Brownian Motion and Thermal Capacity

Yimin Xiao

Michigan State University

(Based on joint paper with Davar Khoshnevisan)

December 14, 2012

- Intersection of the Brownian images and thermal capacity
- Hausdorff dimension of $W(E) \cap F$
- Further research and open problems

1. Intersection of the Brownian images and thermal capacity

Let $W := \{W(t)\}_{t\geq 0}$ denote standard *d*-dimensional Brownian motion where $d \geq 1$, and let *E* and *F* be compact subsets of $(0, \infty)$ and \mathbb{R}^d , respectively.

The following problems are of interest:

- When is $\mathbb{P}(W(E) \cap F \neq \emptyset) > 0$?
- **2** What is $\dim_{H}(W(E) \cap F)$?

Note that

 $\{W(E) \cap F \neq \emptyset\} = \{(t, W(t)) \in E \times F \text{ for some } t > 0\}.$

Problem 1 is an interesting problem in probabilistic potential theory.

Conditions for $\mathbb{P}(W(E) \cap F \neq \emptyset) > 0$

Necessary and sufficient condition in terms of "thermal capacity" for $\mathbb{P}(W(E) \cap F \neq \emptyset) > 0$ were proved by Waston (1978) and Doob (1984).

Waston and Taylor (1985) provided a simple-to-use condition:

$$\mathbb{P}(W(E) \cap F \neq \emptyset) \begin{cases} > 0, & \text{if } \dim_{H}(E \times F; \varrho) > d, \\ = 0, & \text{if } \dim_{H}(E \times F; \varrho) < d. \end{cases}$$

In the above, $\dim_{H}(E \times F; \varrho)$ is the Hausdorff dimension of $E \times F$ using the metric

$$\varrho((s,x);(t,y)) := \max(|t-s|^{1/2}, ||x-y||).$$

As a by-product of our main result, we obtain a slightly improved version of the result of Waston (1978) and Doob (1984).

Theorem 1.1

Suppose $F \subset \mathbb{R}^d$ $(d \ge 1)$ is compact and has Lebesgue measure 0. Then

 $\mathbb{P}\{W(E) \cap F \neq \emptyset\} > 0 \iff \\ \exists \ \mu \in \mathcal{P}_d(E \times F) \text{ such that } \mathcal{E}_0(\mu) < \infty,$

where $\mathcal{P}_d(E \times F)$ is the collection of all probability measures μ on $E \times F$ such that $\mu(\{t\} \times F) = 0$ for all t > 0, and the energy $\mathcal{E}_0(\mu)$ will be defined below.

Two common ways to compute the Hausdorff dimension of a set:

- Use a covering argument for obtaining an upper bound and a capacity argument for lower bound;
- The co-dimension argument.

The "co-dimension argument" was initiated by S.J. Taylor (1966) for computing the Hausdorff dimension of the multiple points of a stable Lévy process in \mathbb{R}^d . His method was based on potential theory of Lévy processes.

Let $Z_{\alpha} = \{Z_{\alpha}(t), t \in \mathbb{R}_+\}$ be a (symmetric) stable Lévy process in \mathbb{R}^d of index $\alpha \in (0, 2]$ and let $F \subset \mathbb{R}^d$ be a Borel set. Then

 $\mathbb{P}(Z_{\alpha}((0,\infty))\cap F\neq \varnothing)>0 \Longleftrightarrow \ \mathrm{Cap}_{d-\alpha}(F)>0,$

where $\operatorname{Cap}_{d-\alpha}$ is the Riesz-Bessel capacity of order $d-\alpha$.

The co-dimension argument

The above result and Frostman's theorem lead to the *stochastic co-dimension argument*: If $\dim_{H} F \ge d - 2$, then

 $\dim_{_{\mathrm{H}}} F = \sup\{d - \alpha : Z_{\alpha}((0,\infty)) \cap F \neq \emptyset\}$ = $d - \inf\{\alpha > 0 : F \text{ is not polar for } Z_{\alpha}\}.$

[The restriction $\dim_{_{\mathrm{H}}} F \ge d-2$ is caused by the fact that $Z_{\alpha}((0,\infty)) \cap F = \emptyset$ if $\dim_{_{\mathrm{H}}} F < d-2$.]

This method determines $\dim_{H} F$ by intersecting *F* using a family of testing random sets.

Hawkes (1971) applied the co-dimension method for computing the Hausdorff dimension of the inverse image $X^{-1}(F)$ of a stable Lévy process. Families of testing random sets:

- ranges of symmetric stable Lévy processes;
- fractal percolation sets [Peres (1996, 1999)];
- ranges of additive Lévy processes [Khoshnevisan and X. (2003, 2005), Khoshnevisan, Shieh and X. (2008)].

