resistivity Tomography

## The inverse problem

Identify the location of ferromagnetic materials (e.g. iron) in a mixture containing nonmagnetic materials (e.g. copper) from measurements.


Forward model derived from static Maxwell's equations in a medium.

## The forward model

Magnetostatic equations in a medium:

$$
\begin{aligned}
\operatorname{div} \boldsymbol{B} & =0 \\
\text { curl } \boldsymbol{H} & =\boldsymbol{J}
\end{aligned} \quad \text { Ampères law law for magnetism, }
$$

with magnetic induction $\boldsymbol{B}$ and magnetic field $\boldsymbol{H}$ related via $\mu \boldsymbol{H}=\boldsymbol{B}$.

## The forward model

Magnetostatic equations in a medium:

$$
\begin{aligned}
\operatorname{div} \boldsymbol{B} & =0 & \text { Gauss's law for magnetism, } \\
\operatorname{curl} \boldsymbol{H} & =\boldsymbol{J} & \text { Ampère law, }
\end{aligned}
$$

with magnetic induction $\boldsymbol{B}$ and magnetic field $\boldsymbol{H}$ related via $\mu \boldsymbol{H}=\boldsymbol{B}$.

## Vector potential formulation

There exists unique vector potential $\boldsymbol{y}$ such that

$$
\operatorname{curl} \boldsymbol{y}=\boldsymbol{B}, \quad \operatorname{div} \boldsymbol{y}=0,
$$

leading to the forward model

$$
\begin{cases}\operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{y}\right)=\boldsymbol{J} & \text { in } \Omega, \\ \operatorname{div} \boldsymbol{y}=0 & \text { in } \Omega, \\ \boldsymbol{y} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

with perfectly conducting electric boundary conditions.

## The B-H curve

Constitutive relation:

$$
\boldsymbol{H}=\frac{1}{\mu} \boldsymbol{B}=: \nu \boldsymbol{B},
$$

with magnetic permeability $\mu$ (or magnetic reluctivity $\nu=\frac{1}{\mu}$ ).

## The B-H curve

Constitutive relation:

$$
\boldsymbol{H}=\frac{1}{\mu} \boldsymbol{B}=: \nu \boldsymbol{B},
$$

with magnetic permeability $\mu$ (or magnetic reluctivity $\nu=\frac{1}{\mu}$ ).

- $\nu=\nu_{0}$ is constant for non-magnetic materials.
- For ferromagnetic materials, $\nu$ may depend nonlinearly on $|\boldsymbol{B}|$, i.e., $\boldsymbol{H}=f(\boldsymbol{B})$ where $f(\boldsymbol{s})=\nu(|\boldsymbol{s}|) \boldsymbol{s}$.


Figure: Left: B-H curve $\frac{1}{f}$ of a ferromagnetic material. Center: Magnetic permeability $\mu$. Right: Magnetic reluctivity $\nu$ on log scale. from Ph.D. thesis of P. Gangl

- Magnetic hysteresis is neglected here.


## Forward model

For $u \in L^{1}(\Omega ;[0,1]):=\left\{g \in L^{1}(\Omega): 0 \leq g \leq 1\right\}$ define interpolation reluctivity

$$
\nu(u, \boldsymbol{y})=\nu_{0}(1-u)+\nu_{1}(|\operatorname{curl} \boldsymbol{y}|) u,
$$

so that for $u=\chi_{\Omega_{1}}$,

$$
\nu= \begin{cases}\nu_{0} & \text { in } \Omega_{0}=\Omega \backslash \overline{\Omega_{1}}(\text { nonmagnetic region }), \\ \nu_{1}(|\boldsymbol{B}|) & \text { in } \Omega_{1}(\text { magnetic region }) .\end{cases}
$$

Hence,
knowing $u \quad \Leftrightarrow \quad$ knowing the location of $\Omega_{1}$ and $\Omega_{0}$.

