

Discovering Low-Dimensional State Variables from High-Dimensional Observation Data: A Means to Model Complex Dynamical Systems

Kuang Huang March 25, 2023

Joint work with Boyuan Chen, Ishaan Chandratreya, Sunand Raghupathi, Qiang Du, and Hod Lipson.

Overview

- Modelling dynamical systems from experimental data
- Low-dimensional state variables: how to discover?
- Long-term dynamics prediction: how to improve?
- Summary and underlying mathematics

Modelling dynamical systems from experimental data

Dynamical systems with visual observations

Modelling dynamical systems

$$X = [\theta, \omega] \qquad \begin{cases} \dot{\theta} = \omega \\ \dot{\omega} = -\frac{3g}{2L} \sin \theta \end{cases}$$

Modelling dynamical systems

¹Brunton, S.L., Proctor, J.L. and Kutz, J.N., 2016. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. ²Greydanus S, Dzamba M, Yosinski J. Hamiltonian neural networks.

6

Modelling dynamical systems

The predicted video looks good at the beginning, but it then becomes blur, heavily distorted, or plain background. Prediction error accumulates in time: common challenge in video prediction¹.

¹Oprea S, Martinez-Gonzalez P, Garcia-Garcia A, Castro-Vargas JA, Orts-Escolano S, Garcia-Rodriguez J, Argyros A. A review on deep learning techniques for video prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2020 Dec 15.

Goals

- Data: high-dimensional visual observations.
- Identify the number of state variables and extract them.
- Improve prediction quantity.

Low-dimensional state variables: how to discover?

Mathematical Formulation

$$\begin{aligned} X_{t+dt} &= F(X_t), \quad t = 0, dt, 2dt, ... \\ X_t \in S \subset \mathbb{R}^D \end{aligned}$$

$$\checkmark \quad \rightarrow F \rightarrow \checkmark$$

- *dt*: discrete time increment;
- X_t: system state;
- F: state evolution (dynamics);
- \mathbb{R}^D : high-dimensional ambient space, $D \sim 10^5$;
- *S*: low-dimensional manifold in the ambient space.
- Intrinsic dimension of S = number of state variables.

Identifying the number of state variables

Geometric manifold learning problem

Identifying the number of state variables

System	ID from Raw Image	ID from Latent Vectors	Ground Truth
Circular motion	3.67 (± 0.20)	2.19 (± 0.05)	2
Reaction diffusion	2.20 (± 0.13)	2.16 (± 0.14)	2
Single pendulum	3.65 (± 0.08)	2.05 (± 0.02)	2
Rigid double pendulum	7.08 (± 0.15)	4.71 (±0.03)	4
Swing stick	11.47 (± 0.38)	4.89 (± 0.33)	4
Elastic double pendulum	7.55 (± 0.15)	5.34 (± 0.20)	6
Air dancer	8.09 (± 0.19)	7.57 (± 0.13)	Unknown
Lava lamp	7.99 (± 0.41)	7.89 (±0.96)	Unknown
Fire	20.10 (± 0.50)	24.70 (± 2.02)	Unknown

Extracting state variables

1st Stage

2nd Stage

Extracting state variables

Long-term dynamics prediction: how to improve?

Prediction schemes through different intermediate dimensions

Prediction stability

A scheme is **stable** if the prediction sequences always stay on the state manifold *S*. A scheme is **unstable** if the prediction sequences can deviate from the state manifold. Long-term prediction accuracy = one-step prediction accuracy + stability

Quantitative evaluation: double pendulum

Quantitative evaluation: double pendulum

- The dim-4 scheme and the hybrid scheme are more stable.
- The hybrid scheme produces more accurate predictions.

Robustness

- A systematic framework to discover low-dimensional state variables from high-dimensional observations.
- The framework combines deep learning techniques and manifold learning algorithms.
- The learned low-dimensional state variables can help improve the long-term prediction stability.
- Key insights: **dimensionality and stability**.

Underlying Mathematics

- The network: $\hat{F}(x; \theta) = \varphi_D \circ \varphi_E(x; \theta)$, θ represents network parameters.
- The ojective function $L(\theta) = \frac{1}{2} \sum_{x \in S} \left| \left| \hat{F}(x; \theta) F(x) \right| \right|^2$.
- It is a high-dimensional non-convex optimization problem, there could be infinitely many global minimizers.
- The training dynamics (e.g., SGD) may provide implicit regularization.
 The effect of regularization depends on intermediate latent dimension.

Thanks!

Paper website: https://www.cs.columbia.edu/~bchen/neural-state-variables/

Code base: <u>https://github.com/BoyuanChen/neural-state-variables</u>