Discrete Fractal Dimensions of the Ranges of Random Walks Associate with Random Conductances

Xinghua Zheng

```
Department of ISOM, HKUST
http://ihome.ust.hk/~xhzheng/
```

International Conference on Advances on Fractals and Related Topics, Dec 2012

Based on Joint Work with Yimin Xiao

Outline

Introduction
The Random Conductance Model Discrete Fractal Dimensions

Main Results

Proof Sketch and Main Ingredients

Summary

The Random Conductance Model

- $\mathbb{Z}^{d}=d$-dimension integer lattice; $E_{d}=\{$ non-oriented nearest neighbor bonds\}
- Environment: for a given distribution \mathbb{Q} on $[0, \infty)$,

$$
\mu_{e} \sim_{i . i . d .} \mathbb{Q}, \quad \text { for all } e \in E_{d}
$$

- Given a realization $\omega=\left\{\mu_{e}: \boldsymbol{e} \in E_{d}\right\}$, two random walks:

1. Variable speed random walk (VSRW), $\left(X_{t}\right)$, waits at x for an exponential time with mean $1 / \mu_{x}$;
2. Constant speed random walk (CSRW), $\left(Y_{t}\right)$, waits at x for an exponential time with mean 1 ;
and then jumps to a neighboring site y with probability

$$
P_{x y}(\omega)=\frac{\mu_{x y}}{\mu_{x}} \quad \text { where } \mu_{x}=\sum_{y \sim x} \mu_{x y} .
$$

Transition Probabilities

Transition Probabilities

Examples

Eg 1:

- $\mathbb{Q}=\delta_{\{1\}}$, then μ_{e} are constantly 1 , and Y_{t} is just the usual nearest neighbor random walk
- Functional CLT (FCLT):

$$
\frac{Y_{n t}}{\sqrt{n}} \Rightarrow B_{t} .
$$

Eg 2 :

- $\mathbb{Q}=\operatorname{Bernoulli}(p)$, then Y_{t} is a simple random walk on the connected component of percolation

Eg 3:

- \mathbb{Q} supported on $[1, \infty)$ - what we shall focus on

Two laws

- Two laws:

1. Quenched Law: For any given realization ω, study the law P_{ω} of $\left(X_{t}\right) /\left(Y_{t}\right)$ under this realization
2. Averaged (or Annealed) Law: the law by taking expectation of the quenched law P_{ω} w.r.t. \mathbb{P}

- Focus on quenched law P_{ω}
- Basic Questions: the long run behavior of $\left(X_{t}\right) /\left(Y_{t}\right)$, e.g.,

1. does the quenched FCLT (QFCLT) hold?
2. What about the fractal properties of the sample paths of $\left(X_{t}\right) /\left(Y_{t}\right) ?$

QFCLT

- [Barlow and Deuschel(2010)] For the VSRW X, when $d \geq 2$, for \mathbb{P}-a.a. ω, under $\mathrm{P}_{0}^{\omega}, X_{n^{2} t} / n \Rightarrow \sigma_{V} B_{t}$, where σ_{V} is non-random, and B_{t} is a standard d-dimensional Brownian-motion.
- [Barlow and Deuschel(2010)] For the CSRW Y, when $d \geq 2$, for \mathbb{P}-a.a. ω, under $\mathrm{P}_{0}^{\omega}, Y_{n^{2} t} / n \Rightarrow \sigma_{C} B_{t}$,

$$
\text { where } \sigma_{C}= \begin{cases}\sigma_{V} / \sqrt{2 d \mathbb{E} \mu_{e}}, & \text { if } \mathbb{E} \mu_{e}<\infty \\ 0, & \text { if } \mathbb{E} \mu_{e}=\infty\end{cases}
$$

- [Barlow and Černý(2011)], [Černý(2011)] For the CSRW Y, when $d \geq 2$ and $\mathbb{Q}\left(\mu_{e} \geq u\right) \sim C / u^{\alpha}$ for some $\alpha \in(0,1)$, then for \mathbb{P}-a.a. ω, under $\mathrm{P}_{0}^{\omega}, Y_{n^{2 / \alpha}} / n$ converges to a multiple of the fractional kinetics process;
- [Barlow and Zheng(2010)] For the CSRW Y, when $d \geq 3$ and \mathbb{Q} is Cauchy tailed, then for \mathbb{P}-a.a. ω, under $\mathrm{P}_{0}^{\omega}, Y_{n^{2}(\log n) t} / n$ converges to a multiple of a d-dimensional Brownian-motion.