## Forward model

For $u \in L^{1}(\Omega ;[0,1]):=\left\{g \in L^{1}(\Omega): 0 \leq g \leq 1\right\}$ define interpolation reluctivity

$$
\nu(u, \boldsymbol{y})=\nu_{0}(1-u)+\nu_{1}(|\operatorname{curl} \boldsymbol{y}|) u,
$$

so that for $u=\chi_{\Omega_{1}}$,

$$
\nu= \begin{cases}\nu_{0} & \text { in } \Omega_{0}=\Omega \backslash \overline{\Omega_{1}}(\text { nonmagnetic region }), \\ \nu_{1}(|\boldsymbol{B}|) & \text { in } \Omega_{1}(\text { magnetic region }) .\end{cases}
$$

## Forward model

$$
\begin{cases}\operatorname{curl}\left(\left[\nu_{0}(1-u)+u \nu_{1}(|\operatorname{curl} \boldsymbol{y}|)\right] \operatorname{curl} \boldsymbol{y}\right)=\boldsymbol{J} & \text { in } \Omega \\ \operatorname{div} \boldsymbol{y}=0 & \text { in } \Omega \\ \boldsymbol{y} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

A quasilinear curl-curl system with divergence-free constraint, and the implicit constraint div $\boldsymbol{J}=0$ !

## Properties

Let $\Omega \subset \mathbb{R}^{3}$ be Lipschitz polyhedral, simply connected, and $\nu_{1} \in C^{0}(\mathbb{R})$. Assume
$■ \exists$ constants $\underline{\nu} \in\left(0, \nu_{0}\right), \bar{\nu} \in\left[\nu_{0}, \infty\right)$ such that $\underline{\nu} \leq \nu_{1}(s) \leq \nu_{0}$ and

$$
\begin{array}{r}
\left(\nu_{1}(s) s-\nu_{1}(r) r\right)(s-r) \geq \underline{\nu}|s-r|^{2} \quad(\text { strong monotoncity }), \\
\left|\nu_{1}(s) s-\nu_{1}(r) r\right| \leq \bar{\nu}|s-r| \quad(\text { Lipschitz continuity }) .
\end{array}
$$

- J $\in \boldsymbol{L}^{2}(\Omega)$ and $u \in L^{1}(\Omega ;[0,1])$.


## Properties

Let $\Omega \subset \mathbb{R}^{3}$ be Lipschitz polyhedral, simply connected, and $\nu_{1} \in C^{0}(\mathbb{R})$. Assume
$■ \exists$ constants $\underline{\nu} \in\left(0, \nu_{0}\right), \bar{\nu} \in\left[\nu_{0}, \infty\right)$ such that $\underline{\nu} \leq \nu_{1}(s) \leq \nu_{0}$ and

$$
\begin{array}{r}
\left(\nu_{1}(s) s-\nu_{1}(r) r\right)(s-r) \geq \underline{\nu}|s-r|^{2} \quad(\text { strong monotoncity }), \\
\left|\nu_{1}(s) s-\nu_{1}(r) r\right| \leq \bar{\nu}|s-r| \quad(\text { Lipschitz continuity }) .
\end{array}
$$

- $\boldsymbol{J} \in \boldsymbol{L}^{2}(\Omega)$ and $u \in L^{1}(\Omega ;[0,1])$.

Via a nonlinear saddle point formulation, for $\mathbf{Z}=H_{0}($ curl $) \cap H(\operatorname{div}=0)$

- (Well-posedness) $\exists$ ! weak solution pair $(\boldsymbol{y}, \phi) \in \boldsymbol{Z} \times H_{0}^{1}(\Omega)$.
- (Continuity) If $u_{k} \rightarrow u$ in $L^{1}(\Omega)$, then

$$
\boldsymbol{y}_{k} \rightarrow \boldsymbol{y} \text { strongly in } \boldsymbol{Z}, \quad \phi_{k} \rightarrow \phi \text { weakly in } H_{0}^{1}(\Omega) .
$$

- Induces a solution mapping $\boldsymbol{S}: u \mapsto \boldsymbol{y}(u)$.


## Inverse problem

Inverse problem:

$$
\text { (I) find } u \in L^{1}(\Omega,\{0,1\}) \text { s.t. } \boldsymbol{G} \circ \boldsymbol{S}(u)=\boldsymbol{y}_{m} \text { in } \mathcal{O}
$$

where

- $\boldsymbol{y}_{m}$ is a measurement;
- $\mathcal{O}$ is a Hilbert space;

■ $\boldsymbol{G}: \boldsymbol{Z} \rightarrow \mathcal{O}$ Lipschitz continuous and bounded observation operator.

