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Shift space.

Let S = {1,2, . . . ,N} be a finite set with N elements. A word over S is a
sequence w = w1w2 . . .wn . . . with wn ∈ S for each n. We denote by

Sn = {w1w2 . . .wn : wn ∈ S,1≤ j ≤ n}

the set of words of length n and denote by |w|= n the length of w ∈ Sn.
Let S∗ =

⋃
n≥0 Sn be the set of finite words, where the empty word ε is of

length 0. The set of infinite words SN is called the shift space with
N-symbols. For each a ∈ S, define a map σa : SN→ SN by

σa(w1w2 . . .wn . . .) = aw1w2 . . .wn . . . .

We also define shift map σ : SN→ SN by

σ(w1w2 . . .wn . . .) = w2 . . .wn . . . .
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Self-similar set v.s. self-similar structure.

Definition (Self-similar
set)
For each a ∈ S = {1,2, . . . ,N},
map φa : Rn→ Rn is a
similitude. The self-similar set
is the unique compact set
K ⊂ Rn satisfying
K = φ1(K )∪·· ·∪φN(K ).

Fact
(1) Compact set K ⊂ Rn;
(2) φa is a similitude.

Definition (Self-similar structure)
Let K be a compact metric space. For each
a ∈ S = {1,2, . . . ,N}, map ψa : K →K is a
continuous injection. Then, (K ,S,{ψa}a∈S)
is called a self-similar structure if there
exists a continuous surjection π : SN→K
such that ψa ◦π = π ◦σa for every a ∈ S,
where σa(w1w2 . . .) = aw1w2 . . ..

Fact
(1) K itself is a compact metric space;
(2) ψa is only a continuous injection.
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Self-similar structure describes the topology.

If K is a self-similar set with similitudes φ1, . . . ,φN , then
(K ,{1, . . . ,N},{φa}N

a=1) is a self-similar structure.

Example (Interval)
Let S = {1,2}, φ1(x) = 1

2 x and φ2(x) = 1
2 x+ 1

2 . Then self-similar set
I = [0,1]. Denote by Iv = φv(I ) = φv1 ◦φv2 ◦ · · · ◦φvn(I ) for word
v = v1v2 . . .vn ∈ Sn. Then

I = I1∪I2 = I11∪I12∪I21∪I22 =
⋃

v∈Sn

Iv.

For any w = w1w2 . . .wn . . . ∈ SN, the intersection
⋂

n≥0 Iw1w2...wn contains
only one point. Thus the map πI : SN→I is well defined by
{πI (w)}=⋂

n≥0 Iw1w2...wn . Furthermore, φa ◦π = π ◦σa for each a ∈ S,
that is, (I ,{1,2},{φ1,φ2}) is a self-similar structure.
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Interval and Koch curve have the same self-similar structure.
Example (Koch curve)
Let S = {1,2}, φ1(x) = (− 1

2 − i
2
√

3
)x+( 1

2 +
i

2
√

3
) and

φ2(x) = (− 1
2 +

i
2
√

3
)x+1. Then self-similar set C is the Koch curve. In

the same way with interval I = [0,1], we can defined a surjection
πC : SN→ C such that (C ,{1,2},{φ1,φ2}) is a self-similar structure.
Note that πC ◦π

−1
I is a homeomorphism between I = [0,1] and Koch

curve C .

0 1

I

0 11/2

I1 I2

0 11/2

I11 I21I12 I22
1/4 3/4
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Compact set as quotient of shift space.

Example (Quotient space)
For two infinite words w,w′ ∈ SN, define w∼ w′ if they are of forms

w = u12∞ and w′ = u21∞

for some finite word u ∈ S∗. Let K = SN/∼ be the quotient space with
quotient map π : SN→K . Then the triple (K ,{1,2},{ψ1,ψ2}) is a
self-similar structure, where ψa = π ◦σa ◦π−1, a = 1,2. Note that π ◦π

−1
I

is a homeomorphism between I = [0,1] and quotient space K .

ǫ

1 2

11 12 21 22

11∞ 22∞K = {1, 2}∞/ ∼
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Open set condition for self-similar set.

Definition
Let K be a self-similar set with similitudes φ1, . . . ,φN . We say K fulfills
open set condition if there is an open set O satisfying
(i) φa(O)∩φa′(O) = /0, for any a 6= a′;
(ii) φa(O)⊂O for any a ∈ S.

Example
Consider the interval I = [0,1] with respect to iterated functions
φ1(x) = 1

2 x and φ2(x) = 1
2 x+ 1

2 . Let O = (0,1). Then (i)
φa(O)∩φa′(O) = /0 for any a 6= a′, and (ii) φa(O)⊂O for any a ∈ S.

O

φ1(O) φ2(O)
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Equivalent conditions to open set condition

The open set condition is proved to equivalent each of the followings.
I Positivity of α-dimensional Hausdorff measure. More precisely,

denote by ra the contraction factor of φa for each a ∈ S. Let µ be
the α-dimensional Hausdorff measure, where α is the similarity
dimension satisfying ∑a∈S rα

a = 1. Then, K fulfills open set
condition is equivalent to µ(K )> 0.

