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Motivation

Electromagnetic non-destructive/non-invasive testing:

(a) fMRI (b) Electrical Impedance Tomography

ELECTRICAL RESISTIVITY IMAGING (ERI) METHOD

(c) Electrical Resistivity Tomography
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The inverse problem

Identify the location of ferromagnetic materials (e.g. iron) in a mixture
containing materials (e.g. copper) from measurements.

Forward model derived from static Maxwell's equations in a medium.



The forward model

Magnetostatic equations in a medium:

divB =0 Gauss's law for magnetism,
curlH =J  Ampére law,

with magnetic induction B and magnetic field H related via uH = B.
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The forward model

Magnetostatic equations in a medium:

divB =0 Gauss's law for magnetism,
curlH =J  Ampére law,

with magnetic induction B and magnetic field H related via uH = B.

Vector potential formulation

There exists unique vector potential y such that

curly = B, divy =0,
leading to the forward model
curl (,uf%urly) =J inQ,
divy =0 in Q,
yxn=0 on 0R.

with perfectly conducting electric boundary conditions.
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The B-H curve

Constitutive relation:

1
H=-B =:vB,
I
with magnetic permeability p (or magnetic reluctivity v = %)
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The B-H curve

Constitutive relation:

H-1g_..8
n

with magnetic permeability p (or magnetic reluctivity v = %)

m v = 1 is constant for non-magnetic materials.
,l.e.,

m For ferromagnetic materials, v may depend nonlinearly on |B
H = f(B) where f(s) = v(|s])s.

B-H-curve

reluctivity

A(H[)
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Figure: Left: B-H curve 1 of a ferromagnetic material. Center: Magnetic
permeability . Right: Magnetic reluctivity v on log scale. from Ph.D. thesis of P. Gangl

m Magnetic hysteresis is neglected here.
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Forward model

For u e L1(2;]0,1]) := {g € L}(Q) : 0 < g < 1} define interpolation
reluctivity

v(u,y) = vo(1 — u) + 1 (jeurl y|)u,

so that for u = xq,,

L I in Qo = Q\ Q; ( nonmagnetic region ),
| w(B|) in Q; ( magnetic region ).

Hence,

knowing u < knowing the location of ; and €.
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Forward model

For u e L1(2;]0,1]) := {g € L}(Q) : 0 < g < 1} define interpolation
reluctivity

v(u,y) = vo(1 — u) + vy (|curly|)u,
so that for u = xq,,

Vo in Qo = Q\ Q; ( nonmagnetic region ),
V=
v1(|B|)  in Q1 ( magnetic region ).

Forward model

curl ([y0(1 —u)+ u1/1(|cur1y\)]curly) =J inQ,
divy =0 in Q,
yxn=0 on 09Q2.

A quasilinear curl-curl system with divergence-free constraint, and the
implicit constraint divJ = 0!
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Let Q C R3 be Lipschitz polyhedral, simply connected, and 4, € C°(R).
Assume

m 3 constants v € (0,1p),7 € [vg,00) such that v < v1(s) < v and

(v1(s)s — va(r)r)(s — r) > v|s — r|*> ( strong monotoncity ),
|v1(s)s — vi(r)r| <7|s —r| ( Lipschitz continuity ).

m J € L?(Q) and u € L1(2;]0,1]).
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Let Q C R3 be Lipschitz polyhedral, simply connected, and 4, € C°(R).
Assume

m 3 constants v € (0,1p),7 € [vg,00) such that v < v1(s) < v and

(v1(s)s — va(r)r)(s — r) > v|s — r|*> ( strong monotoncity ),
|v1(s)s — vi(r)r| <7|s —r| ( Lipschitz continuity ).

m J € L?(Q) and u € L1(2;]0,1]).

Via a nonlinear saddle point formulation, for Z = Hp(curl) N H(div = 0)

m (Well-posedness) 3 ! weak solution pair (y,¢) € Z x H3(Q).
m (Continuity) If ux — v in L1(Q), then

Yk — y strongly in Z, ¢y — ¢ weakly in H3 ().

m Induces a solution mapping S : u — y(u).
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Inverse problem

Inverse problem:
() find ue LY(,{0,1})st. GoS(u) =y, in O

where
® Y, is a measurement;
m O is a Hilbert space;
m G : Z — O Lipschitz continuous and bounded observation operator.
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Inverse problem

Inverse problem:

() find ue LY(,{0,1})st. GoS(u) =y, in O
where

® Yy, iS a measurement;

m O is a Hilbert space;

m G : Z — O Lipschitz continuous and bounded observation operator.

Examples:

m Q Lipschitz polyhedral, O = L?(D) for subdomain D C Q,
G(y) = y|p (Interior measurements).

m  convex polyhedral/of class C1'1, O = L?(X) for © C 09,
G(y) = y|x (Boundary measurements).

