Background Main Results Further Discussions

International Conference on Advances of Fractals and Related Topics 2012 December 10-14, 2012; The Chinese University of Hong Kong; Hongkong, China

Modeling Potential as Fiber Entropy and Pressure as Entropy

joint work with T. Downarowicz and D. Huczek (Wroclaw, Poland)

School of Mathematical Sciences, Fudan University Shanghai China

> December 14, 2012 chiaths.zhang@gmail.com

> > ヘロト ヘアト ヘビト ヘビト

1

Background Main Results Further Discussions

Contents

(日) (四) (三) (三) (三) (三) (○) (○)

 Background
 Entropy of Dynamical Systems

 Main Results
 Topological Pressure of Potentials

 Further Discussions
 Motivation

topological dynamical system (TDS) (X, T): a cpt metric space X with metric d and a continuous surjection $T : X \to X$

one of central problems: classification

- usually looking for isomorphism invariants, i.e.
 - properties, e.g. ergodicity, mixing, ···
 isomorphic ⇒ have the property or not simultaneously
 - objects, e.g. numbers, groups, ···
 isomorphic ⇒ equal numbers, isomorphic groups, ···

among the most important ones: entropy

history of entropy

- measure-theoretic entropy for measurable dynamical systems: Kolmogorov (then Sinai, ···)
- topological entropy for TDS: Adler-Konheim-McAndrew (then R. Bowen, Dinaburg, ...)
- classical variational principle by Goodman and Goodwyn (then Misiurewicz, ···)

 $h_{top}(X,T) = \sup\{h_{\mu}(X,T) : \mu \text{ invariant}\}$

 Background
 Entropy of Dynamical Systems

 Main Results
 Topological Pressure of Potentials

 Further Discussions
 Motivation

topological pressure of potentials: useful in statistical mechanics, ergodic theory, dynamical systems, ···

- expansive TDS with specification property: Ruelle
- general TDS: Walters
- natural "generalization" of entropy
 - $=h_{\mathrm{tot}}(X,T, \mathfrak{c}) = h_{\mathrm{tot}}(X,T) + \mathfrak{c}/\mathrm{Ve} \in \mathbb{R} \ (\mathrm{so} \ \mathcal{I}(X,T, \mathfrak{c})) = h_{\mathrm{tot}}(X,T))$
 - variational principle for potentials generated by continuous f

topological pressure of potentials: useful in statistical mechanics, ergodic theory, dynamical systems, ···

- expansive TDS with specification property: Ruelle
- general TDS: Walters
- natural "generalization" of entropy

•
$$P(X,T,c) = h_{top}(X,T) + c, \forall c \in \mathbb{R} (so P(X,T,0) = h_{top}(X,T))$$

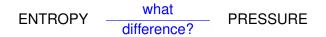
• variational principle for potentials generated by continuous f

$$P(X,T,f) = \sup \left\{ h_{\mu}(X,T) + \int_{X} f d\mu : \mu \text{ invariant} \right\},\$$

generalizing classical variational principle about entropy

Background	Entropy of Dynamical Systems
Main Results	Topological Pressure of Potentials
Further Discussions	Motivation

our motivation:



a potential arising naturally from TDSs:

assume: (X, T), a relative symbolic extension of (Y, S)

• i.e. $(X,T) \subset (Y,S) \times (Z,\sigma)$ projects onto (Y,S) (with projection π), where (Z,σ) is a symbolic system with standard clopen partition \mathcal{U}_Z

introduce fiber entropy potentials (as functions over (Y, S)) by

$$H_n(y) = \log \left(\text{minimal cardinality of } \mathcal{V} \subset \bigvee_{i=0}^{n-1} T^{-i}\mathcal{U} \text{ covering } \pi^{-1}(y) \right)$$

= number of *n*-length words in $\pi^{-1}(y)$

for $n \in \mathbb{N}$ and $y \in Y$, where $\mathcal{U} = (Y \times \mathcal{U}_Z) \cap X$

properties of fiber entropy potentials $\mathfrak{H} = \{H_n : n \in \mathbb{N}\}$

- nonnegative, upper semicontinuous (over Y) and nondecreasing (with respect to n)
- subadditive in the sense of

 $H_{n+m}(y) \le H_n(y) + H_m(S^n y), n, m \in \mathbb{N}, y \in Y$

 $P(Y, S, \mathfrak{H}) = h_{top}(X, T) = \sup \left\{ h_{\nu}(Y, S) + \lim_{n \to \infty} \frac{1}{n} \int_{Y} H_{n} d\nu : \nu \text{ invariant} \right\}$

 "cinect" proof (without using variational princip" = grimesonos eligioning lanoitaines grieu tuorition (enuaceng lasigologo)

properties of fiber entropy potentials $\mathfrak{H} = \{H_n : n \in \mathbb{N}\}$

- nonnegative, upper semicontinuous (over Y) and nondecreasing (with respect to n)
- subadditive in the sense of

 $H_{n+m}(y) \le H_n(y) + H_m(S^n y), n, m \in \mathbb{N}, y \in Y$

$$P(Y, S, \mathfrak{H}) = h_{\mathsf{top}}(X, T) = \sup \left\{ h_{\nu}(Y, S) + \lim_{n \to \infty} \frac{1}{n} \int_{Y} H_{n} d\nu : \nu \text{ invariant} \right\}$$

- "direct" proof (without using variational principle concerning topological pressure)
 - subadditive ergodic theorem by Kingman + inner variational principle of relative entropy by Downarowicz-Serafin

Background Easy Observation Main Results Main Theorem Further Discussions Direct Applications

