Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operatoı theorem

Results known

 $\mathbf{Problem}$

Main results

Remark

Thanks

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, People's Republic of China

> Hong Kong (December 2012)

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Symbolic system

Let $\Sigma = \{1, \dots N\}^{\mathbb{N}}$ be the one-sided symbolic space and let

$$\sigma: \omega = i_0 i_1 \cdots i_{n-1} \cdots \to \sigma(\omega) = i_1 \cdots i_{n-1} \cdots$$

be the left shift of Σ . Then (Σ, σ) is called a symbolic system.

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Symbolic system

Let $\Sigma = \{1, \dots N\}^{\mathbb{N}}$ be the one-sided symbolic space and let

$$\sigma: \omega = i_0 i_1 \cdots i_{n-1} \cdots \to \sigma(\omega) = i_1 \cdots i_{n-1} \cdots$$

be the left shift of Σ . Then (Σ, σ) is called a symbolic system.

For any
$$x = (x_1 x_2 \cdots), y = (y_1 y_2 \cdots) \in \Sigma$$
, let

$$d(x,y) = \frac{1}{k+1}$$
 if $x_i = y_i$ for all $i < k$ and $x_k \neq y_k$.

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Symbolic system

Let $\Sigma = \{1, \dots, N\}^{\mathbb{N}}$ be the one-sided symbolic space and let

$$\sigma: \omega = i_0 i_1 \cdots i_{n-1} \cdots \to \sigma(\omega) = i_1 \cdots i_{n-1} \cdots$$

be the left shift of Σ . Then (Σ, σ) is called a symbolic system.

For any
$$x = (x_1 x_2 \cdots), y = (y_1 y_2 \cdots) \in \Sigma$$
, let

$$d(x,y) = \frac{1}{k+1}$$
 if $x_i = y_i$ for all $i < k$ and $x_k \neq y_k$.

• (Σ, d) is a compact metric space.

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Let ϕ be a continuous function on Σ (a potential). Let $C(\Sigma)$ be the space of all continuous functions on Σ .

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Let ϕ be a continuous function on Σ (a potential). Let $C(\Sigma)$ be the space of all continuous functions on Σ .

Ruelle operator

The Ruelle operator $\mathcal{T}: C(\Sigma) \to C(\Sigma)$ is defined as

$$\mathcal{T}f(x) = \sum_{y \in \sigma^{-1}(x)} e^{\phi(y)} f(y), \qquad f \in C(\Sigma).$$

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Let ρ be the *spectral radius* of the operator \mathcal{T} .

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Let ϱ be the *spectral radius* of the operator \mathcal{T} .

Theorem (see Bowen 1975)

Let ϕ be a Hölder continuous function on Σ . Then (i) ϱ is the unique positive simple maximal eigenvalue of \mathcal{T} acting on the space of all Hölder continuous functions on Σ ; (ii) there exists a unique positive eigenfunction $h \in C(\Sigma)$ and a unique probability eigenmeasure $\mu \in C^*(\Sigma)$ such that

$$\mathcal{T}h=\varrho h,\qquad \mathcal{T}^*\mu=\varrho\mu,\qquad \langle\mu,h\rangle=1;$$

(iii) for any $f \in C(\Sigma)$, $\rho^{-n}\mathcal{T}^n(f)$ converges uniformly to a constant multiple of h.

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

 $\mathbf{Problem}$

Main results

 Remark

Thanks

Let ϱ be the *spectral radius* of the operator \mathcal{T} .

Theorem (see Bowen 1975)

Let ϕ be a Hölder continuous function on Σ . Then (i) ϱ is the unique positive simple maximal eigenvalue of \mathcal{T} acting on the space of all Hölder continuous functions on Σ ; (ii) there exists a unique positive eigenfunction $h \in C(\Sigma)$ and a unique probability eigenmeasure $\mu \in C^*(\Sigma)$ such that

$$\mathcal{T}h=\varrho h,\qquad \mathcal{T}^*\mu=\varrho\mu,\qquad \langle\mu,h\rangle=1;$$

(iii) for any $f \in C(\Sigma)$, $\rho^{-n}\mathcal{T}^n(f)$ converges uniformly to a constant multiple of h.

• This is called the Ruelle operator theorem for symbolic system (Σ, ϕ) .

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operatoi theorem

Results known

Problem

Main results

Remark

Thanks

For any $n \in \mathbb{N}$, let

$$var_n(\phi) = \sup_{d(x,y) < \frac{1}{n+1}} |\phi(x) - \phi(y)|.$$

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

For any $n \in \mathbb{N}$, let

$$var_n(\phi) = \sup_{d(x,y) < \frac{1}{n+1}} |\phi(x) - \phi(y)|.$$

Theorem (Walters 1975)

$$\sum_{n=1}^{\infty} var_n(\phi) < \infty,$$

then there exists a unique positive eigenfunction $h \in C(\Sigma)$ and a unique probability eigenmeasure $\mu \in C^*(\Sigma)$ such that

$$\mathcal{T}h = \varrho h, \qquad \mathcal{T}^*\mu = \varrho \mu, \qquad \langle \mu, h \rangle = 1.$$

Moreover, for any $f \in C(\Sigma)$, $\varrho^{-n}\mathcal{T}^n(f)$ converges uniformly to a constant multiple of h.