## Inverse problem

Inverse problem:

$$
\text { (I) find } u \in L^{1}(\Omega,\{0,1\}) \text { s.t. } \boldsymbol{G} \circ \boldsymbol{S}(u)=\boldsymbol{y}_{m} \text { in } \mathcal{O}
$$

where
■ $\boldsymbol{y}_{m}$ is a measurement;

- $\mathcal{O}$ is a Hilbert space;

■ $\boldsymbol{G}: \boldsymbol{Z} \rightarrow \mathcal{O}$ Lipschitz continuous and bounded observation operator.
Examples:

- $\Omega$ Lipschitz polyhedral, $\mathcal{O}=\boldsymbol{L}^{2}(D)$ for subdomain $D \subset \Omega$, $\boldsymbol{G}(\boldsymbol{y})=\left.\boldsymbol{y}\right|_{D}$ (Interior measurements).
- $\Omega$ convex polyhedral/of class $C^{1,1}, \mathcal{O}=\boldsymbol{L}^{2}(\Sigma)$ for $\Sigma \subset \partial \Omega$, $\boldsymbol{G}(\boldsymbol{y})=\left.\boldsymbol{y}\right|_{\Sigma}$ (Boundary measurements).

Likely that (I) is ill-posedness $\therefore$ regularization is needed!

## Perimeter/Total variation regularization

Overcome illposedness of (I) with

$$
\left(I^{\alpha}\right) \quad \text { find } u^{\alpha}=\underset{v \in B V(\Omega ;\{0,1\})}{\arg \min }\left(\alpha T V(v)+\frac{1}{2}\left\|\boldsymbol{G} \circ \boldsymbol{S}(v)-\boldsymbol{y}_{m}\right\|_{\mathcal{O}}^{2}\right),
$$

where $T V(v)=\sup \left\{\int_{\Omega} v \operatorname{div} \phi\right.$ s.t. $\left.\phi \in C_{0}^{1}\left(\Omega ; \mathbb{R}^{3}\right),\|\phi\|_{\infty} \leq 1\right\}$.
This is perimeter regularization, i.e., the boundary $\partial\left\{u^{\alpha}=1\right\}$ should have finite perimeter.

## Perimeter/Total variation regularization

Overcome illposedness of (I) with
$\left(I^{\alpha}\right) \quad$ find $u^{\alpha}=\underset{v \in B V(\Omega ;\{0,1\})}{\arg \min }\left(\alpha T V(v)+\frac{1}{2}\left\|\boldsymbol{G} \circ \boldsymbol{S}(v)-\boldsymbol{y}_{m}\right\|_{\mathcal{O}}^{2}\right)$,
where $T V(v)=\sup \left\{\int_{\Omega} v \operatorname{div} \phi\right.$ s.t. $\left.\phi \in C_{0}^{1}\left(\Omega ; \mathbb{R}^{3}\right),\|\phi\|_{\infty} \leq 1\right\}$.
Standard analysis yields

- (Existence) For any $\alpha>0, \exists u^{\alpha} \in B V(\Omega,\{0,1\})$ to ( $\left.I^{\alpha}\right)$.

■ (Continuity) If $\boldsymbol{y}_{m}^{n} \rightarrow \boldsymbol{y}_{m}$ in $\mathcal{O}$, and $u_{n}^{\alpha}$ solves ( $I^{\alpha}$ ) with data $\boldsymbol{y}_{m}^{n}$. Then,

$$
u_{n}^{\alpha} \rightarrow u^{\alpha} \text { in } L^{1}(\Omega), \quad T V\left(u_{n}^{\alpha}\right) \rightarrow T V\left(u^{\alpha}\right)
$$

with $u^{\alpha}$ solves $\left(I^{\alpha}\right)$ with data $\boldsymbol{y}_{m}$.