I Schief (1994, 1996) showed the equivalence for self-similar sets in Rn

and in complete metric space.
I Peres, Rams, Simon and Solomyak (2001) showed the equivalence
for self-conformal sets.

I Isolation of identity map. That is, the identity map id is not an
accumulation point of the set {φ−1

w ◦φv : w,v ∈ S∗}.
I Bandt and Graf (1992) showed it.
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Other separation conditions
Definition
Let L = (K ,S,{ψa}a∈S) be a self-similar structure with nature map
π : SN→K . Let

RL =
⋃

a 6=a′
(ψa(K )∩ψa′(K ))

be the overlapping set. Define the critical set CL = π−1(RL ) and the
post critical set PL =

⋃
n≥1 σn(CL ).

(i) L is called finitely ramified if the overlapping set RL is finite;
(ii) L is called post-critically finite if the post critical set PL is finite.

Example
Consider the interval I = [0,1] with iterated functions ψ1(x) = 1

2 x and
ψ2(x) = 1

2 x+ 1
2 . Then the overlapping RL = [0,1/2]∩ [1/2,1] = {1/2}.

Thus, the critical set CL = π−1(RL ) = {12∞,21∞} and the post critical
set PL =

⋃
n≥1 σn(CL ) = {1∞,2∞}.
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Relations between different separation conditions

Theorem (2007, Bandt and Rao)
Let K be a connected self-similar set in the plane. Then the finitely
ramified condition implies open set condition.

In short, finitely ramified
(connected K ⊂R2)

=⇒ open set condition.

Theorem (2008, Deng and Lau)
Let K be a self-similar set with respect to iterated functions
ψa(x) = Ma(x+ ca), a ∈ S, where Ma = raOa, 0 < ra < 1, Oa is
orthonormal matrix and ca ∈ Rn for each a ∈ S. Suppose {Ma}a∈S is
commensurable, that is, there exists a matrix M such that Ma = Mna for
some positive integer na, a ∈ S. Then the post-critically finite condition
implies open set condition.

In short, p.c.f.
(commensurable)

=⇒ open set condition.
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Separation conditions for self-similar structure

Definition (OSC)
Let L = (K ,S,{ψa}a∈S) be a self-similar structure. We say L fulfills
open set condition if there exists open set O ⊂K such that
(i) ψa(O)∩ψa′(O) = /0, for any a 6= a′;
(ii) ψa(O)⊂ O for any a ∈ S.

Definition (Finite preimage)
Let L = (K ,S,{ψa}a∈S) be a self-similar structure with nature map
π : SN→K . We say L fulfills finite preimage property if each point in
K has only finitely many preimages under the map π.
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Basic observation

I p.c.f.⇒ finitely ramifed. Suppose a self-similar structure L is
post-critically finite, that is, the post critical set
PL =

⋃
n≥1 σn(CL ) is finite. Therefore, critical set CL is finite,

and thus the overlapping set RL = π(CL ) is finite, which shows
that L is finitely ramified.

I p.c.f.⇒ finite preimage. Suppose a self-similar structure L is
post-critically finite, that is, the post critical set
PL =

⋃
n≥1 σn(CL ) is finite, and thus critical set CL is finite.

Assume there is a point x ∈K with infinite preimage set π−1(x).
Let w ∈ Sn be the largest common prefix. Then critical set
CL ⊃ σn(π−1(x)) is infinite, which is a contradiction.
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Basic observation

Example (OSC ; finitely ramified)
Consider the square S = [0,1]× [0,1] with iterated functions ψ1(x) = 1

2 x,
ψ2(x) = 1

2 x+ 1
2 , ψ3(x) = 1

2 x+ i
2 and ψ4(x) = 1

2 x+ 1
2 +

i
2 . Then self-similar

structure (S ,{1,2,3,4},{ψa}4
a=1) fulfills open set condition but is not

finitely ramified.

ψ3(S) ψ4(S)

ψ2(S)ψ1(S)
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Characterizing OSC for self-similar structure.

In the topological viewpoint, compact set K is just the quotient space
SN/∼ with respect to equivalence relation ∼. The critical set CL turns
out to be essential in charactering separation conditions for self-similar
structure.

Theorem (Ni and Wen)
Let L = (K ,S,{ψa}a∈S) be a self-similar structure. Then the followings
are equivalent:
(a) L fulfills open set condition;
(b) the post critical set PL is not dense in SN.

Corollary
p.c.f.⇒ open set condition.
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Characterizing finite preimage property.

Theorem (Ni and Wen)
Let L = (K ,S,{ψa}a∈S) be a self-similar structure. Then the followings
are equivalent:

(a) The structure L fulfills finite preimage property;
(b) limsupn→∞ σ−n(CL ) = /0.