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

 $\mathbf{Problem}$

Main results

Remark

Thanks

Let X be a non-empty convex compact subset of \mathbb{R}^d , let $\{w_j\}_{i=1}^m$ be a set of maps from X into X.

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Let X be a non-empty convex compact subset of \mathbb{R}^d , let $\{w_j\}_{j=1}^m$ be a set of maps from X into X.

Contractive IFS

The iterated function system (IFS) $\{w_j\}_{j=1}^m$ is called *contractive*, if there is a 0 < a < 1 such that for any $1 \le j \le m$

$$\sup_{|x-y| \le t} |w_j(x) - w_j(y)| < at \quad \text{for all } t > 0.$$

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Let X be a non-empty convex compact subset of \mathbb{R}^d , let $\{w_j\}_{j=1}^m$ be a set of maps from X into X.

Contractive IFS

The iterated function system (IFS) $\{w_j\}_{j=1}^m$ is called *contractive*, if there is a 0 < a < 1 such that for any $1 \le j \le m$

$$\sup_{|x-y| \le t} |w_j(x) - w_j(y)| < at \quad \text{for all } t > 0.$$

Weakly contractive IFS

The IFS $\{w_j\}_{j=1}^m$ is called *weakly contractive*, if for any $1 \le j \le m$

$$\sup_{|x-y| \le t} |w_j(x) - w_j(y)| < t \quad \text{for all } t > 0.$$

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Invariant set (Hata 1985)

Let $\{w_j\}_{j=1}^m$ be a weakly contractive IFS defined on convex compact set $X(\subset \mathbb{R}^d)$. There exists a non-empty compact set K such that $K = \bigcup_{j=1}^m w_j(K)$. We call K the invariant set of the IFS $(X, \{w_j\}_{j=1}^m)$.

Ruelle operator

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ve

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Ruelle operator

With each w_j , we associate a positive continuous function p_j as a weight function (or potential function). We can set up the *Ruelle operator* as follows on the space C(K) of real continuous functions on K:

$$T(f)(x) = \sum_{j=1}^{m} p_j(x) f(w_j(x)), \qquad f \in C(K).$$

Dini continuous

Ruelle Operator with Weakly Contractive Iterated Function Systems

Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Let p be a function defined on X. Define

$$\alpha_p(t) = \sup_{|x-y| \le t} |p(x) - p(y)|.$$

Dini continuous

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Let p be a function defined on X. Define

$$\alpha_p(t) = \sup_{|x-y| \le t} |p(x) - p(y)|.$$

Lipschitz continuous

The function p is called *Lipschitz continuous* if there exists a constant C > 0 such that $\alpha_p(t) \leq Ct$ for any t > 0.

Dini continuous

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Let p be a function defined on X. Define

$$\alpha_p(t) = \sup_{|x-y| \le t} |p(x) - p(y)|.$$

Lipschitz continuous

The function p is called *Lipschitz continuous* if there exists a constant C > 0 such that $\alpha_p(t) \leq Ct$ for any t > 0.

Dini continuous

The function p is called *Dini continuous* if

$$\int_0^1 \frac{\alpha_p(t)}{t} dt < \infty.$$

Ruelle operator theorem

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Spectral radius

Let ϱ be the spectral radius of the operator $T: C(K) \to C(K).$

Ruelle operator theorem

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

 $\mathbf{Problem}$

Main results

Remark

Thanks

Spectral radius

Let ρ be the spectral radius of the operator $T: C(K) \to C(K)$.

Definition

We say that the Ruelle operator theorem holds for the system $(X, \{w_j\}_{j=1}^m, \{p_j\}_{j=1}^m)$, if there exists a unique positive function $h \in C(K)$ and a unique probability measure $\mu \in M(K)$ such that

$$Th = \rho h, \qquad T^* \mu = \rho \mu, \qquad \langle \mu, h \rangle = 1.$$

Moreover, for every $f \in C(K)$, $\varrho^{-n}T^n f$ converges to $\langle \mu, f \rangle h$ in the supremum norm, and for every $\xi \in M(K)$, $\varrho^{-n}T^{*n}\xi$ converges weakly to $\langle \xi, h \rangle \mu$.

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Theorem (Fan and Lau 1999 JMMA)

If the IFS $\{w_j\}_{j=1}^m$ is contractive and each p_j is Dini continuous, then the Ruelle operator theorem holds for the system $(X, \{w_j\}_{j=1}^m, \{p_j\}_{j=1}^m)$.

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Theorem (Fan and Lau 1999 JMMA)

If the IFS $\{w_j\}_{j=1}^m$ is contractive and each p_j is Dini continuous, then the Ruelle operator theorem holds for the system $(X, \{w_j\}_{j=1}^m, \{p_j\}_{j=1}^m)$.