Likely that (/) is ill-posedness .*. regularization is needed!
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Perimeter/Total variation regularization

Overcome illposedness of (I) with

1
(1°)  find u* =  argmin (aTV(v) +516°5() _ym||§9),
veBV(2;{0,1})

where TV(v) = sup{ [, vdivg s.t. ¢ € Cg(R?),[|¢]lc < 1}.

This is perimeter regularization, i.e., the boundary 9{u®* = 1} should
have finite perimeter.
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Perimeter/Total variation regularization

Overcome illposedness of (I) with

1
(1) find u® =  argmin (aTV(v) +2G o S(v) _ym||§9),
veBV(2:{0,1}) 2
where TV(v) = sup{ [, vdivg s.t. ¢ € Cg(R?),[|¢]lc < 1}.

Standard analysis yields
m (Existence) For any o > 0, Ju® € BV(£,{0,1}) to (/).

m (Continuity) If y — ym in O, and uf solves (/%) with data y;.
Then,

u® = u®in LY(Q), TV(u®) — TV(u®),

with u® solves (/%) with data y,,.
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Perimeter/Total variation regularization

Overcome illposedness of (I) with
1
(1°)  find u* =  argmin (aTV(v) +516G05(v) _ym||§9),
veBV(2:{0,1})
where TV(v) = sup{ [, vdivg s.t. ¢ € Cg(R?),[|¢]lc < 1}.
Standard analysis yields
m (Existence) For any o > 0, Ju® € BV(£,{0,1}) to (/).
m (Continuity) If y — ym in O, and uf solves (/%) with data y;.
Then,
u® = u®in LY(Q), TV(u®) — TV(u®),
with u® solves (/%) with data y,,.

m (Consistency) If (/) has a solution u* € BV(Q; {0,1}), and ug
solves (/) with data y? such that ||y} — y,|lo < 6. Then,
choosing (as)s>0 such that 6% /as — 0, it holds that

u® — win LX)

and w is a minimum-variation solution to (/).
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Phase field regularization

Non-convexity of BV(£,{0,1}) is difficult for numerical implementation.
Thus, approximate TV/(-) by the Ginzburg—Landau functional

8 9 2 1
E(v)== [ Z|Vve +2vi(1 —v).
()= 2 [ SIVvP+ v -v)

Well-known result of Modica (1987) shows E.(+) 5 TV(:)ase—0.

Formally: as e — 0, v¢ — v € BV(Q,{0,1}) in suitable sense.
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Phase field regularization

Non-convexity of BV(£,{0,1}) is difficult for numerical implementation.
Thus, approximate TV/(-) by the Ginzburg—Landau functional

8 9 2 1
E(v)== [ Z|Vve +2vi(1 —v).
()= 2 [ SIVvP+ v -v)

Well-known result of Modica (1987) shows E.(+) 5 TV(:)ase—0.

Formally: as e — 0, v¢ — v € BV(Q,{0,1}) in suitable sense.

Benefits?

m Change solution space from (non-convex) BV(£,{0,1}) to a convex
space K .= {f € H}(Q) : 0 < f(x) < 1a.e. in Q}.

m Easier to devise numerical algorithms involving first order optimality
conditions.
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Properties of the Phase field inverse problem

1
(1) find v = argmin (aEe(v) + =||GoS(v) — ym||%9),
ver 2

where K = {f € H}(Q) : 0< f <1lae. inQ}.

Note: E.(v) =2 [, ¢ IVv|? + 1v(1 - v) is nonnegative over the set K!

o
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Properties of the Phase field inverse problem

(1) find v = argmin (aEe(v) + %HG oS(v)— ym||%9),

ver
where K = {f € H}(Q) : 0< f <1lae. inQ}.

Note: E.(v) =2 [, ¢ IVv|? + 1v(1 - v) is nonnegative over the set K!

o

m (Existence) For a,e > 0, Ju2 € K to (/).

m (Continuity) If y5 — ym in O, and v, € K solves (/&) with data
y7. Then,

ug, — ul in HY(Q),

with u% a solution to (/%) with data y,.
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Consistency as ¢ — 0

Behavior as ¢ — 0

For fixed a,e > 0, let u € K be a solution to (/*). Then, there exists a
solution u¢ € BV(£2,{0,1}) to (/%) such that

u® = u®in LNQ), J(u®) = J(u¥) ase—0.

m Classical result using Gamma convergence E.() 5 TV(").
m Jr(u) = 3||G o S(u) — yml||% is a continuous perturbation.

m This shows consistency of the phase field regularisation and validates
its use.
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Consistency as e,a — 0

If (1) has a solution u, € BV(L,{0,1}) with 9{u, = 1} smooth and
curl S(u,) € L2F(Q). For any (ex)ken — 0, choose (ax)ken — 0 s.t.

