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Orthogonal projections

Theorem (Marstrand, Mattila)
Let A ⊂ Rd be a Borel set, and let s = dimH(A) be its Hausdorff
dimension. If s ≤ k then the orthogonal projection onto almost all
k-planes has dimension s, while if s > k, then the orthogonal
projection of A onto almost all k-planes has positive k-dimensional
Lebesgue measure.

Motivation
For some (random) fractals, one would like to know more. In
particular, if there are a.s. no exceptional directions for the
projections.
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A characteristic example of a random fractal is the fractal
percolation for which the orthogonal projections have been
investigated in great detail:

• Falconer and Grimmett (1992) showed that if the
dimension of fractal percolation is > 1, the projections in
the principal directions contain intervals a.s.

• This was vastly generalised by Rams and Simon (2011)
who proved in a more general setting that all orthogonal
projections onto lines have nonempty interior a.s. on
dimension of the fractal percolation > 1.

• In case s < 1, Rams and Simon (2012) prove that the
dimension is preserved under all orthogonal projections
onto lines.

• Moreover, Peres and Rams have proved that in R2, all
orthogonal projections of the fractal percolation measures
in nonprincipal directions are absolutely continuous with a
Hölder continuous density.
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• For a closely related model in Rd, Shmerkin and S. (2012)
proved that if the dimension is > k, all orthogonal
projections of the random limit measure onto k-planes are
absolutley continuous with a uniformly bounded density.
As a corollary, this settled a question of Carbery, Soria and
Vargas on the dimension of sets which are not tube-null.

Some questions
• How typical are the above results? What other random

models can we find such that a.s. there are no exceptional
projections?

• For fractal percolation, the (densities of the) projections in
principal directions are easily seen to be a.s. discontinuous.
Are there fractal measures of a given dimension k < s < d
such that all projections have a continuous density? If yes,
how regular can the density be?

• For which random fractals, can we prove the a.s. existence
of scaled copies of arithmetic progressions and/or more
general finite patterns?
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• Projections are closely related to intersections.
• For instance, the orthogonal projection of A ⊂ Rd onto a

plane V ⊂ Rd has nonempty interior, if and only if there is
an open set U ⊂ V such that the plane orthogonal to V
through each point of U meets A.

• More generally, the continuity properties of the orthogonal
projections of a measure µ are closely related to the fibers
of µ along these planes (e.g. how fast does the total mass of
the fiber change, when the fibre is moved).

• It turns out that this idea can be applied for intersections
with many other families of sets and measures and not just
for the intersections with affine planes and Hausdorff
measures on them. For instance for the continuity of the
intersections of certain random measures with respect to
self-similar measures

• In many situations, the continuity results for the
intersections of the random measures with a fixed
deterministic family of measures can be used to deduce
geometric information on the intersections of the random
limit set with all sets in a given deterministic family.



Random martingale measures

We say that {µn}n is a random martingale measure, if

• µ0 is a finite, deterministic measure with bounded support.
• Almost surely, µn is absolutely continuous for all n; its

density function will also be denoted µn.
• There exists an increasing sequence of σ-algebras Bn such

that µn is Bn-measurable. Moreover, for all Borel sets B,

E(µn+1(B)|Bn) = µn(B).

• There is C > 0 such that almost surely µn+1(x) ≤ Cµn(x) for
all n and all x.

Almost surely, the sequence µn is weakly convergent. Denote
the limit by µ.
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Intersections with deterministic measures
Let {ηt}, t ∈ Γ, be a family of measures indexed by a totally
bounded metrix space (Γ, d) and let {µn}n be a random
martingale measure as in the previous slide. For all t ∈ Γ, and
n ∈ N, we define a measure µt

n as

• µt
n(A) =

∫
A µn(x) dηt(x),

• |µt
n|∞ = µt

n(Rd),

and further
• |µt|∞ = limn→∞ |µt

n|∞,
if the limit exists.