Discrete Hausdorff Dimension

- For any $n \in \mathbb{N}$, let $V_{n}=V\left(0,2^{n}\right)$ be the cube of side length 2^{n} centered at $0 \in \mathbb{Z}^{d}$, and $S_{n}:=V_{n} \backslash V_{n-1}$
- For any set $B \subseteq \mathbb{Z}^{d}$, let $s(B)$ be its side length
- [Barlow and Taylor(1992)] For any measure function h and any set $A \subseteq \mathbb{Z}^{d}$, the discrete Hausdorff measure of A w.r.t h is

$$
m_{h}(A)=\sum_{n=1}^{\infty} \nu_{h}\left(A, S_{n}\right)
$$

where

$$
\nu_{h}\left(A, S_{n}\right)=\min \left\{\sum_{i=1}^{k} h\left(\frac{s\left(B_{i}\right)}{2^{n}}\right): A \cap S_{n} \subset \bigcup_{i=1}^{k} B_{i}\right\} .
$$

- For $\alpha>0$, define $h(r)=r^{\alpha}$, and let $m_{\alpha}(A)=m_{h}(A)$. Then the discrete Hausdorff dimension of A is given by

$$
\operatorname{dim}_{\mathrm{H}} A=\inf \left\{\alpha>0: m_{\alpha}(A)<\infty\right\} .
$$

Discrete Packing Dimension

- [Barlow and Taylor(1992)] For any measure function $h, \varepsilon>0$, and any set $A \subseteq \mathbb{Z}^{d}$, the discrete packing measure of A w.r.t h is

$$
p_{h}(A, \varepsilon)=\sum_{n=1}^{\infty} \tau_{h}\left(A, S_{n}, \varepsilon\right)
$$

where

$$
\tau_{h}\left(A, S_{n}, \varepsilon\right)=\max \left\{\sum_{i=1}^{k} h\left(\frac{r_{i}}{2^{n}}\right): x_{i} \in A \cap S_{n}, V\left(x_{i}, r_{i}\right) \text { disjoint, } 1 \leq r_{i} \leq 2^{(1-\varepsilon) n}\right\}
$$

- Say that $A \subseteq \mathbb{Z}^{d}$ is h-packing finite if $p_{h}(A, \varepsilon)<\infty$ for all $\varepsilon \in(0,1)$.
- The discrete packing dimension of A is defined by

$$
\operatorname{dim}_{\mathrm{p}} A=\inf \left\{\alpha>0: A \text { is } r^{\alpha} \text {-packing finite }\right\} .
$$

Discrete Dimensions of the Range of RCM

Theorem
[Xiao and Zheng(2011)] Let

$$
\mathrm{R}=\left\{x \in \mathbb{Z}^{d}: X_{t}=x \text { for some } t \geq 0\right\}
$$

be the range of VSRW X (as well as that of CSRW Y). Assume that $d \geq 3$ and $\mathbb{Q}\left(\mu_{e} \geq 1\right)=1$. Then for \mathbb{P}-almost every $\omega \in \Omega$,

$$
\operatorname{dim}_{H} R=\operatorname{dim}_{P} R=2, \quad P_{0}^{\omega} \text {-a.s.. }
$$

where $\operatorname{dim}_{\mathrm{H}}$ and $\operatorname{dim}_{\mathrm{p}}$ denote respectively the discrete Hausdorff and packing dimension.

Recurrent/Transient Sets for RCM

Theorem
[Xiao and Zheng(2011)] Assume that $d \geq 3$ and $\mathbb{P}\left(\mu_{e} \geq 1\right)=1$. Let $A \subset \mathbb{Z}^{d}$ be any (infinite) set. Then for \mathbb{P}-almost every $\omega \in \Omega$, the following statements hold.
(i) If $\operatorname{dim}_{\mathrm{H}} A<d-2$, then

$$
\mathrm{P}_{0}^{\omega}\left(X_{t} \in A \text { for arbitrarily large } t>0\right)=0 .
$$

(ii) If $\operatorname{dim}_{\mathrm{H}} A>d-2$, then

$$
\mathrm{P}_{0}^{\omega}\left(X_{t} \in A \text { for arbitrarily large } t>0\right)=1 \text {. }
$$

Remark

Both theorems are also proven for the Bouchaud's trap model.

