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Critical Site Percolation in the Hexagonal Lattice

For each site on the hexagonal lattice, we flip a fair coin.

Heads – we colour the site black.

Tails – we colour the site white.

This is the critical site percolation on the hexagonal lattice.
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The Site Percolation Exploration Path

We apply boundary conditions – black to the left, and white to the
right – and flip coins for the other sites.

Then there is a path from a to b on the lattice that has black
hexagons to its left and white hexagons to its right. This is the site
percolation exploration path.
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The Site Percolation Exploration Path (cont.)

Another way of constructing the path is as follows. At each step of
the path, we flip a fair coin.

Heads – the path turns right;

Tails – the path turns left;

unless the path is forced to go in a particular direction.
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The Scaling Limit

Theorem (Smirnov (2001), Camia and Newman (2007))

The scaling limit (i.e. the limit as the mesh-size of the lattice
tends to zero) of the site percolation exploration path converges to
stochastic (Schramm) Loewner evolution with parameter κ = 6
(SLE6).

What is stochastic (Schramm) Loewner evolution?

Invented by O. Schramm in 1999.

Describes conformally invariant curves in the plane.

Cardy’s formula: the crossing probability of a percolation from
an interval of an edge to that of another of an equilateral
triangle.
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The Loewner Transform

For some real-valued function ξ : [0,∞)→ R, the chordal Loewner
differential equation is

∂g

∂t
(z , t) =

2

g(z , t)− ξ(t)
with g(z , 0) ≡ z

The solution gt(z) = g(z , t) is a conformal map of Ht ⊂ H onto H
where H = {z : Im[z ] > 0} is the complex upper half-plane.
It is often the case that Ht = H \ γ[0, t] where γ is a curve in H
starting from 0 and ending at ∞.

We can think of the chordal Loewner differential equation as
defining a transform ξ 7→ γ which we call the Loewner transform.
ξ is called the Loewner driving function of the curve γ.

Stochastic Loewner evolution with parameter κ is the Loewner
transform of

√
κBt where Bt is standard 1-d Brownian motion.
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Critical Bond Percolation on the Square Lattice

How about on the square lattice Z2? For each edge in the lattice
we flip a fair coin.

Heads – we keep the edge.

Tails – we delete the edge.

This is the critical bond percolation on the square lattice.
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Critical Bond Percolation on the Square Lattice (cont.)

We can consider the same process on the dual lattice. For each
site in the lattice we flip a fair coin.

Heads – we add a diagonal edge from the top left vertex to
the bottom right vertex.

Tails – we add a diagonal edge from the bottom left vertex to
the top right vertex.

Phillip YAM Conformal Invariance in 2D Critical Bond Percolation



The Bond Percolation Exploration Process

We apply boundary conditions and flip coins for the other sites.

Then there is a rectilinear path from a to b on the original lattice
that lies in the “corridor” between red and blue edges. This is the
bond percolation exploration path.
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A Main Conjecture

Whether the critical bond percolation exploration process on
this square lattice converges to the trace of SLE6 or not is an
important conjecture in mathematical physics and probability.

See P.5 in the document at
“http://www.math.ubc.ca/ slade/newsletter.10.2.pdf”
“... But although site percolation on the triangular lattice is
now well understood via SLE6, the critical behaviour of bond
percolation on the square lattice, which is believed to be
identical, is not at all understood from a mathematical point
of view. Kenneth G. Wilson was awarded the 1982 Nobel
Prize in Physics for his work on the renormalization group
which led to an understanding of universality within
theoretical physics. However, there is as yet no
mathematically rigorous understanding of universality for
two-dimensional critical phenomena ...”
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Main Theorem

Theorem

The scaling limit of the bond percolation exploration path
converges to stochastic Loewner evolution with parameter κ = 6
(SLE6).
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Idea of the Proof

1 Modify the lattice in order to “convert” the site percolation
exploration path (on the hexagonal lattice) to a path on the
rectangular lattice.

2 Apply a conditioning (restriction) procedure to this path to
make it “close” to the bond percolation exploration path (on
the square lattice).

3 Show that the conditioned path has Loewner driving function
that converges subsequentially to an ε-semimartingale, i.e. a
martingale plus a finite (1 + ε)-variation process.