Sometimes, we also consider the measures µt defined as weak
limits of µt

n.
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Remarks
• For each fixed t it follows from the martingale condition

that |µt| exists almost surely.
• For any two measures µ and ν, the method of slicing

measures can be used to define the intersection of µ and
almost all translates/isometric copies/homotethic copies
etc. Our goal is to show that for certain random martingale
measures and for many relevant families {ηt}t∈Γ, the
intersections are defined for all t and behave in a
continuous way with respect to t.

• One might want to compare this with the classical results
of Hawkes on the Hausdorff dimension of the intersections
of a fixed Borel set A and almost all Brownian paths.



Some examples of {ηt}

Let Ω ⊂ Rd be fixed compact set (the support of µ0)

• For some 1 ≤ k < d, Γ is the subset of affine k-planes which
intersect Ω, with the induced natural metric, and ηV is
k-dimensional Hausdorff measure restricted to V ∩ Ω.

• In this example, d = 2. Given some k ∈ N, Γ is the family of
all algebraic curves of degree at most k which intersect λ, d
is the natural metric, and ηγ is length measure on γ ∩ Ω.

• Let m ≥ 2, and let Γ be a totally bounded subset of
uniformly contractive self similar IFSs with m maps.
Suppose that each IFS (g1, . . . , gm) ∈ Γ satisfies the OSC.
The measure η(g1,...,gm) is then the natural self-similar
measure for the corresponding IFS.
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Spatial independence

In order to obtain results about all intersections, it is necessary
to impose conditions on {µn} that guarantee a large degree of
independence in the construction.

Definition
A random martingale measure is called uniformly spatially
independent if there is C <∞ such that for all n ∈ N, and for
any C2−n separated family U of balls with radius 2−n, the
restrictions {µn+1|B |Bn} are independent.

The following slightly weaker (but still very strong) notion of
independence is often useful.

Definition
A random martingale measure is called spatially independent
with respect to {ηt}t∈Γ, if for all t ∈ Γ, some C <∞ and all
n ∈ N, and for any C2−n separated family U of balls with radius
2−n, the restrictions {µt

n+1|B |Bn} are independent.



Spatial independence

In order to obtain results about all intersections, it is necessary
to impose conditions on {µn} that guarantee a large degree of
independence in the construction.

Definition
A random martingale measure is called uniformly spatially
independent if there is C <∞ such that for all n ∈ N, and for
any C2−n separated family U of balls with radius 2−n, the
restrictions {µn+1|B |Bn} are independent.

The following slightly weaker (but still very strong) notion of
independence is often useful.

Definition
A random martingale measure is called spatially independent
with respect to {ηt}t∈Γ, if for all t ∈ Γ, some C <∞ and all
n ∈ N, and for any C2−n separated family U of balls with radius
2−n, the restrictions {µt

n+1|B |Bn} are independent.



Spatial independence

In order to obtain results about all intersections, it is necessary
to impose conditions on {µn} that guarantee a large degree of
independence in the construction.

Definition
A random martingale measure is called uniformly spatially
independent if there is C <∞ such that for all n ∈ N, and for
any C2−n separated family U of balls with radius 2−n, the
restrictions {µn+1|B |Bn} are independent.

The following slightly weaker (but still very strong) notion of
independence is often useful.

Definition
A random martingale measure is called spatially independent
with respect to {ηt}t∈Γ, if for all t ∈ Γ, some C <∞ and all
n ∈ N, and for any C2−n separated family U of balls with radius
2−n, the restrictions {µt

n+1|B |Bn} are independent.



Poissonian cut-out measures
Let Λ0 ⊂ Rd be a fixed compact set (e.g the unit ball or the
Von-Koch snoflake domain).

Let Q be the measure βs−1dxds on
Rd × (0, 1/2), where β > 0 is a real parameter. Let Y be a
Poisson point process with intensity Q e.g. a random countable
collection of points Y = {(xj, rj)} such that:

• For any Borel set B ⊂ Rd × (0, 1), the random variable
|Y ∩ B| is Poisson with mean Q(B).

• If {Bj} are pairwise disjoint subsets of Rd × (0, 1), then the
random variables |Y ∩ Bj| are independent.

