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The Random Conductance Model
• Zd = d-dimension integer lattice; Ed = {non-oriented nearest

neighbor bonds}
• Environment: for a given distribution Q on [0,∞),

µe ∼i.i.d . Q, for all e ∈ Ed ;

• Given a realization ω = {µe : e ∈ Ed}, two random walks:
1. Variable speed random walk (VSRW), (Xt ), waits at x for an

exponential time with mean 1/µx ;
2. Constant speed random walk (CSRW), (Yt ), waits at x for an

exponential time with mean 1;
and then jumps to a neighboring site y with probability

Pxy (ω) =
µxy

µx
where µx =

∑
y∼x

µxy .
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Transition Probabilities
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Examples
Eg 1:

• Q = δ{1}, then µe are constantly 1, and Yt is just the usual
nearest neighbor random walk

• Functional CLT (FCLT):

Ynt√
n
⇒ Bt .

Eg 2:

• Q = Bernoulli(p), then Yt is a simple random walk on the
connected component of percolation

Eg 3:

• Q supported on [1,∞) – what we shall focus on
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Two laws
• Two laws:

1. Quenched Law: For any given realization ω, study the law Pω

of (Xt )/(Yt ) under this realization
2. Averaged (or Annealed) Law: the law by taking expectation

of the quenched law Pω w.r.t. P
• Focus on quenched law Pω
• Basic Questions: the long run behavior of (Xt )/(Yt ), e.g.,

1. does the quenched FCLT (QFCLT) hold?
2. What about the fractal properties of the sample paths of

(Xt )/(Yt )?
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QFCLT
• [Barlow and Deuschel(2010)] For the VSRW X , when d ≥ 2,

for P-a.a. ω, under Pω0 , Xn2t/n⇒ σV Bt , where σV is
non-random, and Bt is a standard d-dimensional
Brownian-motion.

• [Barlow and Deuschel(2010)] For the CSRW Y , when d ≥ 2,
for P-a.a. ω, under Pω0 , Yn2t/n⇒ σCBt ,

where σC =

{
σV/

√
2dEµe, if Eµe <∞,

0, if Eµe =∞.
• [Barlow and Černý(2011)], [Černý(2011)] For the CSRW Y ,

when d ≥ 2 and Q(µe ≥ u) ∼ C/uα for some α ∈ (0,1), then
for P-a.a. ω, under Pω0 , Yn2/α t/n converges to a multiple of the
fractional kinetics process;

• [Barlow and Zheng(2010)] For the CSRW Y , when d ≥ 3 and
Q is Cauchy tailed, then for P-a.a. ω, under Pω0 , Yn2(log n) t/n
converges to a multiple of a d-dimensional Brownian-motion.
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Discrete Hausdorff Dimension
• For any n ∈ N, let Vn = V (0,2n) be the cube of side length 2n

centered at 0 ∈ Zd , and Sn := Vn \ Vn−1
• For any set B ⊆ Zd , let s(B) be its side length
• [Barlow and Taylor(1992)] For any measure function h and

any set A ⊆ Zd , the discrete Hausdorff measure of A
w.r.t h is

mh(A) =
∞∑

n=1

νh(A,Sn).

where

νh(A,Sn) = min
{ k∑

i=1

h
(s(Bi)

2n

)
: A ∩ Sn ⊂

k⋃
i=1

Bi

}
.

• For α > 0, define h(r) = rα, and let mα(A) = mh(A). Then the
discrete Hausdorff dimension of A is given by

dimHA = inf
{
α > 0 : mα(A) <∞

}
.
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Discrete Packing Dimension
• [Barlow and Taylor(1992)] For any measure function h, ε > 0,

and any set A ⊆ Zd , the discrete packing measure of A
w.r.t h is

ph(A, ε) =
∞∑

n=1

τh(A,Sn, ε),

where

τh(A,Sn, ε) = max
{ k∑

i=1

h
( ri

2n

)
: xi ∈ A∩Sn,V (xi , ri) disjoint, 1 ≤ ri ≤ 2(1−ε)n

}

• Say that A ⊆ Zd is h-packing finite if ph(A, ε) <∞ for all
ε ∈ (0,1).

• The discrete packing dimension of A is defined by

dimPA = inf
{
α > 0 : A is rα-packing finite

}
.
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Discrete Dimensions of the Range of RCM

Theorem
[Xiao and Zheng(2011)] Let

R = {x ∈ Zd : Xt = x for some t ≥ 0}

be the range of VSRW X (as well as that of CSRW Y). Assume
that d ≥ 3 and Q(µe ≥ 1) = 1. Then for P-almost every ω ∈ Ω,

dimHR = dimPR = 2, Pω0 -a.s..

where dimH and dimP denote respectively the discrete Hausdorff
and packing dimension.
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Recurrent/Transient Sets for RCM

Theorem
[Xiao and Zheng(2011)] Assume that d ≥ 3 and P(µe ≥ 1) = 1.
Let A ⊂ Zd be any (infinite) set. Then for P-almost every ω ∈ Ω,
the following statements hold.

(i) If dimHA < d − 2, then

Pω0
(
Xt ∈ A for arbitrarily large t > 0

)
= 0.

(ii) If dimHA > d − 2, then

Pω0
(
Xt ∈ A for arbitrarily large t > 0

)
= 1.

Remark
Both theorems are also proven for the Bouchaud’s trap model.
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Main Ingredients of Proof
• Basic idea: derive various estimates for ordinary random

walks used in [Barlow and Taylor(1992)], by using general
Markov chain techniques

• Main ingredients:
1. Gaussian heat kernel bounds for the VSRW

([Barlow and Deuschel(2010)]);
2. Hitting probability estimates;
3. Tail probability estimates of the sojourn measure for the

discrete time VSRW;
4. Tail probability estimates of the maximal displacement of

VSRW;
5. A SLLN for dependent events;
6. A zero-one law as a consequence of an elliptic Harnack

inequality that the VSRW satisfies.
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Proof Sketch for Theorem 1
• dimP R ≤ 2 Pω0 -a.s.: first moment argument;
• dimH R ≥ 2 Pω0 -a.s.: let R̂ be the range of the discrete time VSRW

(Ŷn) := (Yn), and show that dimH R̂ ≥ 2.
• Let µ be the counting measure on R̂. Show that

µ
(
Qk (x)

)
≤ c n 22k for every x ∈ Sn and 0 ≤ k ≤ n.

• Frostman’s lemma⇒
ν2
(
R̂,Sn

)
≥ c−1 n−12−2n µ(Sn)

• Hitting probability estimate⇒
Eω0
(
µ(Sn)

)
≥ c 22n

and hence Eω0
(
m2(R̂)

)
=∞.

• To further prove m2
(
R̂
)
=∞ Pω0 -a.s., let nk = bλk log kc for λ > 0

TBD, and define
τk = inf

{
n > 0 : X̂n /∈ V

(
0, 2nk

)}
.

Show that
1. Pω0

(
|X̂τk−1 | > 2nk−3

)
≤ c exp(−ck); and

2. On the event
{
|X̂τk−1 | ≤ 2nk−3},

Pω
X̂τk−1

(
µ(Snk ) ≥ c 22nk

)
≥ p.

3. The SLLN for dependent event concludes.
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Summary
0. QFCLT for the VSRW/CSRW
1. Discrete fractal dimensions of the range of VSRW/CSRW
2. Characterization of recurrent/transient sets for VSRW/CSRW
3. Similarly for Bouchaud’s trap model.

Thank you!
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