4 Exploit the locality property of bond percolation exploration
path to show that the Loewner driving term of the bond
percolation exploration path converges to

√
6Bt .

5 Apply standard arguments to deduce that the scaling limit of
the bond percolation exploration path converges to SLE6.
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Idea of the Proof: Lattice Modification

By replacing the hexagonal sites in the hexagonal lattice with
rectangles we convert the hexagonal lattice into a “brick-wall”
lattice.
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Idea of the Proof: Lattice Modification (cont.)

We then shift the rows of the brick-wall lattice left and right
alternatively to get a rectangular lattice

This induces a path on the rectangular lattice which is in a
2δ-neighbourhood of the site percolation exploration path. This is
the +BP (Brick-wall Process). Similarly, by shifting the rows the
other way, we get the −BP.

In particular, the ±BP both converge to SLE6 as the mesh-size δ
tends to 0.
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Idea of the Proof: Conditioning the ±BP

Note that the +BP can go in the same direction for two
consecutive edges. The bond percolation path cannot. We will
condition the +BP to not go in the same direction for two
consecutive edges. However we do this in two steps.

First we define the free vertices of the +BP to be the vertices
where there are 3 possible paths for the next vertex. We condition
the +BP to not go in the same direction for two consecutive edges
at the free vertices. This conditioned path is the +CBP
(Conditioned Brick-wall Process). Similarly, we define the −CBP.
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Idea of the Proof: Conditioning the ±BP (cont.)

We then condition the ±CBP at the non-free vertices as well to
get the ±∂CBP (Boundary Conditioned Brick-wall Process).

+BP +CBP +∂CBP
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Idea of the Proof: Conditioning the ±BP (cont.)

It turns out that the bond percolation exploration path (on the
square lattice) is topologically the same as alternate pastings of
the +∂CBP and −∂CBP.
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Idea of the Proof: Conditioning the ±BP (cont.)

Also, we can couple the ±CBP and the ±∂CBP such that their
respective Loewner driving functions are close.

Hence it is sufficient to study the +CBP.
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Idea of the Proof: Driving term convergence of the +CBP

For simplicity we work in H. Using Schwarz-Christoffel
transformation as in Tsai (2009), we can write the Loewner driving
function of any path on the lattice as

ξt =
1

2

[
a1(t) + b1(t) +

N(t)∑
k=2

Lk(ak(t)− bk(t))
]
,

where Lk is +1 if the path turns right and −1 if the path turns left
at the kth step.
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Idea of the Proof: Driving term convergence of the +CBP

Consider the +CBP.

We choose 0 = m0 < m1 < m2 < . . . random steps, defined
recursively so that +BP has a definite increment in its half-plane
capacity, adapted to the process appropriately.

Then if we let Mn = ξtmn
, we have

Mn−Mn−1 = Rn−1(tmn)−Rn−1(tmn−1)+
1

2

mn∑
k=mn−1+1

Lk
(
ak(tmn)−bk(tmn)

)
where

Rn−1(t) =
1

2

[
a1(t) + b1(t) +

mn−1∑
k=2

Lk(ak(t)− bk(t))
]
.
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Idea of the Proof: Driving term convergence of the +CBP

Letting

∆j ,n = [(aj(tmn)− aj+1(tmn))− (bj(tmn)− bj+1(tmn)] ,

we can telescope the above sum and take conditional expectations
to get

E
[
Mn −Mn−1|Fmn−1

]
= E

[
Rn−1(tmn)− Rn−1(tmn−1)|Fmn−1

]
+

1

2

mn∑
j=mn−1+1

E
[
∆j ,n

j∑
k=mn−1+1

Lk |Fmn−1

]
.

Using the convergence of the +BP path to SLE6, we deduce that
we can decompose for sufficiently small mesh-size δ,

E
[
∆j ,n

j∑
k=mn−1+1

Lk |Fmn−1

]
≈ E

[
∆j ,n

]
E
[ j∑
k=mn−1+1

Lk |Fmn−1

]
.
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Idea of the Proof: Driving term convergence of the +CBP

From the definition of (Lk), using a symmetry argument, one
should be able to show that

E
[ j∑
k=mn−1+1

Lk |Fmn−1

]
≈ 0.

