

# IFF: A Super-resolution Algorithm for Mulitple Measurements

#### Zetao FEI

#### The Hong Kong University of Science and Technology

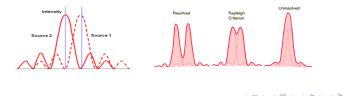
March 26, 2023

▲ ▶ ▲

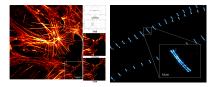


# Rayleigh Limit

- Resolution Limit: the minimum distance between two sources such that they can be distinguished.
- Rayleigh criterion (1879): two point sources are regarded as just resolved when the principal diffraction maximum of one image coincides with the first minimum of the other.
- **3** In 1-D system, take the point spread function to be  $\left(\frac{\sin \Omega x}{\Omega x}\right)^2$ , then the Rayleigh Limit is  $\frac{\pi}{\Omega}$  where  $\Omega$  is the cutoff frequency.



# Super-resolution Microscopy



• Stefan W. Hell and Jan Wichmann (1994): Stimulated emission depletion microscopy (STED).

Selectively deactivating fluorophores to minimize the illuminated area

 Michael J. Rust, M. Bates and X. Zhuang (2006): Stochastic optical reconstruction microscopy (STORM).
 Stochastically activating the individual photoactivatable fluorophores.

## Super-resolution Algorithms

#### Single snapshot:

• Subspace method

MUSIC Method, Matrix Pencil method, etc.

- Convex optimization based method
   Total variation minimization, atomic norm minimization, etc.
- 2 Multiple measurements:
  - Subspace based method

Aligned MUSIC/MP Method, etc.

• Convex optimization based method Joint sparsity, ALOHA, etc

### Theoretical Results

- Donoho (1992): for point sources supported on a lattice with equal spacing (grid setting), the Minimax error of intensity recovery scales like  $SRF^{\alpha}\sigma$   $(2n-1 \le \alpha \le 4n+1)$ , where  $SRF := \frac{\text{Rayleigh Limit}}{\text{grid spacing}}$ ;
- L. Demanet and N. Nguyen (2015): The minimax error scales like SRF<sup>2n-1</sup>σ in the grid setting;
- W. Li and W. Liao (2018) and D. Batenkov, L. Demanet (2019): The minimax error in multi-cluster case scales like SRF<sup>2k-1</sup>σ in the grid setting.
- D. Batenkov, G. Goldman and Y. Yomdin (2019): The minimax error of intensity recovery scales as SRF<sup>2n-1</sup>σ, while for support recovery scales as SRF<sup>2n-2</sup> σ/Ω (off-the-grid).

### Theoretical Results

#### P.Liu and H.Zhang (2021):

$$\mathcal{D}_{num} \sim \frac{C}{\Omega} \left(\frac{1}{SNR}\right)^{\frac{1}{2n-2}},$$

$$\mathcal{D}_{supp} \sim \frac{C}{\Omega} \left(\frac{1}{SNR}\right)^{\frac{1}{2n-1}}.$$
(1)

→ < ∃ →</p>

э

P.Liu, S.Yu, etc (2022):

$$\mathcal{D}_{recon} \sim rac{\mathcal{C}}{\Omega} \left( rac{1}{\sigma_{\infty,\min}(L)} rac{1}{\mathit{SNR}} 
ight)^{rac{1}{n}}$$

### Mathematical Model

Collection of point sources:

$$\mu = \sum_{j=1}^{n} a_j \delta_{y_j}, \ y_j \in [-\frac{\pi}{2\Omega}, \frac{\pi}{2\Omega}].$$

Noisy measurements in frequency domain:

$$\begin{split} Y_t(\omega) &= \mathcal{F}(\mu \cdot I_t) + W_t, \quad ||W_t||_{\infty} < \sigma, \ t = 1, \cdots, T, \\ Y_t(\omega_k) &= \sum_{j=1}^n a_j I_t(y_j) e^{iy_j \omega_k} + W_t(\omega_k), \quad \omega_{-K}, \cdots, \omega_K \in [-\Omega, \Omega]. \end{split}$$

Assumption:  $K \ge n$  and  $T \ge n$ .

Source Focusing and Localization Source Removal Theoretical Grounds Numerical Experiments

### **IFF** Method

Iteratively Focusing-localization and Filtering:

- Source focusing and localization
- Annihilating filter based source removal

Feature: Reconstruct point sources one by one in an iterative manner.

