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1. Lipschitz-Killing curvature measures in classical (singular)
curvature theory in Rd

Notation
Ck(K, ·) , k = 0, . . . , d

total curvatures: Ck(K) = Ck(K,Rd)

Special cases k = 0: total Gauss curvature = Euler characteristic,
k = d: volume (for completeness)

Convex geometry (Steiner, Minkowski, Hadwiger, Santalo, ..., Groemer,
Schneider)
Ck(K) kth intrinsic volume of a (poly)convex body K

Differential and integral geometry (Weyl, Chern, Blaschke, Santalo,
..., Wintgen, Cheeger/Müller/Schrader)
Ck(K, ·) in terms of integrating the traces of powers of the Riemannian
curvature tensor over a C2-manifold K and integrating the higher order
mean curvatures over the boundary ∂K
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Special cases
if K = Mm compact m-dimensional C2-submanifold: Cm−k(Mm) total
k-th order mean curvature of Mm, k = 2 scalar curvature

if K smooth domain in Rd with boundary ∂K: Cd−2(K) total mean
curvature of ∂K

In general, the Ck(K) arise as coefficients in the so-called Steiner (resp.
Weyl) polynomial for the volume of parallel sets of small distances:

V (Kr) =

d∑
k=0

const(d, k)Cd−k(K)rk ,

moreover, they form a complete system of certain Euclidean invariants
(Hadwiger 1958, Z. 1990).

Relationships to spectral analysis:
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0 ≥ λ1,l ≥ λ2,l ≥ . . . eigenvalues of the Laplace operator ∆l of Mm

acting on l-forms, then tr et∆l =
∫
Mm

plt(x, x)dHm

=

∞∑
n=1

exp(λn,lt) ∼ (4πt)−m/2
[m/2]∑
k=0

Ak,l(Mm)tk +O(t1/2) , t ↓ 0

where Ak,l(Mm) are the integrals over Mm of invariant polynomials of
order 2k in the derivatives of the Riemannian metric
(Weyl, Minakshisundaram, Pleijel, Kac, McKean/Singer, Patodi (1971,
general version which holds also locally)

Donelli (1975, basing on a result of Patodi): for known constants
γ(k, l,m),

Cm−2k(Mm) =
2k∑
l=0

γ(k, l,m)Ak,l(Mm)

in particular, A0,0(Mm) = Cm(Mm) (Riemannian volume of Mm) and
A1,0(Mm) = 1

3Cm−2(Mm) (total scalar curvature)
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Geometric measure theory - extension of the above geometric
approaches ([Federer 1959], explicit representation [Z. 1986])

k-th order curvature-direction measure as integral of kth generalized
mean curvatures over the unit normal bundle norK ⊂ Rd × Sd−1 of a set
K with positive reach (unique foot point property)

C̃k(K, ·) :=

∫
norK∩(·)

Sd−1−k(κ1, . . . ,κd−1) dHd−1

with marginal Ck(K, ·) := C̃k(K, (·)× Sd−1) kth Lipschitz-Killing
curvature measure on Rd, k = 0, . . . , d− 1, where

Sl((κ1, . . . ,κd−1) := const(d, l)

d−1∏
i=1

(1 + κ2
i )−1/2

∑
1≤i1...≤il≤d−1

κ1 . . .κl

lth symmetric function of generalized principal curvatures
−∞ < κ1(x, n) ≤ κ2(x, n) . . . ≤ κd−1(x, n) ≤ ∞ on norK, (where
∞(1 +∞2)−1/2 =: 1)
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For ε > 0 and K ⊂ Rd recall

Kε := {x ∈ Rd : dist(x,K) ≤ ε} .

Theorem (Fu 1985)
For any compact K ⊂ Rd with d ≤ 3, Lebesgue-a.e. ε > 0 is a regular
value of the distance function of K and, hence, the closure of the
complement of the the parallel set Kε has positive reach.

For arbitrary d and compact K with this property define the kth
Lipschitz-Killing curvature measure of the parallel sets Kε for such ε by

Ck(Kε, ·) := (−1)d−1−kCk

(
(Kε)c, ·

)
(consistent definition).

