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Single Layer Potential and NP Operator

Assume ) be a simply connected, bounded domain with boundary 9 in RY. Let
['(x) be the fundamental solution to the Laplacian A.

- log |z, if d =2,
I@ﬁ{iii- if d =3
47 ||’ |

The single layer potential of ¢(x) on 02 is defined by

Soalil(z) = /a T@—e)doty), o R

The Neumann-Poincaré operator Kyq is a boundary integral operator on 0f2.

Koalp](x) = . O, Tz —y) p(y)do(y)

_ W=z, vy) e(y)do(y), x= € 01,

wa Joo |z —y|*

where we = 27 and w3 = 4m, and 9, is the outward normal derivative to 92 w.r.t.
y variable.



Symmetrization of NP Operator

Let KC5, be the L?(92)-adjoint operator of Kggq. It is well-known that the Plemelj's
symmetrization principle holds:

SoaK 50 = KaaSaa.

Denote by H'/?2 = H'/2(9) the 1/2-Sobolev space on 0%, and by H~1/2 =
H=12(99)) its dual space. It is known that there exists a domain on which Ssq, :
H=Y2 — HY? is not invertible.

By changing the definition of S on a finite dimensional space, we have 855 :
HY? — H=Y2_ \We can define the following inner product on H'/2;

which induces |

H'/2 equippec

(¢

””H a

with t

) = — {0, Saa V], € HY?,

Nl 2

he inner product (-, -),, is a Hilbert space, which is denoted

by H. By the Plemelj's symmetrization principle, Ksq is self-adjoint on H.:

(0, Koalt)]), = (Koalp), ),y , @, € HY2.



Spectral Properties of the NP Operator

These spectral properties of the NP operator on H are well-known:
1. The spectrum of the NP operator o(Ksq) C (—1/2,1/2].
2. If OQ is smooth, at least C*%, then the NP operator Kaq is compact.

3. In 2D case, if A is an NP eigenvalue, then so is — )\, except the simple eigen-
value A =1/2.

4. The NP eigenvalues coincide with those on L?(99).

5. The NP spectrum o(Kyq) is scale invariant.



Examples

Disk (2d): z* + y? =1,

1
Ap = 5,0 (co-multiplicities)
| z2 g2

Ellipse (2d): o + i 1, a >0,

1 1 /a—0b\"

An:_aj:_ - 7n:1727

2 2\a+b

Sphere (3d): 2% + y? + 2% =1,
1

Ap = , n=0,1,2,...
2(2n+1)

with 2n 4+ 1 multiplicity for each A,,.



Known Results (thin convex lens shape domains)

If the planar domain has corners, the essential spectrum of the NP operator is
—2(1—6/m),5(1 —6/m)|, where 0 is the smallest angle of the corners (Perfekt,
Putinar (2014, 2017)).If Q is an intersecting discs, 0(Ksq) = [—3(1 — 60/m), (1 — 0/7)]
is absolutely continuous (Kang, Lim, Yu (2017)). The angle gets thiner (6§ — 0),
the spectrum approaches [—1/2,1/2].
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Known Results (thin rectangle shape domains)

In the case of rectangular domains, the essential spectrum is [—1/4,1/4]. If the
rectangular domain gets thiner, there appear the eigenvalues outside the essential
spectrum (Helsing, Kang, Lim (2017)).
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We are interested in the spectrum of the NP operator as the domain gets thiner and
thiner. We may expect that o(Ksq) fills the interval [—1/2,1/2] in some sense.



Main Result 1 (2d thin domains)

Let {2z, R > 1, be a rectangle-shaped domain whose boundary is:
ONr =THLUT,UTS, T% =[-R,R] x {£1},
and the side T'%, consists of the left and the right sides T'%, = ', UT"%, where T',

and I'%; are curves connecting points (FR,1) and (F, —1), respectively.

We assume that Fﬁq and I'%; are of any fixed shape independent of R and O€1R is
Lipschitz continuous. We call R the aspect ratio of 0€)j.

Theorem 1. If {R;} be an increasing sequence such that R; — oo as j — oo,
then

U5 0(Koa,) = [-1/2,1/2].
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Test Functions

To prove the Theorem 1, we construct test functions to approximate the NP
eigenfunction. For a given compactly supported f on (—R, R), define

f(z1), ifzelHUTR
0, itz eI'y.

90(33) — 90(331712) — {

Put Kr = Kaq, for simplicity. Note that Kr[p|(z1,x2) is written as

1 261—1 1 331—|—1

- d _|__
o7 Jo =)+ (e — 12 W o | e e+ (m F 12

f(y1)dy2.

Thus, if (71,72) € T UTE (ie., 2o = £1),

1

2
| g v = 5P« fla),

1

o

Krlel(r1,22) =

where P; is the Poisson kernel on the half space,

1 t
/I8 ‘331|2 —|-t2’

Pt(ﬂi‘l) = t > 0.



For a given A € (0,1/2], we look for h such that

1

Using the Fourier transform f(&) = F[f](€) = [ €257 f(x)dz, we have the

following, since P,(¢) = e~ 27tl¢l:

()\ — %e_M'g') h(&) = 0.