Source Focusing and Localization Source Removal Theoretical Grounds Numerical Experiments

## Source Focusing and Localization

#### Mathematical Model in Matrix Form

$$\begin{pmatrix} Y_{1}(\omega_{-K}) & \cdots & Y_{1}(\omega_{K}) \\ \vdots & & \vdots \\ Y_{T}(\omega_{-K}) & \cdots & Y_{T}(\omega_{K}) \end{pmatrix} = \begin{pmatrix} I_{1}(y_{1}) & \cdots & I_{1}(y_{n}) \\ \vdots & & \vdots \\ I_{T}(y_{1}) & \cdots & I_{T}(y_{n}) \end{pmatrix} \begin{pmatrix} a_{1} & & \\ & \ddots & \\ & a_{n} \end{pmatrix} \begin{pmatrix} e^{iy_{1}\omega_{-K}} & \cdots & e^{iy_{1}\omega_{K}} \\ \vdots & & \vdots \\ e^{iy_{n}\omega_{-K}} & \cdots & e^{iy_{n}\omega_{K}} \end{pmatrix}$$
$$+ \begin{pmatrix} W_{1}(\omega_{-K}) & \cdots & W_{1}(\omega_{K}) \\ \vdots & & \vdots \\ W_{T}(\omega_{-K}) & \cdots & W_{T}(\omega_{K}) \end{pmatrix}.$$

We denote it as

$$Y = LAE + W$$

To focus on the *j*-th source, we write

$$Y = LU_j \cdot U_j^{-1}AE + W,$$

where  $U_i$  is the permutation matrix.

Source Focusing and Localization Source Removal Theoretical Grounds Numerical Experiments

### Source Focusing and Localization

Observation: Suppose we apply QR decomposition to  $LU_j$ , we have

$$Q^*Y = \begin{pmatrix} R \\ 0 \end{pmatrix} U_j^{-1}AE + Q^*W.$$
(3)

The *n*-th row of (3), denoted as  $\tilde{Y}_j$ , gives

$$\widetilde{Y}_{j} = \left(\sum_{t=1}^{T} \boldsymbol{q}_{tn} Y_{t}(\omega_{-K}), \cdots, \sum_{t=1}^{T} \boldsymbol{q}_{tn} Y_{t}(\omega_{K})\right)$$

$$\triangleq R_{nn} \cdot \boldsymbol{a}_{j} \left(e^{iy_{j}\omega_{-K}}, \cdots, e^{iy_{j}\omega_{-K}}\right) + \widetilde{W}_{j}.$$
(4)

Source Focusing and Localization Source Removal Theoretical Grounds Numerical Experiments

### Source Focusing and Localization

- Source Focusing: Solve an optimization problem for linear combination coefficient {q<sub>tn</sub>}<sup>T</sup><sub>t=1</sub>.
- Localization: Apply subspace method to reconstruct the source position *y<sub>j</sub>*.

Output:  $\{\hat{y}_p\}_{p=1}^P$ ,  $P \leq n$ .

Source Focusing and Localization Source Removal Theoretical Grounds Numerical Experiments

Annihilating Filter Based Source Removal

#### Example:

Suppose, we have the measurement

$$Y = \left(ae^{iz\omega_{-\kappa}}, ae^{iz\omega_{-\kappa+1}}, \cdots, ae^{iz\omega_{\kappa}}\right),$$

We define  $F = \left(1, -e^{i z \frac{\Omega}{K}}\right)$ , the discrete convolution gives

$$Y * F = \left(ae^{-iz\Omega}, 0, 0, \cdots, 0, -ae^{iz\frac{K+1}{K}\Omega}\right).$$

Source Focusing and Localizatio Source Removal Theoretical Grounds Numerical Experiments

## Annihilating Filter Based Source Removal

For  $\{\hat{y}_p\}_{p=1}^P$ , we define the annihilating filter as

$$F = \left(1, -e^{i\hat{y}_1\frac{\Omega}{K}}\right) * \left(1, -e^{i\hat{y}_2\frac{\Omega}{K}}\right) * \cdots * \left(1, -e^{i\hat{y}_p\frac{\Omega}{K}}\right).$$

The measurements after filtering are

$$Y'_t = (Y_t * F) [P + 1 : 2K + 1], \quad t = 1, \cdots, T.$$

• Source Removal: Filter all the recovered source from the original measurement for further processing.