- If $F = \mathbb{R}^d$, then $\dim_{_{\mathrm{H}}} W(E) = \min\{d, 2\dim_{_{\mathrm{H}}} E\}$ a.s.
- In general, $\dim_{H}(W(E) \cap F)$ is a (non-degenerate) random variable, an example was shown to us by Greg Lawler.
- Hence we compute $\|\dim_{H} (W(E) \cap F)\|_{L^{\infty}(\mathbb{P})}$, the $L^{\infty}(\mathbb{P})$ -norm of $\dim_{H} (W(E) \cap F)$.
- We distinguish two cases: |F| > 0 and |F| = 0, where $|\cdot|$ denotes the Lebesgue measure.

Theorem 2.1 [Khoshnevisan and X. (2012)] If $F \subset \mathbb{R}^d$ $(d \ge 1)$ is compact and |F| > 0, then $\|\dim_{H} (W(E) \cap F)\|_{L^{\infty}(\mathbb{P})} = \min\{d, 2\dim_{H}E\}.$ (1) If $\dim_{H}E > \frac{1}{2}$ and d = 1, then $\mathbb{P}\{|W(E) \cap F| > 0\} > 0$. Thanks to the uniform Hölder continuity of W(t) on bounded sets, we have

$$\dim_{_{\rm H}}(W(E)\cap F)\leq\min\{d\,,2{\rm dim}_{_{\rm H}}E\},\quad {\rm a.s.}$$

This implies the upper bound in (1).

For proving the lower bound in (1), we construct a random measure on $W(E) \cap F$ and use the capacity argument.

The last part is proved by showing that the constructed random measure on $W(E) \cap F$ has a density function almost surely. Thanks to the uniform Hölder continuity of W(t) on bounded sets, we have

$$\dim_{_{\rm H}}(W(E)\cap F)\leq\min\{d\,,2{\rm dim}_{_{\rm H}}E\},\quad {\rm a.s.}$$

This implies the upper bound in (1).

For proving the lower bound in (1), we construct a random measure on $W(E) \cap F$ and use the capacity argument.

The last part is proved by showing that the constructed random measure on $W(E) \cap F$ has a density function almost surely. Thanks to the uniform Hölder continuity of W(t) on bounded sets, we have

$$\dim_{_{\rm H}}(W(E)\cap F)\leq\min\{d\,,2{\rm dim}_{_{\rm H}}E\},\quad {\rm a.s.}$$

This implies the upper bound in (1).

For proving the lower bound in (1), we construct a random measure on $W(E) \cap F$ and use the capacity argument.

The last part is proved by showing that the constructed random measure on $W(E) \cap F$ has a density function almost surely.

Theorem 2.2 [Khoshnevisan and X. (2012)]

If $F \subset \mathbb{R}^d$ $(d \ge 1)$ is compact and |F| = 0, then

$$\dim_{_{\mathrm{H}}} (W(E) \cap F) \big\|_{L^{\infty}(\mathbb{P})} = \sup \Big\{ \gamma \ge 0 : \inf_{\mu \in \mathcal{P}_d(E \times F)} \mathcal{E}_{\gamma}(\mu) < \infty \Big\},$$
⁽²⁾

where $\mathcal{P}_d(E \times F)$ is the collection of all probability measures μ on $E \times F$ such that $\mu(\{t\} \times F) = 0$ for all t > 0, and

$$\mathcal{E}_{\gamma}(\mu) := \iint \frac{e^{-\|x-y\|^2/(2|t-s|)}}{|t-s|^{d/2} \cdot \|y-x\|^{\gamma}} \,\mu(ds \, dx) \,\mu(dt \, dy). \tag{3}$$

Theorem 2.2 [Khoshnevisan and X. (2012)]

If $F \subset \mathbb{R}^d$ $(d \ge 1)$ is compact and |F| = 0, then

$$\dim_{_{\mathrm{H}}} (W(E) \cap F) \big\|_{L^{\infty}(\mathbb{P})} = \sup \Big\{ \gamma \ge 0 : \inf_{\mu \in \mathcal{P}_d(E \times F)} \mathcal{E}_{\gamma}(\mu) < \infty \Big\},$$
⁽²⁾

where $\mathcal{P}_d(E \times F)$ is the collection of all probability measures μ on $E \times F$ such that $\mu(\{t\} \times F) = 0$ for all t > 0, and

$$\mathcal{E}_{\gamma}(\mu) := \iint \frac{e^{-\|x-y\|^2/(2|t-s|)}}{|t-s|^{d/2} \cdot \|y-x\|^{\gamma}} \,\mu(ds \, dx) \,\mu(dt \, dy). \tag{3}$$

Hitting probability of random fields

We prove Theorem 2.2 by checking whether or not $W(E) \cap F$ intersects the (closure of the) range of an additive Lévy stable process.

