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Lipschitz equivalence (X ≃ Y )

metric space X metric space Y

f bijection

C−1 ≤
dY

(
f (x1), f (x2)

)
dX (x1, x2)

≤ C

dimH X = dimH Y : same size

X ≃ Y : same geometric structure
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This talk concerns the Lipschitz equivalence of self-similar sets.

Our result establishes a one-to-one correspondence between the
Lipschitz equivalence classes of self-similar sets and the ideal classes
in a related ring.

This reveals an interesting relationship between the Lipschitz class
number problem and the Gauss class number problems.
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Notations (I)
The ratios r1, . . . , rN of IFS S are commensurable if

log ri/ log rj ∈ Q for 1 ≤ i , j ≤ N.

In this case, ∃!rS ∈ (0, 1) such that

mgp(r1, . . . , rN) = mgp(rS).

Write pS = r sS , (s = dimH ES).

.
Example
..

......

IFS S with ratios r , . . . , r︸ ︷︷ ︸
N

.

Then pS = 1/N be the positive solution of p + · · ·+ p︸ ︷︷ ︸
N

= 1

and rS = r .

IFS T with ratios r3, r2, r2.
Then pT = (

√
5− 1)/2 be the positive solution of

p3 + p2 + p2 = 1 and rT = r .
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Notations (II)

TDC =
{
S : ES is totally disconnected

}
,

OSC1 =
{
S : ES ⊂ Rd , OSC holds, ratios are commensurable

}
,

OSC1(p, r) =
{
S ∈ OSC1 : pS = p, rS = r

}
.
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Ideal class and class number
I ⊂ R(+, ·) is a ideal if

(i) (I ,+) is a group; (ii) a · I ⊂ I for all a ∈ R.
.
Example (Principle ideal)
..

......

For any a ∈ R, the set a · R is an ideal of R. Such ideal is called a
principle ideal, denoted by (a).

I , J: two ideals of R.

I ∼ J: aI = bJ for some a, b ∈ R;
e.g., if I = (a0), J = (b0), then b0I = a0J = (a0b0).
Ideal classes: the corresponding equivalence classes.
Class number: the cardinal number of ideal classes.

.
Example
..

......

The class number of Z[
√
10] is 2.

In fact, ideal (2,
√
10) ⊂ Z[

√
10] is not a principle ideal.
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Ideal class and Lipschitz equivalent class

.
Theorem (Suppose TDC ∩OSC1(p, r) ̸= ∅)
..

......

The Lipschitz equivalent classes of self-similar sets generated by IFS
in TDC ∩OSC1(p, r) correspond one-to-one to the ideal classes of Z[p].

This theorem means that, each S ∈ TDC ∩OSC1(p, r) corresponds to an
ideal class IS of Z[p] such that

...1 ES ≃ ET ⇐⇒ IS = IT .

...2 For any ideal class I of Z[p], there exists an S ∈ TDC ∩OSC1(p, r)
with IS = I.

.
Theorem
..
......The Lipschitz class number of TDC ∩OSC1(p, r) is finite.
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Gauss class number problem

.
Lipschitz class number problem
..

......

Given n > 0, determine all p, r such that the Lipschitz class number
of TDC ∩OSC1(p, r) is n.

The Lipschitz class number problem is closely related to the Gauss class
number problems. For example,
.
Gauss class number one problem for real quadratic fields
..

......

There are infinitely many square free D > 0 such that the class number
of OD is one, where OD denotes the ring of all the algebraic integers
of Q(

√
D).

This conjecture was proposed by Gauss in 1801 but still remains a open
question today.
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Lipschitz class number one

Z[p] is a principle ideal domain ⇐⇒ Z[p] with class number one

⇐⇒ TDC ∩OSC1(p, r) with Lipschitz class number one

Z[p] is a principle ideal domain when p = 1/N,
√
2− 1, (

√
3− 1)/2, . . . .

.
Theorem
..

......

Suppose that S = {S1, . . . , SN}, T = {T1, . . . ,TN} and

S, T satisfy the OSC;

all the ratios of Si and Tj equal to r ;

ES ,ET ⊂ Rd are totally disconnected.

Then ES ≃ ET .

.
Proof.
..
......S, T ∈ TDC ∩OSC1(1/N, r) and Z[1/N] is a principle ideal domain.
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Example: {1,3,5}-{1,4,5} problem

{1, 3, 5}-{1, 4, 5} problem, by David & Semmes

Rao, Ruan & Xi, 2006 E1,3,5 ≃ E1,4,5, graph-directed system.

Xi & Xiong, 2010 higher dimensional Euclidean spaces.
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Example: Z[(
√
5− 1)/2] has class number one

.
Example
..

......

IFS S OSC & TDC, with ratios r4, r3, r

IFS T OSC & TDC, with ratios r3, r2, r2

then pS = pT = (
√
5− 1)/2 and rS = rT = r . Since Z[(

√
5− 1)/2] has

class number one, we have ES ≃ ET .