(at least sufficiently far from the boundary). This would imply that

E
[
Mn −Mn−1|Fmn−1

]
≈ E

[
Rn−1(tmn)− Rn−1(tmn−1)|Fmn−1

]
.

Hence

Mn −
n∑

k=1

Rk−1(tmk
)− Rk−1(tmk−1

)

is ‘almost’ a martingale.
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Idea of the Proof: Driving term convergence of the +CBP

By telescoping the sum in the definition of Rn(t), we can show that

∣∣ n∑
k=1

Rk−1(tmk
)− Rk−1(tmk−1

)
∣∣

≤ Wδ|A(tmk
)− A(tmk−1)|+ |B(tmk

)− B(tmk−1)|

where A and B are finite variation processes and

Wδ = max
j=2,...mn−1

∣∣ j∑
k=2

Lk
∣∣.

Wδ is the maximum winding of the path. By independence of
unvisited disjoint rectangles, we can show that the tail probability
of this Wδ has exponential decay, and hence in particular its
moments are all bounded.
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Idea of the Proof: Driving term convergence of the +CBP

Then we can use a version of the Kolmogorov-Centsov continuity
theorem to show that

n∑
k=1

Rk−1(tmk
)− Rk−1(tmk−1

)

is a finite (1 + ε)-variation process for all sufficiently small ε > 0,
see Young (1936) and Lyons and Qian (2002).

Hence we should be able to embed Mn into a continuous time
ε-semimartingale Mt so that ξt should converge (subsequentially)
to Mt as the mesh size δ ↘ 0.

From this we deduce that the Loewner driving function of the
bond percolation exploration path also converges subsequentially
to an ε-semimartingale.
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Idea of the Proof: The locality property

The bond percolation exploration path satisfies the locality
property: This means for any domain D with 0 ∈ ∂D and
D ∩H 6= 0, the bond percolation exploration process from 0 to b
in D is identically distributed to the bond percolation exploration
process from 0 to ∞ in H until first exit time of D ∩H.
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Idea of the Proof: The locality property (cont.)

Hence conditioned on γ[0, s], the bond percolation exploration
process in H \ γ[0, s] is identically distributed to the bond
percolation exploration process in H until first exit time of the
common domain.

This means that the driving function of the scaling limit of the
bond percolation exploration path, Wt =

∫ t
0 XsdBs + Yt , satisfies a

self-similarity property which leads to the following formula.

Wt+s−Ws ∼
∫ t

0
XsdB̃s+

∫ t

0
Φ′s(Ws)dYs+

∫ t

0

(
X 2
s

2
− 3

)
Φ′′s (Ws)

Φ′s(Ws)2
ds
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Idea of the Proof: The locality property (cont.)

Wt+s−Ws ∼
∫ t

0
XsdB̃s+

∫ t

0
Φ′s(Ws)dYs+

∫ t

0

(
X 2
s

2
− 3

)
Φ′′s (Ws)

Φ′s(Ws)2
ds

This implies that the martingale part of Wt is infinitely divisible.
The Lévy-Khintchine Theorem implies that the martingale part
must be

√
κBt for some κ ∈ R.

Similarly, we can show that Yt is of finite variation using infinite
divisibility. A Girsanov’s Theorem argument then implies that
κ = 6. Then symmetry and infinite divisibility again imply that
Yt = 0. Hence Wt =

√
6Bt .

Since every subsequential limit is
√

6Bt this implies that the
driving function of the full scaling limit must be

√
6Bt .
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Idea of the Proof: Full curve convergence

We either use the machinery of Camia and Newman (2007) or the
recent result of Sheffield and Sun (2012) to deduce that the bond
percolation exploration path converges to SLE6 in the scaling limit.
Argument of Sheffield and Sun: seeing the bond percolation
exploration path from a point other infinity, and hence a radial
Loewner differential equations results:

ġt(z) = gt(z)
e iλt + gt(z)

e iλt − gt(z)
,

where gt(γ(t)) = e iλt is the radial driving function. Using
essentially the same argument for chordal version, same conclusion
results.

This proves the whole theorem.
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The End.
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