One can then form the random cut-out set

A = 2Λ0 \
⋃

j

Λxj,rj ,

where Λx,r is the r-scaled copy of Λ0 translated by x.
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It turns out that there is a natural measure µ supported on A: it
is the weak limit of the measures

µn := 2αnL|An ,

where An = 2Λ0 \
⋃
{Λxj,rj : rj > 2−n}, and α = β2−dc, where c is

the Lebesgue measure of Λ0.

Remark
It is easy to check that {µn} is a random martingale measure.

More generally, let X denote the space of compact subsets of Rd

and let Q be (an infinite) Borel measure on X satisfying:
• Q is translation invariant, i.e. Q(A) = Q({Λ + t : Λ ∈ A})

for all t ∈ R.
• Q is scale invariant, i.e. Q(A) = Q({sΛ : Λ ∈ A}) for all

s > 0, where sA = {sx : x ∈ A}.
• Q is locally finite, meaning that the Q-measure of the

family of all sets of diameter larger than 1 that are
contained in [−1, 1]d is finite.
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Then one obtains a random martingale measure by considering
a Poisson point process Y = {Λj}with intensity Q and setting

µn = 2nαL|An

where
An = Ω \ {∪Λj : 2−n ≤ diam(Λj) < 1} ,

α =

∫
L(Λ) dQ0 ,

and Q0 is a measure supported on sets of diameter one such
that Q is obtained as the push down of L × dr

tr ×Q0 under
(x, r,Λ)→ r(Λ + x).

In many cases (e.g. for the ball-type or snowflake type cut-out
measures) it can be verified that dim A (and dimµ) equals d−α:

Theorem (See e.g. Thacker 2006, Nacu and Werner 2011)
Under mild geometric assumptions on the removed shapes, we have

dimB(A) = dimH(A) = d− α almost surely on A 6= ∅

and moreover, dim(µ, x) = d− α for µ-almost all x ∈ A.
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Subdivision random fractals
Let F0 ⊂ Rd be a bounded closed set and let Fn be an increasing
sequence of finite, atomic σ-algebras on F0, with F0 = {F0, ∅}.
In the sequel we identify Fn with the collection of its atoms.For
each n ∈ N, let c < pn < 1 and 0 ≤ w(F) ≤ C, F ∈ Fn be random
variables such that

• pn+1 and the w(F), F ∈ Fn+1, are Bn-measurable, where Bn
is the σ-algebra generated by pk,w(F) for 0 ≤ k ≤ n and
F ∈ Fk.

• E(w(F)|Bn) = pn+1 for all F ∈ Fn+1.

We define a sequence {µn} as follows:
• For each F ∈ Fn, let µn|F =

∏n
k=0 p−1

k
∏n

k=0 w(Fk), where Fk
is the atom of Fk which contains F.

Then {µn} is a random martingale measure. If, moreover:
• For any collection {Fj}j of atoms in Fn such that each

F ∈ Fn−1 contains at most one Fj, the random variables
w(Fj) are independent.



• There is C > 0 such that for all n and all F ∈ Fn, there are at
most C elements F′ ∈ Fn such that dist(F,F′) < 2−n,

then {µn} is also uniformly spatially independent.

Example
Let V be a subcollection of the (d− 1)-dimensional linear
subspaces of Rd and suppose that the boundaries of each
F ∈ Fn consist of at most C subsets that are parallel to elements
of V . Then we say that the Filtration is polygonal type.
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Comparing Poissonian and subdivision
models

• The main difference between the Poissonian cut-out model
and the subdivision models are the scale and translation
invariance properties. For the subdivision models, there
can be a very limited scale and translation invariant (if
any), arising from the nature of the filtrations Fn whereas
the Poissonian cut-out model is translation and scale
invariant inside the initial domain (often it is also
rotationally invariant and sometimes even conformally
invariant).

• On the other hand, the subdivision models have the
advantage that there are no overlaps among the removed
shapes of the same generation.