## Perimeter/Total variation regularization

Overcome illposedness of (I) with
$\left(I^{\alpha}\right) \quad$ find $u^{\alpha}=\underset{v \in B V(\Omega ;\{0,1\})}{\arg \min }\left(\alpha T V(v)+\frac{1}{2}\left\|\boldsymbol{G} \circ \boldsymbol{S}(v)-\boldsymbol{y}_{m}\right\|_{\mathcal{O}}^{2}\right)$,
where $T V(v)=\sup \left\{\int_{\Omega} v \operatorname{div} \phi\right.$ s.t. $\left.\phi \in C_{0}^{1}\left(\Omega ; \mathbb{R}^{3}\right),\|\phi\|_{\infty} \leq 1\right\}$.
Standard analysis yields

- (Existence) For any $\alpha>0, \exists u^{\alpha} \in B V(\Omega,\{0,1\})$ to ( $\left.I^{\alpha}\right)$.

■ (Continuity) If $\boldsymbol{y}_{m}^{n} \rightarrow \boldsymbol{y}_{m}$ in $\mathcal{O}$, and $u_{n}^{\alpha}$ solves ( $I^{\alpha}$ ) with data $\boldsymbol{y}_{m}^{n}$. Then,

$$
u_{n}^{\alpha} \rightarrow u^{\alpha} \text { in } L^{1}(\Omega), \quad T V\left(u_{n}^{\alpha}\right) \rightarrow T V\left(u^{\alpha}\right)
$$

with $u^{\alpha}$ solves $\left(I^{\alpha}\right)$ with data $\boldsymbol{y}_{m}$.

- (Consistency) If (I) has a solution $u^{*} \in B V(\Omega ;\{0,1\})$, and $u_{\delta}^{\alpha}$ solves $\left(I^{\alpha}\right)$ with data $\boldsymbol{y}_{m}^{\delta}$ such that $\left\|\boldsymbol{y}_{m}^{\delta}-\boldsymbol{y}_{m}\right\|_{\mathcal{O}} \leq \delta$. Then, choosing $\left(\alpha_{\delta}\right)_{\delta>0}$ such that $\delta^{2} / \alpha_{\delta} \rightarrow 0$, it holds that

$$
u^{\alpha_{\delta}} \rightarrow w \text { in } L^{1}(\Omega)
$$

and $w$ is a minimum-variation solution to $(I)$.

## Phase field regularization

Non-convexity of $B V(\Omega,\{0,1\})$ is difficult for numerical implementation. Thus, approximate $T V(\cdot)$ by the Ginzburg-Landau functional

$$
E_{\varepsilon}\left(v^{\varepsilon}\right)=\frac{8}{\pi} \int_{\Omega} \frac{\varepsilon}{2}\left|\nabla v^{\varepsilon}\right|^{2}+\frac{1}{\varepsilon} v^{\varepsilon}\left(1-v^{\varepsilon}\right) .
$$

Well-known result of Modica (1987) shows $E_{\varepsilon}(\cdot) \xrightarrow{\ulcorner } T V(\cdot)$ as $\varepsilon \rightarrow 0$.
Formally: as $\varepsilon \rightarrow 0, v^{\varepsilon} \rightarrow v \in B V(\Omega,\{0,1\})$ in suitable sense.

## Phase field regularization

Non-convexity of $B V(\Omega,\{0,1\})$ is difficult for numerical implementation. Thus, approximate TV(•) by the Ginzburg-Landau functional

$$
E_{\varepsilon}\left(v^{\varepsilon}\right)=\frac{8}{\pi} \int_{\Omega} \frac{\varepsilon}{2}\left|\nabla v^{\varepsilon}\right|^{2}+\frac{1}{\varepsilon} v^{\varepsilon}\left(1-v^{\varepsilon}\right) .
$$

Well-known result of Modica (1987) shows $E_{\varepsilon}(\cdot) \stackrel{\Gamma}{\longrightarrow} T V(\cdot)$ as $\varepsilon \rightarrow 0$.
Formally: as $\varepsilon \rightarrow 0, v^{\varepsilon} \rightarrow v \in B V(\Omega,\{0,1\})$ in suitable sense.

## Benefits?

- Change solution space from (non-convex) $B V(\Omega,\{0,1\})$ to a convex space $\mathcal{K}:=\left\{f \in H^{1}(\Omega): 0 \leq f(x) \leq 1\right.$ a.e. in $\left.\Omega\right\}$.
- Easier to devise numerical algorithms involving first order optimality conditions.