Fact
Recall that the equivalent condition to OSC is “PL =

⋃
n≥1 σn(CL ) is

not dense in cylinder [v] for each v ∈ S∗”. The difference between
σ−n(CL ) and σn(CL ) suggests that each of the two conditions “finite
preimage” and “OSC” does not implies the other, which will be shown in
the following.
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Finitely ramified and finite preimage do not imply OSC.

Example (Finitely ramified + finite preimage ; OSC)
Define a equivalence relation ∼ on the shift space {1,2}N as follows. Let
v be an infinite word with all the finite word as factors. Two different
words w,w′ ∈ EN are equivalent if they are of forms

w = u2v and w′ = u12∞, u ∈ {1,2}∗.

The complete metric space K is the quotient space {1,2}N/∼ with
quotient metric. Denoting by π the quotient map and
x = π(2v) = π(12∞), we obtain the overlapping set

K1∩K2 = {x}

contains only one point. The structure L = (K ,{1,2},{ψ1,ψ2}) is
finitely ramified and fulfills finite preimage property, where the injections
ψ1,ψ2 are induced by shift σ1,σ2, that is, ψa = π ◦σa ◦π−1 for a ∈ {1,2}.
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Finitely ramified and finite preimage do not imply OSC.

Example (Continued)
On the other hand, any given finite word x ∈ S∗ is a factor of v, that is,
x = v|[m+1,m+n] = σm(v)|[1,n] for some m,n ∈ N, where
v|[m+1,m+n] = vm+1 . . .vm+n for v = v1v2 . . .. Since

PL ⊃ σ
m+1(CL ) = σ

m+1(π−1({x})) = σ
m+1({2v,12∞}) = {σm(v),2∞},

the intersection PL ∩ [x] is not empty, where the cylinder [x] = σx(SN).
By the characterization of OSC, the structure L do not fulfills the open
set condition.
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OSC does not imply finite preimage.

Example (OSC ; finite preimage)
Define a equivalence relation ∼ on the admissible word set
SN = {1,2,3}N as follows. Two different words w,w′ ∈ EN are equivalent
if they are of forms

w = uv and w′ = uv′, u ∈ {1,2,3}∗, v,v′ ∈ {1,2}N.

The complete metric space K is the quotient space {1,2,3}N/∼ with
quotient metric. Denote by π the quotient map. The structure
L = (K ,{1,2,3},{ψ1,ψ2,ψ3}) is finitely ramified with the injections ψa
induced by shift σa, that is, ψa = π ◦σa ◦π−1 for a ∈ S. In fact, the
overlapping set

RL = K1∩K2 = {y},
where y is the point π({1,2}N). The preimage set π−1(y) = {1,2}N is
infinite.
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OSC does not imply finite preimage.

Example (Continued)
On the other hand, the post critical set

PL =
⋃
n≥1

σ
n(CL ) =

⋃
n≥1

σ
n(π−1(y)) = {1,2}N

is infinite. Certainly, PL is not dense in SN, and thus L fulfills the open
set condition.
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Implications in general situation.

In summary, we have

p.c.f.⇒ finitely ramified+open set ondition+finite preimage,

where each of the three conditions “finitely ramified”, “open set
condition” and “finite preimage” does not imply any of the others.
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Doubling quotient metric.

We endow SN with the metric

d(w,w′) = 2−|w∧w′|,

where w∧w′ is the longest common prefix of w and w′. It is compatible
with the product topology over SN where SN is considered as infinite
product of discrete set S. The topology on K is always the same with
the quotient topology induced by natural map π from SN to K . In this
section, we focus on the quotient metric on K which is regarded as the
intrinsic metric on K .
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Finitely ramified implies finite preimage and OSC within
doubling metric.

Theorem (Ni and Wen)
Let L = (K ,S,{ψa}a∈S) be a self-similar structure. If K is doubling
with respect to the quotient metric, then finitely ramified implies finite
preimage.

Theorem (Ni and Wen)
Let L = (K ,S,{ψa}a∈S) be a self-similar structure. If K is doubling
with respect to the quotient metric, then L is finitely ramified implies
that L fulfills open set condition.
In short, with metric space K doubling, we have

p.c.f.⇒ finitely ramified⇒ open set condition+finite preimage.

Zhi-ying WEN OSC for self-similar structre



Background
Our results

Summary

Summary

I In general case, we have

p.c.f.⇒ finitely ramified+open set ondition+finite preimage,

where each of the three conditions “finitely ramified”, “open set
condition” and “finite preimage” does not imply any of the others.

I In doubling case, we have

p.c.f.⇒ finitely ramified⇒ open set condition+finite preimage.

I Kigami defined two concepts “minimal” and “Bernoulli self-similar
measure” for self-similar structure and deduced that

finite preimage⇒ Bernoulli self-similar measure⇒minimal.

The relations between these two conditions and “OSC” or “finitely
ramified” are not known.
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