Let $X^{(1)}, \ldots, X^{(N)}$ be *N* isotropic stable processes with common stability index $\alpha \in (0, 2]$. We assume that the $X^{(j)}$'s are independent from one another, as well as from the process *W*, and all take their values in \mathbb{R}^d .

We assume also that $X^{(1)}, \ldots, X^{(N)}$ have right-continuous sample paths with left-limits and

$$\mathbb{E}\left[e^{i\langle\xi,X^{(k)}(1)
angle}
ight]=e^{-\|\xi\|^{lpha}/2}, \quad orall \ \xi\in\mathbb{R}^d.$$

Hitting probability of random fields

We prove Theorem 2.2 by checking whether or not $W(E) \cap F$ intersects the (closure of the) range of an additive Lévy stable process.

Let $X^{(1)}, \ldots, X^{(N)}$ be *N* isotropic stable processes with common stability index $\alpha \in (0, 2]$. We assume that the $X^{(j)}$'s are independent from one another, as well as from the process *W*, and all take their values in \mathbb{R}^d .

We assume also that $X^{(1)}, \ldots, X^{(N)}$ have right-continuous sample paths with left-limits and

$$\mathbb{E}\left[e^{i\langle\xi,X^{(k)}(1)
angle}
ight]=e^{-\|\xi\|^{lpha}/2}, \quad orall \ \xi\in\mathbb{R}^d.$$

Hitting probability of random fields

We prove Theorem 2.2 by checking whether or not $W(E) \cap F$ intersects the (closure of the) range of an additive Lévy stable process.

Let $X^{(1)}, \ldots, X^{(N)}$ be *N* isotropic stable processes with common stability index $\alpha \in (0, 2]$. We assume that the $X^{(j)}$'s are independent from one another, as well as from the process *W*, and all take their values in \mathbb{R}^d .

We assume also that $X^{(1)}, \ldots, X^{(N)}$ have right-continuous sample paths with left-limits and

$$\mathbb{E}\left[e^{i\langle\xi,X^{(k)}(1)
angle}
ight]=e^{-\|\xi\|^{lpha}/2}, \hspace{1em} orall \hspace{1em}\xi\in\mathbb{R}^d.$$

Define the corresponding additive stable process $X_{\alpha} := \{X_{\alpha}(t), t \in \mathbb{R}^{N}_{+}\}$ as

$$X_{\alpha}(\boldsymbol{t}) := \sum_{k=1}^{N} X^{(k)}(t_k), \quad \forall \, \boldsymbol{t} = (t_1, \dots, t_N) \in \mathbb{R}^N_+.$$
(4)

Khoshnevisan (2002) showed that for any Borel set $G \subset \mathbb{R}^d$,

$$\mathbb{P}\left(\overline{X_{\alpha}(\mathbb{R}^{N}_{+})} \cap G \neq \emptyset\right) \\
\begin{cases}
= 0 & \text{if } \dim_{H}(G) < d - \alpha N, \\
> 0 & \text{if } \dim_{H}(G) > d - \alpha N.
\end{cases}$$
(5)

The key ingredient for proving Theorem 2.2

Theorem 2.3

If $d > \alpha N$ and $F \subset \mathbb{R}^d$ has Lebesgue measure 0, then

$$\mathbb{P}\left\{W(E)\cap\overline{X_{lpha}(\mathbb{R}^{N}_{+})}\cap F
eqarnothing
ight\}>0 \ \iff \mathcal{C}_{d-lpha N}(E imes F)>0.$$

Here and in the sequel, \overline{A} denotes the closure of A, and C_{γ} is the capacity corresponding to the energy form (3): for all compact sets $U \subset \mathbb{R}_+ \times \mathbb{R}^d$ and $\gamma \ge 0$,

$$\mathcal{C}_\gamma(U) := \left[\inf_{\mu\in\mathcal{P}_d(U)}\mathcal{E}_\gamma(\mu)
ight]^{-1}.$$

(6)

Lower bound: Denote

$$\Delta := \sup\left\{\gamma \ge 0: \inf_{\mu \in \mathcal{P}_d(E \times F)} \mathcal{E}_{\gamma}(\mu) < \infty\right\}.$$
(7)