Application (Fan, Lau, Rao and Ye 2001)

Let $\{w_j\}_{j=1}^m$ be a contractive conformal IFS. Then, both OSC and SOSC are equivalent to $0 < \mathcal{H}^{\alpha}(K) < \infty$.

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Theorem (Lau and Ye 2001 Studia Math)

Let $\{w_j\}_{j=1}^m$ be a weakly contractive IFS and let each p_j be Dini continuous. If

$$\sup_{x \in K} \sum_{j=1}^m p_j(x) \sup_{y \neq z} \frac{|w_j(y) - w_j(z)|}{|y - z|} < \varrho,$$

then the Ruelle operator theorem holds for the system $(X, \{w_j\}_{j=1}^m, \{p_j\}_{j=1}^m).$

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

If

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Theorem (Jiang and Ye 2010 ETDS)

$$\sup_{x \in K} \sum_{j=1}^{m} p_j(x) \sup_{y \neq x} \frac{|w_j(x) - w_j(y)|}{|x - y|} < \varrho_j$$

then the Ruelle operator theorem holds for the system $(X, \{w_j\}_{j=1}^m, \{p_j\}_{j=1}^m).$

Problem

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Question

Professor Jiang asked, in a private communication, if the Ruelle operator theorem holds for a system $(X, \{w_j\}_{j=1}^m, \{p_j\}_{j=1}^m)$ satisfying the condition:

$$\sum_{j=1}^{m} p_j(x) \cdot |w'_j(x)| < \varrho \quad \text{for all } x \in X.$$
 (1)

Problem

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Question

Professor Jiang asked, in a private communication, if the Ruelle operator theorem holds for a system $(X, \{w_j\}_{j=1}^m, \{p_j\}_{j=1}^m)$ satisfying the condition:

$$\sum_{j=1}^{m} p_j(x) \cdot |w'_j(x)| < \varrho \quad \text{for all } x \in X.$$

Remark

It seems that the condition (1) is more natural than the condition given by paper of Jiang and Ye.

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Definition

Let X be a non-empty convex compact subset of \mathbb{R}^d . We call $(X, \{w_j\}_{j=1}^m, \{p_j\}_{j=1}^m)$ a Dini (or Lipschitz) system, if all maps $w_j : X \to X, \ 1 \leq j \leq m$, are both continuously differentiable and weakly contractive and, all potentials $p_j : X \to \mathbb{R}^+, \ 1 \leq j \leq m$, are positive Dini (or Lipschitz) continuous.

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Theorem

Let $(X, \{w_j\}_{j=1}^m, \{p_j\}_{j=1}^m)$ be a Dini system with $w'_j(x) \neq 0$ for all j. Suppose that the condition (1) is satisfied. Then the Ruelle operator theorem holds for this Dini system.

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Theorem

Corollary

If

Let $(X, \{w_j\}_{j=1}^m, \{p_j\}_{j=1}^m)$ be a Dini system with $w'_j(x) \neq 0$ for all j. Suppose that the condition (1) is satisfied. Then the Ruelle operator theorem holds for this Dini system.

$\max_{x \in X} \sum_{j=1}^{m} p_j(x) \cdot |w_j'(x)| < \min_{x \in X} \sum_{j=1}^{m} p_j(x),$

then the Ruelle operator theorem holds for this Dini system.

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Theorem

Let $(X, \{w_j\}_{j=1}^m, \{p_j\}_{j=1}^m)$ be a Lipschitz system. Suppose that the condition (1) is satisfied. Then $\varrho_e(T) < \varrho(T)$. Moreover, for any Lipschitz continuous function f defined on K, the sequence $\varrho^{-n}T^n f$ converges with a specific geometric rate.

Remark

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Vo

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Theorem (Barnsley *et al* 1988)

Let the Dini system $(X, \{w_j\}_{j=1}^m, \{p_j\}_{j=1}^m)$ satisfy the conditions: $\sum_{j=1}^m p_j(x) = 1$, and

$$\sup_{y \neq x} \sum_{j=1}^{m} p_j(x) \cdot \frac{|w_j(x) - w_j(y)|}{|x - y|} < 1.$$

Then the Ruelle operator theorem holds.

Remark

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ve

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Theorem (Hennion 1993)

Let the Lipschitz system $(X, \{w_j\}_{j=1}^m, \{p_j\}_{j=1}^m)$ satisfy the condition:

$$\sup_{\substack{x,y\in X\\y\neq x}}\sum_{j=1}^m p_j(x)\cdot \frac{|w_j(x)-w_j(y)|}{|x-y|} < \varrho.$$

Then, the operator P is quasi-compact, i.e., $\varrho_e(P) < \varrho(P)$.

Remark

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operator theorem

Results known

Problem

Main results

Remark

Thanks

Remark

Note that for any $x \in K$,

$$|w'_j(x)| \le \sup_{y \ne x} \frac{|w_j(x) - w_j(y)|}{|x - y|}$$

We see that the above results have been generalized.

Ruelle Operator with Weakly Contractive Iterated Function Systems

Yuan-Ling Ye

Introduction

Ruelle Operatoi theorem

Results known

 $\mathbf{Problem}$

Main results

Remark

Thanks

Thank you!