2
limsup =% =0, (*)
k—oo Ok

then there exists a solution u € BV/(,{0,1}) to (/) such that

ugk — uin LYQ), TV(u) < TV(u.).

Compare to the Consistency of TV solutions

If (/) has a solution u* € BV(£; {0,1}), and u§' solves (/) with data y;,
st. |yS — ¥mllo < 4. Then, choosing (as)s>0 s.t. 62/as — 0, it holds

u® — win LY(Q)

and w is a minimum-variation solution to (/).
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Consistency as e,a — 0

New result

If (1) has a solution u, € BV(L,{0,1}) with 9{u, = 1} smooth and
curl S(u,) € L2F(Q). For any (ex)ken — 0, choose (ax)ken — 0 s.t.

&2
limsup =% =0, (*)
k—oo Ok

then there exists a solution u € BV/(,{0,1}) to (/) such that

ugk — uin LYQ), TV(u) < TV(u.).

Remark:
m Smoothness assumption “with ... L?>*(Q)" can be dropped, but the
relation (x) is replaced with something less explicit:

1

: 2

limsup — |[(we, — u.)curlS(us)|[2q) = 0
ex—0 (6753

where w., — u, in L}(Q) as k — oo is a recovery sequence in

Gamma convergence.
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Optimality conditions - variational inequality

Let G : Z — O be continuously Fréchet differentiable, and let u® € K be
a solution to (/&). Then,

/ ((y0 — v (Jeurl y*|))eurl y - curl g® + 28 (1 - 2ug))(w — )
Q TE
+/a%VU§‘~V(W—U§‘)ZO Yw € K, (1)
Q

where the adjoint g satisfies a linear saddle point problem.
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Optimality conditions - variational inequality

Let G : Z — O be continuously Fréchet differentiable, and let u& € K be
a solution to (/&). Then,

/ ((y0 — v (Jeurl y*|))eurl y - curl g® + 28 (1 - 2ug))(w — )
Q TE
+/a%VU?~V(W—U§‘)ZO Yw € K, (1)
Q

where the adjoint g satisfies a linear saddle point problem.

Does optimality condition () converge as £ — 07
Problems:

Q1 What is the optimality condition for (/*)?
Q2 Can we pass to the limit ¢ — 0 rigorous?
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Limit as € — 07

Al - Express (/%) as a problem, and derive the

Q —

// X/

| 2
2 <

Figure: Perturb Q by suitable velocity fields V and compute the change of the
solution y(£2) with respect to V. Figure taken from book by S. Walker.

.

A2 - Derive a related optimality conditions for (/%) using domain
variation, and then pass to the limit € — 0.
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Some details...

Admissible domain variation

Velocity field V € C°([0, 7]; C2(€2; R3)) induces transformation
T :[0,7] x Q — Q with T¢(x) = T(¢t,x), T(0,x) = x.

If u® solves (%) with 90{u™ = 1} Lipschitz then
u®o T, € BV(Q,{0,1})
and

JW*) <JWwo T;Y) = 0:J(u”o T;Y)|emo = DJ(u™)[V] = 0.

From shape calculus

m yo[V] = 0:S(u® o T;)|i—o (shape derivative) satisfies a linear
saddle point problem;

m DJ(u®)[V] = 0:J(u® o T; 1)|t=o (shape gradient) yields the
optimality condition DJ(u®)[V] = 0.
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Domain variation optimality condition

Similarly, for the PF inverse problem, if u is a solution to (/&), then

Jo(uf) < Jo(uf o Tt_l) = OiJ(ulo Tt_1)|t:0 =:DJ.(u)[V] = 0.

From shape calculus

B yo[V] = 0:S(uf o T; ')|t=0 (shape derivative) satisfies a linear
saddle point problem'

m DJ.(u®)[V] = 8:J-(u® o T 1)|i=o (shape gradient) yields the
optimallty condltlon DJ.(u)[V]=0.

Example - Cl!-boundary and O = L?(9Q) (boundary measurement):

DLWV = [ (42 =yn) 52 1VI+ | Zvue (99
+§/ﬂ( Vue +1u °(1 - u?))divV/

With more regularity, can be shown to be equivalent to the variational
inequality (7)!
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Convergence of optimality conditions

Problems:
Q1 What is the optimality condition for (/*)? v/
Q2 Can we pass to the limit € — 0 rigorous? v’

Theorem: All the important things converge

Fix o« > 0, then

u® — u®in LYQ), J(v) — J(u*) in R,
and for any V € C°([0, 7]; C2(; R®)), it holds that

(shape derivative) y2[V] — y®[V] in H}(Q),
(optimality condition) DJ.(uZ)[V] — DJ(u™)[V] in R.
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Summary

’\
-
CSoln. to (1)

Thank you for your attention!
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