Let & > 0 such that A — 2e7%™l%l = (. Then, if we can construct fr—h= O¢y

fR should be an apprOX|mate eigenfunction w.r.t. the eigenvalue \.

We can construct such fr as follows:

fr(z) = ™% (x)(R™ ),

where y is a smooth cut-off function such that suppyx C [—-1/2,1/2] and x = 1
on |— 1/4 1/4] and ¢ IS a non- negatlve compactly supported smooth function such

that Jp ¥(&)d€ = 1. We note that Rw( (€ — &o)) converges weakly to d¢, (€).



Outline of Proof of Main Theorem 1

We denote by |[|-||; /5 the Sobolev 1/2-norm on R. We can prove the followings.

Lemma 1.1 For A € (0,1/2], let fr be the function defined as above. Then, it
holds that

1

R'? < |Ifrlly,, and HAfR—fz*fR SR

1/2

Proposition 1.1 Let A € (0,1/2]. There is a sequence or € HY2(00R) s.t.

. N = Kr) lerlll 5120005
lim =

0.
fi=o0 lorll 12005

Theorem 1 is a immediate consequence of Proposition 1.1. In fact, if A € (0,1/2]
and A ¢ U%2,0(Kg;), then dist ()\,Uﬁla(KRj)) > 0. Thus, there is C' > 0

j
independent of j such that

o8, rvrsomn < CIOL =K, 08, /5o -

which contradicts Proposition 1.1.



Lemmal.l For A € (0,1/2], let fr be the function defined as above. Then, it
holds that

1

R < |\ frlly,  and ||AfR—§P2*fR SR

1/2

Outline of Proof. Note that E(f) = R(/Xw\)(R (& —&p)). Thus, we have

Ualia =R [ (14 |5 +6

On the other hand, F(Afr — 3 Pa* fr)(€) = (A= Le ™SI R(x)) (R(£ — &)). We

2
split [|\fr — 3 P2 % frl[; 5 = I+ 11 as follows: if |¢| < VR ‘)\ — Lol Rl | <

€|/ R, so

§
I =R 1 =
/|§§\/§< +|R+§O

and

2

) oo = r [ [ a

1 : o~ 2
)|A—5e‘”‘R+®| C)(©)| dg S R

MSR[ @+lg) Vg SR
>R



Proposition 1.1 Let A € (0,1/2]. Then, there exists a sequence ¢ € H/2(0QR)
such that
ML =KRr) [er]l g2 00,
lim

= 0.
fi=o00 lerll g2 00,

Outline of Proof. Define pr on 0Qr by

fr(xy), ifxé€ FJRr UI'z,

x1,To) = _
Pr(T1,2) {O, if x eI'y.

By Lemma 1.1, we only have to show |[(A] — Kg) [¢r]||g1/200,) S 1-

We choose a constant C' > 0 independent of R such that

I c {(x1,22) : o1 < —R+C}, T%hcC{(x1,22): 21 >R—C}.
Let (1(z1,x2) = (1(x1) be a smooth function such that supp (4 € (—-R+C, R—C)
and (1 =1on [-R+2C,R—2C], and let (; =1 — (7. Then we have

2
|(M — Kr) [¢r] ||H1/2<aQR>sZ 1 M = Kr) (2Rl 1200,



We have

< R—1/2.
1/2

C1 ()\fR — %(PQ * fR)>

161 (M = Kr) ]l g1/200,) =

Let I' := 0Qr N{(x1,22): ©1 < —R+C or xr1 > R — C'}. To estimate the sec-
ond term, we use the following characterization of H'/2(T):

h(z) — h(z)|’
1Al 20y = Rl ey + do(z)do(2).
(r) O S e

2
2|

Note that (o (A — KRr) |pr] = GKRrloR]. If 2,2z € supp ((2) and y € supp (¢r),

z -2 351, |lz—yl2 R, |z—yl 2R

Thus, [kele. ) S B~ So. K rlonllar) S R fy lfa(er) P doy S 1. We
also have|(s(2)kr(z,y) — (2(2)kr(2,y)| < R™1 |z — 2|. Then it follows

// C2(2)Crlpr|(z) — CQ(Z)KR[SOR](Z)Fda(x)d()'(z) <1

o — 2




Main Result 2 (3d thin domains)

Let U be a bounded domain with the Lipschitz continuous boundary OU, and let
Ur := RU be the dilation of R, R > 1. We assume that U contains the unit disk
centered at 0. Let 0Q2r be the 3D thin domain

893 = FE UF;{ UFSR, FIZS = {(5131,5132,5133) . ZIZI — (5131,5132) ~ UR,5133 = :I:l},

and the side I'}, connects I’E and I'y,.

The side I'y; is of any fixed shape independent of R, and the boundary 0€lR is
smooth.