Background Source Focusing and Localizati IFF Method Theoretical Grounds Conclusion Numerical Experiments

#### Theoretical Grounds

Recall the measurement after perfect source focusing:

$$\tilde{Y}_j = R_{nn} \cdot a_j \left( e^{i y_j \omega_{-\kappa}}, \cdots, e^{i y_j \omega_{-\kappa}} \right) + \tilde{W}_j, \ \|\tilde{W}\|_{\infty} \leq \sigma' \leq \sqrt{T} \sigma.$$

#### Proposition

For  $L_{ij}$  are i.i.d. subgaussian random variables with  $\mathbb{E}L_{ij} = 0$  and  $\|L_{ij}\|_{\psi_2} \leq B$ , for any t > 0, we have

$$\leq 2 \exp\left(-c \min\left(\frac{t^2}{B^4 (T - n + 1)}, \frac{t}{B^2}\right)\right),$$
 (5)

If we have enough measurements,  $R_{nn} \sim O(\sqrt{T})$  with high probability.

Background Source Focusing and Localization IFF Method Theoretical Grounds Conclusion Numerical Experiments

#### Theoretical Grounds

In the perfect focusing case,  $M = |R_{nn} \cdot a_j|$ .

#### Theorem

Let  $n \ge 2$ , a collection of point sources  $\{\delta_{y_j}\}_{j=1}^n$  is supported on  $\left[-\frac{\pi}{2\Omega}, \frac{\pi}{2\Omega}\right]$  satisfying the following condition:

$$\tau = \min_{p \neq q} |y_p - y_q| \ge \frac{3.03\pi e}{\Omega} \left(\frac{\sigma'}{M}\right)^{\frac{1}{n}}.$$
 (6)

If  $\{\delta_{y_j}\}_{j=1}^n$  is  $\sigma'$ -admissible to  $\mu = M\delta_y$ , then

$$\min_{1\leq j\leq n}|y-y_j|<\frac{\tau}{2}.$$

Background Source Focusing and Localizatio IFF Method Theoretical Grounds Conclusion Numerical Experiments

### Theoretical Grounds

#### Proposition

For given  $0 < \sigma' < M$ , and integer  $n \ge 2$ , let

$$\tau = \frac{0.96e^{-\frac{3}{2}}}{\Omega} \left(\frac{\sigma'}{M}\right)^{\frac{1}{n}}.$$
(7)

For uniformly separated point sources  $\{\delta_{y_j}\}_{j=1}^n$  with distance  $\tau$ . There exist  $y_k \in \{y_j\}_{j=1}^n$  such that  $\mu = M\delta_k$ ,  $\hat{\mu} = \sum_{j \neq k} \hat{a}_j \delta_{y_j}$ satisfying  $\|[\mu] - [\hat{\mu}]\|_{\infty} < \sigma'$ .

The above two results indicates that

$$\mathcal{D}_{comp} \sim \frac{C}{\Omega} \left( \frac{\sigma'}{M} \right)^{\frac{1}{n}}$$

Source Focusing and Localization Source Removal Theoretical Grounds Numerical Experiments

### Numerical Experiments

#### Phase transition phenomenon of IFF Method

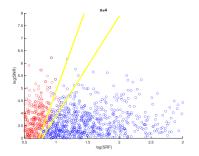


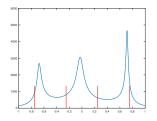
Figure: Plot of successful and unsuccessful point source reconstruction by IFF method in the parameter space log(SNR) - log(SRF). Red one represents successful case and blue one represents unsuccessful case.

Background Source Focusing and Localization IFF Method Theoretical Grounds Conclusion Numerical Experiments

### Numerical Experiments

#### Numerical behavior of IFF Method

Let  $\Omega = 1$ , n = 4,  $\sigma = 1e - 4$ ,  $\mu = \delta_{-0.75} + \delta_{-0.25} + \delta_{0.25} + \delta_{0.75}$ . • For single snapshot:



 By IFF Method: We use 10 measurements each time and the mean of position is (-0.7497, -0.2492, 0.2493, 0.7496) for 1000 times random experiments.



# Conclusion

#### IFF Method

- solves super-resolution problem with multiple measurements using one-by-one strategy,
- circumvents the computation of singular-value decomposition for large matrices,
- achieves stable reconstruction for point sources with a minimum separation distance that is close to the theoretical limit.



#### References

- Fei, Zetao, and Hai Zhang. "IFF: A Super-resolution Algorithm for Multiple Measurements." arXiv preprint arXiv:2303.06617 (2023).
- https://en.wikipedia.org/wiki/STED\_microscopy
- Inttps://oni.wpengine.com/storm-microscopy

# Thanks!