## Properties of the Phase field inverse problem

$$
\left(I_{\varepsilon}^{\alpha}\right) \quad \text { find } u_{\varepsilon}^{\alpha}=\underset{v \in \mathcal{K}}{\arg \min }\left(\alpha E_{\varepsilon}(v)+\frac{1}{2}\left\|\boldsymbol{G} \circ \boldsymbol{S}(v)-\boldsymbol{y}_{m}\right\|_{\mathcal{O}}^{2}\right),
$$

where $\mathcal{K}=\left\{f \in H^{1}(\Omega): 0 \leq f \leq 1\right.$ a.e. in $\left.\Omega\right\}$.
Note: $E_{\varepsilon}(v)=\frac{8}{\pi} \int_{\Omega} \frac{\varepsilon}{2}|\nabla v|^{2}+\frac{1}{\varepsilon} v(1-v)$ is nonnegative over the set $\mathcal{K}$ !

## Properties of the Phase field inverse problem

$$
\left(I_{\varepsilon}^{\alpha}\right) \quad \text { find } u_{\varepsilon}^{\alpha}=\underset{v \in \mathcal{K}}{\arg \min }\left(\alpha E_{\varepsilon}(v)+\frac{1}{2}\left\|\boldsymbol{G} \circ \boldsymbol{S}(v)-\boldsymbol{y}_{m}\right\|_{\mathcal{O}}^{2}\right),
$$

where $\mathcal{K}=\left\{f \in H^{1}(\Omega): 0 \leq f \leq 1\right.$ a.e. in $\left.\Omega\right\}$.
Note: $E_{\varepsilon}(v)=\frac{8}{\pi} \int_{\Omega} \frac{\varepsilon}{2}|\nabla v|^{2}+\frac{1}{\varepsilon} v(1-v)$ is nonnegative over the set $\mathcal{K}$ !

## Properties

- (Existence) For $\alpha, \varepsilon>0, \exists u_{\varepsilon}^{\alpha} \in \mathcal{K}$ to ( $I_{\varepsilon}^{\alpha}$ ).
- (Continuity) If $\boldsymbol{y}_{m}^{n} \rightarrow \boldsymbol{y}_{m}$ in $\mathcal{O}$, and $u_{\varepsilon, n}^{\alpha} \in \mathcal{K}$ solves ( $I_{\varepsilon}^{\alpha}$ ) with data $\boldsymbol{y}_{m}^{n}$. Then,

$$
u_{\varepsilon, n}^{\alpha} \rightarrow u_{\varepsilon}^{\alpha} \text { in } H^{1}(\Omega),
$$

with $u_{\varepsilon}^{\alpha}$ a solution to $\left(I_{\varepsilon}^{\alpha}\right)$ with data $\boldsymbol{y}_{m}$.

## Consistency as $\varepsilon \rightarrow 0$

## Behavior as $\varepsilon \rightarrow 0$

For fixed $\alpha, \varepsilon>0$, let $u_{\varepsilon}^{\alpha} \in \mathcal{K}$ be a solution to ( $l_{\varepsilon}^{\alpha}$ ). Then, there exists a solution $u_{*}^{\alpha} \in B V(\Omega,\{0,1\})$ to ( $\left.I^{\alpha}\right)$ such that

$$
u_{\varepsilon}^{\alpha} \rightarrow u_{*}^{\alpha} \text { in } L^{1}(\Omega), \quad J_{\varepsilon}\left(u_{\varepsilon}^{\alpha}\right) \rightarrow J\left(u_{*}^{\alpha}\right) \quad \text { as } \varepsilon \rightarrow 0
$$

- Classical result using Gamma convergence $E_{\varepsilon}(\cdot) \xrightarrow{\Gamma^{\prime}} T V(\cdot)$.

■ $J_{f}(u)=\frac{1}{2}\left\|\boldsymbol{G} \circ \boldsymbol{S}(u)-\boldsymbol{y}_{m}\right\|_{\mathcal{O}}^{2}$ is a continuous perturbation.

- This shows consistency of the phase field regularisation and validates its use.