Theorem 2. If {R;} be an increasing sequence such that R; — oo as j — o0,
then




Test Functions

We can prove Theorem 2 in the same way as Theorem 1. We construct test
functions to approximate eigenvalues as follows:

fr(z"), ifxe FE UI'z,
0, if x € I';.

pr(T) = or(2', 13) 1= {

Put g for simplicity. Kgr|o](p) is written as

1 (x5 — 1) fr(y')dy’ 1 (23 +1) fr(y')dy’

= + =
A1 Jp2 [|$/—y’\2+(x3—1)2}3/2 AT JRr2 [|x’—y’|2+(x3+1)2}

3/2°

Thus, if 2 € T UTE, then

1

Krlprl(@) = 5 (P * fr) (@),

where P; is the Poisson kernel on the half space in R**1,

1 t
Pt(ﬂi’) = t > 0.

27 (|x/|2 4 t2)3/2’




For A\ € (0,1/2], we choose & € R? so that

1
A — 56_47T|§O| = 0.
We define |
fr(z) = ™% (xn)(R™ ),
where x is a smooth cut-off function such that suppx C Bj/p and x = 1 on

Bl/4, and w IS a non-negative compactly supported smooth function such that

o (€)dE = 1. We note that R2¢(R(E — &) converges weakly to d¢, (€). We
obtain the followings.

Lemma 2.1 For X € (0,1/2], let fr be the function defined as above. Then it
holds that

1

Rg”fR”Uza and '|>\fR—§P2*fR S L

1/2

Proposition 2.1 Let A\ € (0,1/2]. There is a sequence or € H'/?(0QR) such
that

IAL = Kr) (Rl 5172 00,)

Rl 172 00,)

lim
R— o0

= 0.



Then we can prove that

U;?il(T(ICaQRj) D (0, 1/2]

in the same as in Theorem 1. For A € [—1/2,0), define

fr(z'), if ¢ € I’E,
@R(x) — @R(xlax:%) e = _fR(x/)a if x € Fév
0, if x e I'.

Then on can see as before that

—2(Pex fr)(2), ifzelF,
2(Py* fr)(2), ifzcly.

Thus,

2') + 5(P2* fr)(2'), if E’
)\SOR(JJ)/CR[SOR](x)—{)\fR( )+_2(P fr)(@') feel

“Mr(r') — L(Pyx fr)(2'), ifzely.

The rest of the proof is the same as that in the case for A € (0,1/2].



Main Result 3 (3d thin domains)

Let Dy be the bounded domain of cylinder shape such that its boundary consists
of three parts:

ODr =CHUCLUCS%, Cf ={(z1,12,73): 2| =1,—R < x3 < R},

and CE and C are of arbitrary but fixed shape independent or R. We assume
that 0D p is CH%-smooth for some o > 0.

Theorem 3. If {R;} be an increasing sequence such that R; — oo as j — o0,
then

szlO'(IC(’)QRj) D [0,1/2].

2R




Outline of Proof of Main Result 3

Let Tr = Kop, for simplicity. If 1) is supported in C%, it can be written as
Y(x) =1(0,x3), where ’ = (cosf,sinf). If x = (0,x3) € I'},

1 — cos (0 — ¢)
T = 5 | o001+ o

Taking the Fourier expansion of ¢ w.r.t. 6 variable (0, x3) = Z Y (x ””9,
we have B

Tr|Y](0, x3) Z me/ n(T3 — Y3)¥n(ys3)dys,

n=——oo

1 [" 1 —
£ (23) — _/ (1 — cos @) cos n6’3/2 19
21 Jo [2(1 — COS 9) + :1:32}

where

whose Fourier transformation is

1
(1 4 CE‘32)3/2 .

~ 1

L (&) = . /O7T cos nf 76\(\/2 (1 —cosh)&)dl, k(x3) :=




We have the following properties of Z‘;(g)

Lemma 3.1 Let k be defined as above. Then E(ﬁ) 1 even, decreasing in & > 0,
continuously differentiable, 0 < k(&) < k(0) = 2, and
~ 1

L <
\<€)\~1+|€|

~ Jor any positive integer N.

Outline of Proof. Note that

- < cos 2met
k(€)= 2 /O (f‘f t;)i dt = 2m€ Ky (2m€),

where K, denotes the modified Bessel function of the second kind. Note also that
(EK1(€)) = —€Ky(€) (See, e.g., “NIST Handbook of Mathematical Functions”).

Lemma 3.2 Z',\O (&) is even, decreasing in & > 0, continuously differentiable on
R, 0 < Lo(&) < Lp(0) =1/2, and for any § > 0

- 1
L < .




We construct test functions as follows. For A € (0,1/2], choose &, € R so that
A — Lo(&) = 0.
Put p = R'79 for 0 € (0,1). Then, define

gp(x3), ifxeCy,
?70,0 — . + —
0, itz € O UCK,

where

gp(m) = p~ 1220 (y1 (1) (p ).

Here, x1 is a smooth cut-off function such that x; € B(0,1) and x = 1 on
B(0,1/2), and (; is a smooth cut-off function such that [, (1d¢ = 1.

We can prove the following.

Proposition 3.3 Let A € (0,1/2]. Then

M =TR) o]l 120D )
lim =

0.
fi—o0 prHp(aDR)

The rest of the proof is in the same way as before.



