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The beginings

‘Supplementary Fgure SIEMan

Figure: Islamic tiling from the 15th century

Peter J. Lu and Paul J. Steinhardt "Decagonal and

Quasi-crystalline Tilings in Medieval Islamic Architecture,"
Science 315, 1106 (2007).
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The beginings

Pater . Luand Paui I Steinhardt, “Decagons! and Guasicrystaline Tikigs in MedievalIsla Architecture,” Scienee (2007). Supporting Orline Mtedl

Supplementary Figure S48 Compizts pancl 26 from Uve Tapkagd seroll {partly shown In Fig. 16, whers the réd ink dots mark the Botndarles of the girih ties. In We uppse
reonstruction, the gin tiles bean filled in with color accerding to Fig. 1F. The thick red linés In the origin: oll correspond to the strapwoik decoration of girih tiles.
at a much farger length scale, shown in the lower reconstruction. This s a documented example of girih-tile subdivision, as each large girfh tke transiorms o the same cor-
respoding pattem of smalf girih tles. [See main text and note 13.]
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The Penrose tiling

The Penrose tiling

Penrose 1978
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Random walk on the Penrose graph
The graph and the net (the dual of the Penrose tiling)
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Random walk

The graph and the net (the dual of the Penrose tiling)

I countably infinite graph, with edges x ~ y, and trivial edge
weight 1, degree of nodes, d (x) = > I(x ~y) =3

P(x,y) = ﬁifXNy
P(X,=ylX,c1=x) = P(x,y)

defines a d (x)-reverzibe Markov chain
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Random walk

Conventions

e [ with d(x,y), graph distance called Penrose graph
o [ with |[x — y| embedded into R? called Penrose net
e 72 with d (x, y) the graph on the integer lattice

@ 72 with |x — y| embedded into R? called integer net
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Questions

Questions

Random walks on graphs

Fpey, =1,d(xy), pa(xy)?

1 d2( C _ ey
e <pn(><y)+pn+1(><y)§n &
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Questions

Questions

Domokos Szdsz problem: Do we have invariance principle on the Penrose net?

rﬂx,y:]v |X_y|
1
_aXLatJ — Wp(t) as a — o0

N

as a — 0o0. D pos. def.
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Questions

Why is this a question?

e put Z9 grid on R? then the invariance principle holds for
the ssnn RW

e Put any periodic (shift invariant) grid on R? , still we
have the IP.

@ What if we put a non-periodic net on it?
@ What if .... (comes later).
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Pentagrid

The construction of the Penrose tiling (deBruijn)
Pentagrid
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Pentagrid

The construction of the Penrose tiling (deBruijn)
Pentagrid

A




Pentagrid
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Rough isometry

Rough isometry

Given I, T, rough isometric if , there are
V:I—T"abc,M>0:

Zd(xy) ~b<d (W(x), V() <ad(xy) + b

o (W (x)) < () < e (¥ ().

forall y' eI
d'(V(M).y) <M.

Let us use W1,
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Stability

Stability against rough isometry

Stability of (GE,.»)

1

2
! e {_Cd (x,y)

noc/2

5n = Pn + Pn—1,

(Delmotte 1997.) Yes.

On Z? we have,(GEy,)
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Random walk on the Penrose graph

Random walk on the Penrose graph

[ Penrose graph
If T roughly isometric to Z?2, then

2 2
oo |22 << chep -2

on the Penrose graph.
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Rough isometry

Rough isometry

Solomon The Penrose graph is bi-lipschitz to 7.
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Rough isometry

A Penrose graph is rough isometric to 7.

Direct proof.W :

\/




Prelimineries
ooe

Rough isometry

Random walk on the Penrose graph
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Invariance principle

Preparation

C%exp{—cw] Pa(x,y) < C~ exp{ M}
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Invariance principle

On the Penrose net

the random walk X, = 27:1 X; :X; vectors between centers of
tiles.

w, the environment seen from X,

Z, = (wna Xn) )

X, = Z V(Z1,Z)

i=1

V(Zi—bZ/) =Xi — Xi_1 = x;.
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Invariance principle

Penrose graph

Theorem

(deMasi, Ferrari, Goldstein, Wick) Z, reversible ergodic
Markov chain with 1 stationary probability measure, X, as
above, anti-symmetric function of Z then

1
_XLAtJ = Wp (t)

VA

D 777



The result

The Penrose graph

For the random walk on the Penrose net the invariance
principle holds.