For classical sets K as above we have

(w) lim
ε→0

Ck(Kε, ·) = Ck(K, ·) ,

for fractal sets explosion. Therefore rescaling is necessary:
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2. Fractal curvatures - approximation by close neighborhoods

(References below)

F self-similar (random) set in Rd with Hausdorff dimension D satisfying
(S)OSC

Under the additional assumption on the regularity of the neighborhoods
Fε and some integrability condition the following limits exist (almost
surely):

Cfrack (F ) := lim
ε→0

εD−kCk(Fε)

in the ”non-arithmetic case” and

Cfrack (F ) := lim
δ→0

1

| ln δ|

∫ 1

δ

εD−kCk(Fε)
1

ε
dε .

in general.

(Integral representation for Ck(F ) which admits some explicit or
numerical calculations.)
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Curvature-direction measure version (deterministic case):

C̃frack (F, ·) : = (w) lim
δ→0

1

| ln δ|

∫ 1

δ

εD−kC̃k(Fε, ·)
1

ε
dε

= Ck(F )
(
HD(F )−1 HD|F ×DFk

)
(·) .

= (w) lim
ε→0

εD−kC̃k(Fε, ·)

in the non-arithmetic case.

Interpretation of the factors Ck(F )HD(F )−1: some fractal analogues of
the higher order pointwise mean curvatures on smooth submanifolds,
here: constant values because of self-similarity,
DFk distributions on the unit sphere in Rd measuring the anisotropy of F
”weighted by these mean curvatures”,

Main tool and additional result: interpretation of the above factors as
curvature densities, permits to consider other types of (random) fractals
with scaling properties:
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3. Average curvature densities

Let O be from (SOSC), SO :=
⋃N
i=1 SiO for the generating similarities

S1, . . . , SN with contraction rations r1, . . . , rN .
For a > 1, ε0 > 0 and b := max(2a, ε−1

0 |O|) let
{AF (x, ε) : x ∈ F, 0 < ε < ε0, } be a locally homogeneous
neighborhood net:
AF (x, ε) ⊂ Fε ∩B(x, aε) and
AF (x, ε) = Si(AF (S−1

i x, r−1
i ε)) if x ∈ SiF and ε < b−1d(x, ∂Si(O))

(homogeneity).

Examples:

1. AF (x, ε) = Fε ∩B(x, aε)

2. AF (x, ε) = Fε ∩Π−1
F

(
B(x, ε)

)
,

the set of those points from Fε which have a foot point on F within
the ball B(x, ε)

3. AF (x, ε) = {y ∈ Fε : |y − x| < %F (y, ε)},
where %F (y, ε) is determined by HD

(
F ∩B(y, %F (y, ε))

)
= εD
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Fractal curvature densities:

For HD-a.a. x ∈ F the following limit exists

lim
δ→0

1

| ln δ|

∫ 1

δ

ε−kCk
(
Fε, AF (x, ε)

) 1

ε
dε

and equals the constant

HD(F )−1
( N∑
i=1

rDi | ln ri|
)−1

∫
F

∫ d(y,∂O)
2a

d(y,∂(SO))
2a

ε−kCk
(
Fε, AF (y, ε)

) 1

ε
dεHD(dy)

provided the last double integral converges.

The limit agrees with the former local variant Ck(F )HD(F )−1 if the sets
AF (x, ε) are chosen as in Example 3. (k = 0, . . . , d.)

Analogous result for self-similar random sets F can be proved.
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4. Related Dirichlet forms for the case of the Sierpinski
gasket

F := G Sierpinski gasket in Rd with Hausdorff dimension
dH = ln(d+ 1)/ ln 2 and walk dimension dW = ln(d+ 3)/ ln 2.

Consider the special Dirichlet forms on the parallel sets w.r.t. L2(Gε)

Eε(f) :=

∫
Gε

|∇f(x)|2 dx

with Neumann boundary conditions and domain H1
(N)(Gε)) together

with the known Dirichlet form E on the gasket with domain
Lip(dW2 , 2,∞).

Then we get for any family fε ∈ dom(Eε) with tr|Gfε = f ∈ dom(E),

lim inf
δ→0

c(d)

| ln δ|

∫ 1

δ

ε−(dW−2+d−dH)Eε(fε)
1

ε
dε ≥ E(f)

and we obtain such a family for which the limit exists and is equal to the
right hand side.
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