## Consistency as $\varepsilon, \alpha \rightarrow 0$

## New result

If $(I)$ has a solution $u_{*} \in B V(\Omega,\{0,1\})$ with $\partial\left\{u_{*}=1\right\}$ smooth and $\operatorname{curl} \boldsymbol{S}\left(u_{*}\right) \in L^{2+}(\Omega)$. For any $\left(\varepsilon_{k}\right)_{k \in \mathbb{N}} \rightarrow 0$, choose $\left(\alpha_{k}\right)_{k \in \mathbb{N}} \rightarrow 0$ s.t.

$$
\limsup _{k \rightarrow \infty} \frac{\varepsilon_{k}^{2}}{\alpha_{k}}=0
$$

then there exists a solution $u \in B V(\Omega,\{0,1\})$ to (I) such that

$$
u_{\varepsilon_{k}}^{\alpha_{k}} \rightarrow u \operatorname{in} L^{1}(\Omega), \quad T V(u) \leq T V\left(u_{*}\right)
$$

## Compare to the Consistency of TV solutions

If $(I)$ has a solution $u^{*} \in B V(\Omega ;\{0,1\})$, and $u_{\delta}^{\alpha}$ solves $\left(I^{\alpha}\right)$ with data $\boldsymbol{y}_{m}^{\delta}$ s.t. $\left\|\boldsymbol{y}_{m}^{\delta}-\boldsymbol{y}_{m}\right\|_{\mathcal{O}} \leq \delta$. Then, choosing $\left(\alpha_{\delta}\right)_{\delta>0}$ s.t. $\delta^{2} / \alpha_{\delta} \rightarrow 0$, it holds

$$
u^{\alpha_{\delta}} \rightarrow w \operatorname{in} L^{1}(\Omega)
$$

and $w$ is a minimum-variation solution to $(I)$.

## Consistency as $\varepsilon, \alpha \rightarrow 0$

## New result

If (I) has a solution $u_{*} \in B V(\Omega,\{0,1\})$ with $\partial\left\{u_{*}=1\right\}$ smooth and curl $\boldsymbol{S}\left(u_{*}\right) \in \boldsymbol{L}^{2+}(\Omega)$. For any $\left(\varepsilon_{k}\right)_{k \in \mathbb{N}} \rightarrow 0$, choose $\left(\alpha_{k}\right)_{k \in \mathbb{N}} \rightarrow 0$ s.t.

$$
\limsup _{k \rightarrow \infty} \frac{\varepsilon_{k}^{2}}{\alpha_{k}}=0
$$

then there exists a solution $u \in B V(\Omega,\{0,1\})$ to (I) such that

$$
u_{\varepsilon_{k}}^{\alpha_{k}} \rightarrow u \text { in } L^{1}(\Omega), \quad T V(u) \leq T V\left(u_{*}\right) .
$$

Remark:
■ Smoothness assumption "with $\ldots L^{2+}(\Omega)$ " can be dropped, but the relation $(\star)$ is replaced with something less explicit:

$$
\limsup _{\varepsilon_{k} \rightarrow 0} \frac{1}{\alpha_{k}}\left\|\left(w_{\varepsilon_{k}}-u_{*}\right) \operatorname{curl} \boldsymbol{S}\left(u_{*}\right)\right\|_{L^{2}(\Omega)}^{2}=0
$$

where $w_{\varepsilon_{k}} \rightarrow u_{*}$ in $L^{1}(\Omega)$ as $k \rightarrow \infty$ is a recovery sequence in Gamma convergence.

## Optimality conditions - variational inequality

Let $\boldsymbol{G}: \boldsymbol{Z} \rightarrow \mathcal{O}$ be continuously Fréchet differentiable, and let $u_{\varepsilon}^{\alpha} \in \mathcal{K}$ be a solution to ( $I_{\varepsilon}^{\alpha}$ ). Then,

$$
\begin{align*}
& \int_{\Omega}\left(\left(\nu_{0}-\nu_{1}\left(\left|\operatorname{curl} \boldsymbol{y}_{\varepsilon}^{\alpha}\right|\right)\right) \operatorname{curl} \boldsymbol{y}_{\varepsilon}^{\alpha} \cdot \operatorname{curl} \boldsymbol{q}_{\varepsilon}^{\alpha}+\frac{\alpha 8}{\pi \varepsilon}\left(1-2 u_{\varepsilon}^{\alpha}\right)\right)\left(w-u_{\varepsilon}^{\alpha}\right) \\
& \quad+\int_{\Omega} \alpha \frac{8}{\pi} \nabla u_{\varepsilon}^{\alpha} \cdot \nabla\left(w-u_{\varepsilon}^{\alpha}\right) \geq 0 \quad \forall w \in \mathcal{K}, \quad \text { † },
\end{align*}
$$

where the adjoint $\boldsymbol{q}_{\varepsilon}^{\alpha}$ satisfies a linear saddle point problem.

