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Entropy of Dynamical Systems
Topological Pressure of Potentials
Motivation

topological dynamical system (TDS) (X,T): a cpt metric space
X with metric d and a continuous surjection T : X → X

one of central problems: classification

usually looking for isomorphism invariants, i.e.

properties, e.g. ergodicity, mixing, · · ·
isomorphic =⇒ have the property or not simultaneously

objects, e.g. numbers, groups, · · ·
isomorphic =⇒ equal numbers, isomorphic groups, · · ·

among the most important ones: entropy
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history of entropy

measure-theoretic entropy for measurable dynamical
systems: Kolmogorov (then Sinai, · · · )

topological entropy for TDS: Adler-Konheim-McAndrew
(then R. Bowen, Dinaburg, · · · )

classical variational principle by Goodman and Goodwyn
(then Misiurewicz, · · · )

htop(X,T) = sup{hµ(X,T) : µ invariant}
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topological pressure of potentials: useful in statistical
mechanics, ergodic theory, dynamical systems, · · ·

expansive TDS with specification property: Ruelle

general TDS: Walters

natural “generalization” of entropy

P(X,T, c) = htop(X,T) + c,∀c ∈ R (so P(X,T, 0) = htop(X,T))

variational principle for potentials generated by continuous f

P(X,T, f ) = sup
{

hµ(X,T) +
∫

X
fdµ : µ invariant

}
,

generalizing classical variational principle about entropy
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our motivation:

ENTROPY
what

difference?
PRESSURE
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Easy Observation
Main Theorem
Direct Applications

a potential arising naturally from TDSs:

assume: (X,T), a relative symbolic extension of (Y, S)

i.e. (X,T) ⊂ (Y, S)× (Z, σ) projects onto (Y, S) (with
projection π), where (Z, σ) is a symbolic system with
standard clopen partition UZ

introduce fiber entropy potentials (as functions over (Y, S)) by

Hn(y) = log

(
minimal cardinality of V ⊂

n−1∨
i=0

T−iU covering π−1(y)

)
= number of n-length words in π−1(y)

for n ∈ N and y ∈ Y, where U = (Y × UZ) ∩ X
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properties of fiber entropy potentials H = {Hn : n ∈ N}

nonnegative, upper semicontinuous (over Y) and
nondecreasing (with respect to n)

subadditive in the sense of

Hn+m(y) ≤ Hn(y) + Hm(Sny), n,m ∈ N, y ∈ Y

(Downarowicz-Huczek-Z, preprint) topological pressure of
potentials H is just entropy

P(Y, S,H) = htop(X,T) = sup
{

hν(Y, S) + lim
n→∞

1
n

∫
Y

Hndν : ν invariant
}

“direct” proof (without using variational principle concerning
topological pressure)

subadditive ergodic theorem by Kingman + inner variational
principle of relative entropy by Downarowicz-Serafin
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Theorem (Downarowicz-Huczek-Z, preprint)
each nonnegative, upper semicontinuous, subadditive potential
F = {fn : n ∈ N} (over (Y, S)) is equivalent to a fiber entropy
potential H (determined by a relative symbolic extension (X,T)
of (Y, S)) in the sense that P(Y, S,H) = P(Y, S,F) and

lim
n→∞

1
n

∫
Y

Hndν = lim
n→∞

1
n

∫
Y

fndν for invariant ν.

complicated symbolic construction

F need NOT be realized by a fiber entropy potential (e.g. F
not nondecreasing)
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applications (combined with previous observation about fiber
entropy potentials):

(applying to f + ||f || for continuous f ) variational principle of
topological pressure for f by Walters, 75

(applying its relative version) a relativised variational
principle of topological pressure by Ledrappier-Walters, 77

variational principle of topological pressure for subadditive
potentials by Cao-Feng-Huang, 08

our results ONLY work for NONNEGATIVE case
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Recalling of Definition of Topological Pressure
Some Byproduct
Remaining Question

for F = {fn : n ∈ N}, a potential over (Y, S) with metric d, set

Sn,ε(F) = sup

∑
y∈E

2fn(y) : E ⊂ Y is (n, ε)-separated

 ,

Rn,ε(F) = inf

∑
y∈F

2fn(y) : F ⊂ Y is (n, ε)-spanning

 ≤ Sn,ε(F),

where

dn(x1, x2) =
n−1
max

0
d(Six1, Six2)

(n, ε)-spanning E ⊂ Y if ∀x1 ∈ Y,∃x2 ∈ E with dn(x1, x2) < ε

(n, ε)-separated F ⊂ Y if dn(x1, x2) ≥ ε once x1 6= x2(∈ F)
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introduce
P(Y, S,F) = lim

ε→0
lim sup

n→∞

1
n

log Sn,ε(F),

P(Y, S,F) = lim
ε→0

lim inf
n→∞

1
n

log Sn,ε(F) ≤ P(Y, S,F),

Q(Y, S,F) = lim
ε→0

lim sup
n→∞

1
n

log Rn,ε(F) ≤ P(Y, S,F),

Q(Y, S,F) = lim
ε→0

lim inf
n→∞

1
n

log Rn,ε(F) ≤ min {Q(Y, S,F),P(Y, S,F)}

(Walters, 75) if F is generated by continuous f , then, by
uniform continuity of f ,

P(Y, S,F) = P(Y, S,F) = Q(Y, S,F) = Q(Y, S,F)
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byproduct of main results:

for nonnegative, upper semicontinuous, subadditive
potential F, P(Y, S,F) = P(Y, S,F)

first observe it for fiber entropy potential, then proceed a
similar argument of Main Theorem’s proof

it is possible (comparing to Walter’s result)

P(Y, S,F) = P(Y, S,F) >Q(Y, S,F) = Q(Y, S,F) = 0

for some nonnegative, upper semicontinuous and additive
potential (realized by a fiber entropy potential)

Toeplitz system with positive entropy which is relatively
independent almost 1-1 extension over the odometer

for some nonnegative, continuous, subadditive potential

modify the above fiber entropy potential (improve its
continuity and destroy its additivity)
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Remaining Question:

how about a general upper semicontinuous, subadditive
potential (which may be not nonnegative)?
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Thank you!

Email: chiaths.zhang@gmail.com