If $\Delta > 0$ and we choose $\alpha \in (0, 2]$ and $N \in \mathbb{Z}_+ 0 < d - \alpha N < \Delta$. Then $\mathcal{C}_{d-\alpha N}(E \times F) > 0$. It follows from Theorem 2.3 and (5) that

$$\mathbb{P}\left\{\dim_{H}\left(W(E)\cap F\right)\geq d-\alpha N\right\}>0.$$
(8)

Because $d - \alpha N \in (0, \Delta)$ is arbitrary, we have

$$\|\dim_{_{\mathrm{H}}}(W(E)\cap F)\|_{L^{\infty}(\mathbb{P})} \geq \Delta.$$

Upper bound: Similarly, Theorem 2.3 and (5) imply that

$$d - \alpha N > \Delta \implies \dim_{\mathrm{H}} (W(E) \cap F) \le d - \alpha N$$
 a. s. (9)

Hence $\|\dim_{H}(W(E) \cap F)\|_{L^{\infty}(\mathbb{P})} \leq \Delta$ whenever $\Delta \geq 0$. This proves Theorem 2.2.

Proof of Theorem 2.3: The proof of sufficiency, which is based on using a second order argument on the occupation measure, is quite standard; but the proof of the necessity is hard. We omit the details. Upper bound: Similarly, Theorem 2.3 and (5) imply that

$$d - \alpha N > \Delta \implies \dim_{H} (W(E) \cap F) \le d - \alpha N$$
 a. s. (9)

Hence $\|\dim_{H}(W(E) \cap F)\|_{L^{\infty}(\mathbb{P})} \leq \Delta$ whenever $\Delta \geq 0$. This proves Theorem 2.2.

Proof of Theorem 2.3: The proof of sufficiency, which is based on using a second order argument on the occupation measure, is quite standard; but the proof of the necessity is hard. We omit the details. Theorem 2.4 [Khoshnevisan and X. (2012)]

If $d \geq 2$ and $\dim_{_{\mathrm{H}}}(E \times F; \varrho) \geq d$, then

$$\left|\dim_{_{\mathrm{H}}}(W(E)\cap F)\right\|_{L^{\infty}(\mathbb{P})} = \dim_{_{\mathrm{H}}}(E\times F;\varrho) - d. \quad (10)$$

Remarks

- Eq (10) does not always hold for d = 1: For E := [0, 1] and $F = \{0\}$, we have $\dim_{\mathrm{H}}(W(E) \cap F) = 0$ a.s., whereas $\dim_{\mathrm{H}}(E \times F; \varrho) d = 1$.
- When $F \subset \mathbb{R}^d$ satisfies |F| > 0, it can be shown that

 $\dim_{_{\mathrm{H}}}(E \times F; \varrho) = 2\dim_{_{\mathrm{H}}}E + d.$

Hence (1) coincides with (10) when $d \ge 2$.

Proof of Theorem 2.4

The proof replies on the following "uniform dimension result" of Kaufman (1968): If $\{W(t), t \in \mathbb{R}_+\}$ is a Brownian motion in \mathbb{R}^d with $d \ge 2$, then

 $\mathbb{P}\left\{\dim_{_{\mathrm{H}}}W(G)=2\dim_{_{\mathrm{H}}}G, \ \forall \text{ Borel sets } \ G\subset \mathbb{R}_+\right\}=1.$

It is sufficient to show that for all compact sets $E \subset (0, \infty)$ and $F \subset \mathbb{R}^d$,

$$\left\| \dim_{\mathrm{H}} \left(E \cap W^{-1}(F) \right) \right\|_{L^{\infty}(\mathbb{P})} = \frac{\dim_{\mathrm{H}} \left(E \times F ; \varrho \right) - d}{2}.$$
(11)
When $d = 1$, the lower bound of (11) was found first by
Kaufman (1972).

Potential theoretic results have been proved for

- the Brownian sheet: Khoshnivisan and Shi (1999), Khoshnivisan and X. (2007);
- other (more general) Gaussian random fields: X. (2009), Biermé, Lacaux and X. (2009), Chen and X. (2012);
- additive Lévy processes: Khoshnevisan and X. (2002, 2005, 2009), Khoshnevisan, Shieh and X. (2008);
- SPDEs: Dalang and Nualart (2004), Dalang, et al (2007, 2009), Dalang and Sanz Solé (2010).

However, Problems 1 and 2 have not been solved for any of them.

Thank you