## Optimality conditions - variational inequality

Let $\boldsymbol{G}: \boldsymbol{Z} \rightarrow \mathcal{O}$ be continuously Fréchet differentiable, and let $u_{\varepsilon}^{\alpha} \in \mathcal{K}$ be a solution to $\left(l_{\varepsilon}^{\alpha}\right)$. Then,

$$
\begin{align*}
& \int_{\Omega}\left(\left(\nu_{0}-\nu_{1}\left(\left|\operatorname{curl} \boldsymbol{y}_{\varepsilon}^{\alpha}\right|\right)\right) \operatorname{curl} \boldsymbol{y}_{\varepsilon}^{\alpha} \cdot \operatorname{curl} \boldsymbol{q}_{\varepsilon}^{\alpha}+\frac{\alpha 8}{\pi \varepsilon}\left(1-2 u_{\varepsilon}^{\alpha}\right)\right)\left(w-u_{\varepsilon}^{\alpha}\right) \\
& \quad+\int_{\Omega} \alpha \frac{8}{\pi} \nabla u_{\varepsilon}^{\alpha} \cdot \nabla\left(w-u_{\varepsilon}^{\alpha}\right) \geq 0 \quad \forall w \in \mathcal{K},
\end{align*}
$$

where the adjoint $\boldsymbol{q}_{\varepsilon}^{\alpha}$ satisfies a linear saddle point problem.
Does optimality condition ( $\dagger$ ) converge as $\varepsilon \rightarrow 0$ ?
Problems:
Q1 What is the optimality condition for $\left(I^{\alpha}\right)$ ?
Q2 Can we pass to the limit $\varepsilon \rightarrow 0$ rigorous?

## Limit as $\varepsilon \rightarrow 0$ ?

A1 - Express $\left(I^{\alpha}\right)$ as a shape optimization problem, and derive the shape gradient.


Figure: Perturb $\Omega$ by suitable velocity fields $V$ and compute the change of the solution $\boldsymbol{y}(\Omega)$ with respect to $V$. Figure taken from book by S . Walker.

A2 - Derive a related optimality conditions for ( $I_{\varepsilon}^{\alpha}$ ) using domain variation, and then pass to the limit $\varepsilon \rightarrow 0$.

## Some details...

## Admissible domain variation

Velocity field $V \in C^{0}\left([0, \tau] ; C_{c}^{2}\left(\Omega ; \mathbb{R}^{3}\right)\right)$ induces transformation $T:[0, \tau] \times \Omega \rightarrow \Omega$ with $T_{t}(x)=T(t, x), T(0, x)=x$.

If $u^{\alpha}$ solves $\left(I^{\alpha}\right)$ with $\partial\left\{u^{\alpha}=1\right\}$ Lipschitz then

$$
u^{\alpha} \circ T_{t}^{-1} \in B V(\Omega,\{0,1\})
$$

and

$$
J\left(u^{\alpha}\right) \leq\left. J\left(u^{\alpha} \circ T_{t}^{-1}\right) \quad \Rightarrow \quad \partial_{t} J\left(u^{\alpha} \circ T_{t}^{-1}\right)\right|_{t=0}=: \mathrm{D} J\left(u^{\alpha}\right)[V]=0 .
$$

## From shape calculus

- $\dot{\boldsymbol{y}}^{\alpha}[V]=\left.\partial_{t} \boldsymbol{S}\left(u^{\alpha} \circ T_{t}^{-1}\right)\right|_{t=0}$ (shape derivative) satisfies a linear saddle point problem;
- $D J\left(u^{\alpha}\right)[V]=\left.\partial_{t} J\left(u^{\alpha} \circ T_{t}^{-1}\right)\right|_{t=0}$ (shape gradient) yields the optimality condition $D J\left(u^{\alpha}\right)[V]=0$.