Theorem (Downarowicz-Huczek-Z, preprint)

each nonnegative, upper semicontinuous, subadditive potential $\mathfrak{F} = \{f_n : n \in \mathbb{N}\}\$ (over (Y, S)) is equivalent to a fiber entropy potential \mathfrak{H} (determined by a relative symbolic extension (X, T) of (Y, S)) in the sense that $P(Y, S, \mathfrak{H}) = P(Y, S, \mathfrak{F})$ and

$$\lim_{n\to\infty}\frac{1}{n}\int_Y H_n d\nu = \lim_{n\to\infty}\frac{1}{n}\int_Y f_n d\nu \text{ for invariant } \nu.$$

complicated symbolic construction

 S need NOT be realized by a fiber entropy potential (e.g. S not nondecreasing) Background Easy Observation Main Results Main Theorem Further Discussions Direct Applications

Theorem (Downarowicz-Huczek-Z, preprint)

each nonnegative, upper semicontinuous, subadditive potential $\mathfrak{F} = \{f_n : n \in \mathbb{N}\}$ (over (Y, S)) is equivalent to a fiber entropy potential \mathfrak{H} (determined by a relative symbolic extension (X, T) of (Y, S)) in the sense that $P(Y, S, \mathfrak{H}) = P(Y, S, \mathfrak{F})$ and

$$\lim_{n\to\infty}\frac{1}{n}\int_Y H_n d\nu = \lim_{n\to\infty}\frac{1}{n}\int_Y f_n d\nu \text{ for invariant } \nu.$$

- complicated symbolic construction
- S need NOT be realized by a fiber entropy potential (e.g. S not nondecreasing)

applications (combined with previous observation about fiber entropy potentials):

- (applying to f + ||f|| for continuous f) variational principle of topological pressure for f by Walters, 75
- (applying its relative version) a relativised variational principle of topological pressure by Ledrappier-Walters, 77
- variational principle of topological pressure for subadditive potentials by Cao-Feng-Huang, 08
 - our results ONLY work for NONNEGATIVE case

Background Recalling of Definition of Topological Pressure Main Results Some Byproduct Further Discussions Remaining Question

for $\mathfrak{F} = \{f_n : n \in \mathbb{N}\}$, a potential over (Y, S) with metric *d*, set

$$S_{n,\epsilon}(\mathfrak{F}) = \sup\left\{\sum_{y\in E} 2^{f_n(y)} : E \subset Y \text{ is } (n,\epsilon) \text{-separated}
ight\},$$

$$R_{n,\epsilon}(\mathfrak{F}) = \inf\left\{\sum_{y\in F} 2^{f_n(y)} : F \subset Y \text{ is } (n,\epsilon) \text{-spanning}\right\} \leq S_{n,\epsilon}(\mathfrak{F}),$$

where

•
$$d_n(x_1, x_2) = \max_{0}^{n-1} d(S^i x_1, S^i x_2)$$

• (n, ϵ) -spanning $E \subset Y$ if $\forall x_1 \in Y, \exists x_2 \in E$ with $d_n(x_1, x_2) < \epsilon$

• (n, ϵ) -separated $F \subset Y$ if $d_n(x_1, x_2) \ge \epsilon$ once $x_1 \ne x_2 (\in F)$

Background Recalling of Definition of Topological Pressure Main Results Further Discussions introduce $P(Y, S, \mathfrak{F}) = \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log S_{n,\epsilon}(\mathfrak{F}),$ $\underline{P}(Y,S,\mathfrak{F}) = \lim_{\epsilon \to 0} \liminf_{n \to \infty} \frac{1}{n} \log S_{n,\epsilon}(\mathfrak{F}) \le P(Y,S,\mathfrak{F}),$ $Q(Y, S, \mathfrak{F}) = \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log R_{n,\epsilon}(\mathfrak{F}) \le P(Y, S, \mathfrak{F}),$ $\underline{Q}(Y,S,\mathfrak{F}) = \lim_{\epsilon \to 0} \liminf_{n \to \infty} \frac{1}{n} \log R_{n,\epsilon}(\mathfrak{F}) \le \min \{Q(Y,S,\mathfrak{F}), \underline{P}(Y,S,\mathfrak{F})\}$

 (Walters, 75) if S is generated by continuous f, then, by uniform continuity of f,

$$P(Y, S, \mathfrak{F}) = \underline{P}(Y, S, \mathfrak{F}) = Q(Y, S, \mathfrak{F}) = \underline{Q}(Y, S, \mathfrak{F})$$

byproduct of main results:

- for nonnegative, upper semicontinuous, subadditive potential 𝔅, P(Y, S, 𝔅) = P(Y, S, 𝔅)
 - first observe it for fiber entropy potential, then proceed a similar argument of Main Theorem's proof
- it is possible (comparing to Walter's result)

 $P(Y,S,\mathfrak{F}) = \underline{P}(Y,S,\mathfrak{F}) > Q(Y,S,\mathfrak{F}) = \underline{Q}(Y,S,\mathfrak{F}) = 0$

- for some nonnegative, upper semicontinuous and additive potential (realized by a fiber entropy potential)
 - Toeplitz system with positive entropy which is relatively independent almost 1-1 extension over the odometer
- for some nonnegative, continuous, subadditive potential
 - modify the above fiber entropy potential (improve its continuity and destroy its additivity)

Background	Recalling of Definition of Topological Pressure
Main Results	Some Byproduct
Further Discussions	Remaining Question

Remaining Question:

how about a general upper semicontinuous, subadditive potential (which may be not nonnegative)?

Background Recalling of Definition of Topological Pressur Main Results Some Byproduct Further Discussions Remaining Question

Thank you!

Email: chiaths.zhang@gmail.com