Main Ingredients of Proof

- Basic idea: derive various estimates for ordinary random walks used in [Barlow and Taylor(1992)], by using general Markov chain techniques
- Main ingredients:

1. Gaussian heat kernel bounds for the VSRW ([Barlow and Deuschel(2010)]);
2. Hitting probability estimates;
3. Tail probability estimates of the sojourn measure for the discrete time VSRW;
4. Tail probability estimates of the maximal displacement of VSRW;
5. A SLLN for dependent events;
6. A zero-one law as a consequence of an elliptic Harnack inequality that the VSRW satisfies.

Proof Sketch for Theorem 1

- $\operatorname{dim}_{\mathrm{P}} \mathrm{R} \leq 2 \mathrm{P}_{0}^{\omega}$-a.s.: first moment argument;
- $\operatorname{dim}_{\mathrm{H}} \mathrm{R} \geq 2 \mathrm{P}_{0}^{\omega}$-a.s.: let $\widehat{\mathrm{R}}$ be the range of the discrete time VSRW $\left(\widehat{Y}_{n}\right):=\left(Y_{n}\right)$, and show that $\operatorname{dim}_{\mathrm{H}} \widehat{\mathrm{R}} \geq 2$.
- Let μ be the counting measure on $\widehat{\mathrm{R}}$. Show that

$$
\mu\left(Q_{k}(x)\right) \leq c n 2^{2 k} \quad \text { for every } x \in S_{n} \text { and } 0 \leq k \leq n
$$

- Frostman's lemma \Rightarrow

$$
\nu_{2}\left(\widehat{\mathrm{R}}, S_{n}\right) \geq c^{-1} n^{-1} 2^{-2 n} \mu\left(S_{n}\right)
$$

- Hitting probability estimate \Rightarrow

$$
\mathrm{E}_{0}^{\omega}\left(\mu\left(S_{n}\right)\right) \geq c 2^{2 n}
$$

and hence $\mathrm{E}_{0}^{\omega}\left(m_{2}(\widehat{\mathrm{R}})\right)=\infty$.

- To further prove $m_{2}(\widehat{\mathrm{R}})=\infty \mathrm{P}_{0}^{\omega}$-a.s., let $n_{k}=\lfloor\lambda k \log k\rfloor$ for $\lambda>0$ TBD, and define

$$
\tau_{k}=\inf \left\{n>0: \widehat{X}_{n} \notin V\left(0,2^{n_{k}}\right)\right\}
$$

Show that

1. $\mathrm{P}_{0}^{\omega}\left(\left|\widehat{X}_{\tau_{k-1}}\right|>2^{n_{k}-3}\right) \leq c \exp (-c k) ; \quad$ and
2. On the event $\left\{\left|\widehat{X}_{\tau_{k-1}}\right| \leq 2^{n_{k}-3}\right\}$,

$$
\mathrm{P}_{\hat{x}_{\tau_{k-1}}}^{\omega}\left(\mu\left(S_{n_{k}}\right) \geq c 2^{2 n_{k}}\right) \geq p
$$

3. The SLLN for dependent event concludes.

Summary

0. QFCLT for the VSRW/CSRW
1. Discrete fractal dimensions of the range of VSRW/CSRW
2. Characterization of recurrent/transient sets for VSRW/CSRW
3. Similarly for Bouchaud's trap model.

Thank you!

固 Barlow，M．T．and Černý，J．（2011），＂Convergence to fractional kinetics for random walks associated with unbounded conductances，＂Probab．Theory Related Fields，149，639－673．

围 Barlow，M．T．and Deuschel，J．－D．（2010），＂Invariance principle for the random conductance model with unbounded conductances，＂Ann．Probab．，38，234－276．

围 Barlow，M．T．and Taylor，S．J．（1992），＂Defining fractal subsets of \mathbf{Z}^{d} ，＂Proc．London Math．Soc．（3），64，125－152．
© Barlow，M．T．and Zheng，X．（2010），＂The random conductance model with Cauchy tails，＂Ann．Appl．Probab．，20，869－889．

R Černý，J．（2011），＂On two－dimensional random walk among heavy－tailed conductances，＂Electron．J．Probab．，16，no．10， 293－313．
－Xiao，Y．and Zheng，X．（2011），＂Discrete Fractal Dimensions of the Ranges of Random Walks in \mathbb{Z}^{d} Associate with Random

Conductances," to appear in Probability Theory and Related Fields.