## Domain variation optimality condition

Similarly, for the PF inverse problem, if $u_{\varepsilon}^{\alpha}$ is a solution to ( $I_{\varepsilon}^{\alpha}$ ), then

$$
J_{\varepsilon}\left(u_{\varepsilon}^{\alpha}\right) \leq\left. J_{\varepsilon}\left(u_{\varepsilon}^{\alpha} \circ T_{t}^{-1}\right) \quad \Rightarrow \quad \partial_{t} J_{\varepsilon}\left(u_{\varepsilon}^{\alpha} \circ T_{t}^{-1}\right)\right|_{t=0}=: \mathrm{D} J_{\varepsilon}\left(u_{\varepsilon}^{\alpha}\right)[V]=0 .
$$

## From shape calculus

- $\dot{\boldsymbol{y}}_{\varepsilon}^{\alpha}[V]=\left.\partial_{t} \boldsymbol{S}\left(u_{\varepsilon}^{\alpha} \circ T_{t}^{-1}\right)\right|_{t=0}$ (shape derivative) satisfies a linear saddle point problem;
- $D J_{\varepsilon}\left(u_{\varepsilon}^{\alpha}\right)[V]=\left.\partial_{t} J_{\varepsilon}\left(u_{\varepsilon}^{\alpha} \circ T_{t}^{-1}\right)\right|_{t=0}$ (shape gradient) yields the optimality condition $D J_{\varepsilon}\left(u_{\varepsilon}^{\alpha}\right)[V]=0$.

Example - $\boldsymbol{C}^{1,1}$-boundary and $\mathcal{O}=\boldsymbol{L}^{2}(\partial \Omega)$ (boundary measurement):

$$
\begin{aligned}
D J_{\varepsilon}\left(u_{\varepsilon}^{\alpha}\right)[V]= & \int_{\partial \Omega}\left(\boldsymbol{y}_{\varepsilon}^{\alpha}-\boldsymbol{y}_{m}\right) \cdot \dot{\boldsymbol{y}}_{\varepsilon}^{\alpha}[V]+\int_{\Omega} \frac{8 \varepsilon}{\pi} \nabla u_{\varepsilon}^{\alpha} \cdot(\nabla V) \nabla u_{\varepsilon}^{\alpha} \\
& +\frac{8}{\pi} \int_{\Omega}\left(\frac{\varepsilon}{2}\left|\nabla u_{\varepsilon}^{\alpha}\right|^{2}+\frac{1}{\varepsilon} u_{\varepsilon}^{\alpha}\left(1-u_{\varepsilon}^{\alpha}\right)\right) \operatorname{div} V
\end{aligned}
$$

With more regularity, can be shown to be equivalent to the variational inequality ( $\dagger$ )!

## Convergence of optimality conditions

## Problems:

Q1 What is the optimality condition for $\left(I^{\alpha}\right)$ ?
Q2 Can we pass to the limit $\varepsilon \rightarrow 0$ rigorous?

## Theorem: All the important things converge

Fix $\alpha>0$, then

$$
u_{\varepsilon}^{\alpha} \rightarrow u^{\alpha} \text { in } L^{1}(\Omega), \quad J_{\varepsilon}\left(u_{\varepsilon}^{\alpha}\right) \rightarrow J\left(u^{\alpha}\right) \text { in } \mathbb{R}
$$

and for any $V \in C^{0}\left([0, \tau] ; C_{c}^{2}\left(\Omega ; \mathbb{R}^{3}\right)\right)$, it holds that
(shape derivative) $\dot{\boldsymbol{y}}_{\varepsilon}^{\alpha}[V] \rightharpoonup \dot{\boldsymbol{y}}^{\alpha}[V]$ in $\boldsymbol{H}^{1}(\Omega)$, (optimality condition) $\mathrm{D} J_{\varepsilon}\left(u_{\varepsilon}^{\alpha}\right)[V] \rightarrow \mathrm{D} J\left(u^{\alpha}\right)[V]$ in $\mathbb{R}$.

## Summary



Thank you for your attention!