In this example, the relative positions of the small copies of self-similar
sets ES and ET does not affect the Lipschitz equivalence.
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Example: Z[
√
10] has class number two

.
Example
..

......
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︷ ︸︸ ︷

IFS S in above figure, with ratios r , r , r , r , r , r , r2

IFS T SSC, with ratios r , r , r , r , r , r , r2

Then S, T ∈ TDC ∩OSC1(
√
10− 3, r) and ES ̸≃ ET .

. . . . . .



SSC corresponds to the principle ideal class..
.
Theorem
..

......

Suppose that S, T both satisfy the SSC and the ratios of them are both
commensurable. Then ES ≃ ET if and only if

...1 dimH ES = dimH ET ;

...2 log rS/ log rT ∈ Q;

...3 Z[pS ] = Z[pT ].

.
Necessary conditions in non-commensurable case (Falconer & Marsh)
..

......

Suppose that S, T both satisfy the SSC and r1, . . . , rn are ratios of S,
t1, . . . , tm are ratios of T . If ES ≃ ET , then

...1 dimH ES = dimH ET = s;

...2 sgp(ru1 , . . . , r
u
n ) ⊂ sgp(t1, . . . , tm), sgp(tv1 , . . . , t

v
m) ⊂ sgp(r1, . . . , rn).

...3 Q(r s1 , . . . , r
s
n) = Q(ts1 , . . . , t

s
m);

.
Theorem
..
......If ES ≃ ET , then Z[r s1 , . . . , r sn ] = Z[ts1, . . . , tsm].

. . . . . .



SSC corresponds to the principle ideal class..
.
Theorem
..

......

Suppose that S, T both satisfy the SSC and the ratios of them are both
commensurable. Then ES ≃ ET if and only if

...1 dimH ES = dimH ET ;

...2 log rS/ log rT ∈ Q;

...3 Z[pS ] = Z[pT ].

.
Necessary conditions in non-commensurable case (Falconer & Marsh)
..

......

Suppose that S, T both satisfy the SSC and r1, . . . , rn are ratios of S,
t1, . . . , tm are ratios of T . If ES ≃ ET , then

...1 dimH ES = dimH ET = s;

...2 sgp(ru1 , . . . , r
u
n ) ⊂ sgp(t1, . . . , tm), sgp(tv1 , . . . , t

v
m) ⊂ sgp(r1, . . . , rn).

...3 Q(r s1 , . . . , r
s
n) = Q(ts1 , . . . , t

s
m);

.
Theorem
..
......If ES ≃ ET , then Z[r s1 , . . . , r sn ] = Z[ts1, . . . , tsm].

. . . . . .



SSC corresponds to the principle ideal class..
.
Theorem
..

......

Suppose that S, T both satisfy the SSC and the ratios of them are both
commensurable. Then ES ≃ ET if and only if

...1 dimH ES = dimH ET ;

...2 log rS/ log rT ∈ Q;

...3 Z[pS ] = Z[pT ].

.
Necessary conditions in non-commensurable case (Falconer & Marsh)
..

......

Suppose that S, T both satisfy the SSC and r1, . . . , rn are ratios of S,
t1, . . . , tm are ratios of T . If ES ≃ ET , then

...1 dimH ES = dimH ET = s;

...2 sgp(ru1 , . . . , r
u
n ) ⊂ sgp(t1, . . . , tm), sgp(tv1 , . . . , t

v
m) ⊂ sgp(r1, . . . , rn).

...3 Q(r s1 , . . . , r
s
n) = Q(ts1 , . . . , t

s
m);

.
Theorem
..
......If ES ≃ ET , then Z[r s1 , . . . , r sn ] = Z[ts1, . . . , tsm]. . . . . . .



. . . . . .

Example: SSC

.
Example (the ring condition does stronger than the field condition)
..

......

pS =

√
3− 1

2
: the positive solution of 2p2S + 2pS = 1.

pT =
3
√
3− 5

4
: the positive solution of 8p2T + 20pT = 1.

Then

log pS/ log pT =
1

3
∈ Q, Q(pS) = Q(pT ) = Q(

√
3),

but

Z[pS ] = Z[
√
3,

1

2
] ̸= Z[pT ] = Z[3

√
3,

1

2
].
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Example: non-commensurable
.
Example (these necessary conditions are far from being sufficient)
..

......

Ratios of E1 1/9 and 4/9

Ratios of E2 1/81, 1/81, 1/81, 1/81 and 4/9

. . . . . .

Ratios of En 9−n, . . . , 9−n︸ ︷︷ ︸
3n−1

and 4/9

. . . . . .

Then
...1 dimH En = 1/2 for all n ≥ 1
...2 sgp((9−n)m, (4/9)m) ⊂ sgp(9−m, 4/9) and
sgp((9−m)n, (4/9)n) ⊂ sgp(9−n, 4/9) for all m, n

...3 Z[3−n, 2/3] = Z[1/3] for all n ≥ 1

But Em ̸≃ En for m ̸= n.

Th
an
k
yo
u!
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