Proof.
1. Z, egrodic i stac. (M. Kunz,A. Robinson)
2. D pos. def. so the limiting process is non-degenerate.



The result

Proof 1.

The five directions e, =

(cos (5 +(k=1) %) sin (5 +(k=1) F) (5 +(k=1) F))
k = 1..5 and the grids

Gi={x€eR?: xe, =z+,,z€ 7}




The result

A cross-points G; N G; are center of a tiles, the position is
defned by the phases 7,,7,, mod1 so that

5
Z%‘ =0
i=1

and z.



The result

Proof 1.

X, is at a crosspoint of the pentagrid G;N G; : i # j
€ {1,2,3,4,5} that is the reference point for w, i.e.:
v; =7, = 0. For the pentagrid we know that

Z%‘ =0.

i=1

( v; mod 1) Still we have two "free" ~v. So w < (i,/, 74, 7/)
identifies our position. We get 10 tori €2;;. Let Q = U, ;.
The dinamics: w, — w,41 on €.



The result

Proof 1.

{w,} C Qis dense with null Lebesgue measure on the
compact Q. Letw € Q;),|i—j| =10 € Q;,|i —j| =2,

du(w) = 7dA(w)
du(w) = dA(W)

7 the golden ratio. p is finite, can be normalised to
probability measure. From the density theorem of topological
groups it follows that if A C Q invarian and 1 (A) > 0 then
p(A) =1 ie. ergodic.



The result

Proof 2.

D non-degenerate. 0 # e € R?

e*De > 0.



The result

Proof 2.

D non-degenerate. 0 # e € R?

e*De > 0.

PIE
R

’ N .
S

PR




The result

Proof 2.

D non-degenerate. 0 # e € R?
e*De > 0.

Let A= B (x, Gy/n) \B (x0, G1v/n) , C cone at e with angle
a:7m/2>a>0. The intersection H= AN C.

E (e*X, X Ee|X, = x)
- E ((e*X,,)2 X, = xo)



The result

Proof 2.

Let A= B (x, Gy/n) \B (x0, G1v/n) , C cone about xo,with
m/2>a>0 H=ANC.

E(e" X, X el X, = x)
- E <(e*X,,)2 X, = X0> >3 (ex) Py (0, %)

xeH

c’ exp [— C—(aczﬁﬂj

n

1.

> ¢ (cos(a) \/5)2

n



Open problems

Other tilings?

What conditions needed for the IP?



Open problems

Quenched invariance principle

Is the invariance principle true for almos all
starting point?



Bonnus
[ Jelele]

Projection

The construction of the Penrose tiling (deBruijn
Pentagrid
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Projection

The construction of the Penrose tiling (deBruijn
Pentagrid
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Projection

The construction of the Penrose tiling (deBruijn)
Pentagrid

7° C R®

Let ¢ = exp (27i/5), the plain P consists of points x,z € R> :
orthogonal to 1 =(1,1,1,1,1) and

aL = (l,Cﬁ,Cﬂ,Cﬂ,Cig) IC is the set of unit cubes in R®
identified with their centre:

C={KeK: KNP0}

and project vertices and edges to P.



Thanks for the attention!i
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Local modification

Local modification

Let [’ a local modification of the Penrose graph,
Clearly I and " rough isometric,(GE; ) holds:

%exp (—CM> <P (x, y)S% p(—cM>

n
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Local modification

Local modification

Does the invariance hold? (Doma Szdsz's question)
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Further questions

Further questions

2
ls it true that D = | . 02 7

0 o
For local modification is D invariant?
Is the invariance principle stabil agains rough isometry?
How the percolation behaves for the Penrose graph?

And the RW on it??
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