• Nevertheless, the Basic idea in both models is the same,
they both give rise to a random martingale measures, and
similar ideas can be used to study their geometric
properties.



Comparing Poissonian and subdivision
models

• It depends on the particular problem, whether the
necessary details are easier to carry on in the Poissonian
cut-out or random subdivision fractal setting.



A general continuity result

Theorem (Shmerkin and S. 2012)
Let {µn}n∈N be a random martingale measure, and let {ηt}t∈Γ be a
family of measures indexed by the metric space (Γ, d). We assume
that there are constants θ, γ0 > 0 and s > α > 0 such that:

• {µn} is spatially independent with respect to Γ.
• For all ξ > 0, Γ can be covered by exp(O(r−ξ)) balls of radius r

for all r > 0.
• ηt(B(x, r)) = O(rs) for all x ∈ Γ, 0 < r < 1.
• Almost surely, µn(x) ≤ 2αn for all n ∈ N and x ∈ Rd.
• Almost surely, there is a (random) integer N, such that

sup
t,u∈Γ,t6=u;n≥N

(
|µt

n|∞ − |µu
n|∞
)
2θn d(t,u)γ0 <∞.

Then there is γ > 0 (depending on θ, γ0, α, s) such that almost surely
|µt

n|∞ converges uniformly in t, and the function t→ |µt|∞ is Hölder
continuous with exponent γ.
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Hölder continuity of orthogonal projections

Applying the general continuity results for the ball-type cutout
measures and letting Γ be the collection of all affine
(d− k)-planes we are able to prove

Theorem (Shmerkin and S. 2012)
For all k, d ∈ N and k < s ≤ d, there are measures µ in Rd such that

dim(µ, x) = s for µ− almost all x ∈ Rd

and all orthogonal projections of µ onto k-planes are absolutely
continuous with a γ = γ(k, s) Hölder-continuous density

In fact, the densities are shown to be jointly Hölder continuous
with respect to (x,V), x ∈ V, V ∈ Gd,k.
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Intersections with algebraic curves

Applying the general continuity results for the snowflake-type
cutout measures and letting Pk be the family of all real
algebraic curves in the plane of degree at most k (with a natural
metric), we arrive at the following result.

Theorem (Shmerkin and S. 2012)
For each 1 < s < 2, there are random martingale measures {µn} on
R2 satisfying almost surely the following conditions
• dim(µ, x) = s for µ-almost all x ∈ R2,
• For all k ∈ N the sequence 2n(2−s)H1(V ∩ spt(µn)) converges

uniformly over all V ∈ Pk, denote the limit by |µV|∞.
• V 7→ |µV|∞ is Hölder continuous with exponent γ = γ(s) > 0.
• supV∈Pk,n∈N 2n(2−s)H1(V ∩ spt(µ)(2−n)) <∞ for all k ∈ N.

In particular, we have dimB(V ∩ spt(µ)) ≤ s− 1 for all
algebraic curves V.
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Intersections with self-similar sets
Another application of the continuity result for the ball-type
cutout measures and suitably chosen families {ηt}t∈Γ of self
similar measures yields the following:

Theorem (Shmerkin and S. 2012)
For each d ∈ N and 0 < s < d, there are random Borel sets A ⊂ Rd

with dimH(A) = dimB(A) = s such that for each self-similar set
E ⊂ Rd satisfying the open set condition, we have

dimB(E ∩ A) ≤ max{0,dim E + s− d} .

Remark
The continuity result behind the above Theorem is a
generalisation of the first application, since each (compact
subset of) affine k-plane is a subset of a self-similar set
satisfying the open set condition.
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Arithmetic sums of the random sets
A more general version of the continuity result (allowing
dependencies) can be used to study the existence of finite
patterns and the structure of the arithmetic sums. For instance:

Theorem (Shmerkin and S. 2012)
Let d,m ∈ N and let A1, . . . ,Am ⊂ Rd be m-independent ball type
cut-out sets with scaling exponents α1, . . . , αd such that

m∑
k=1

αk < d(m− 1) .

Then, almost surely on each Ai being nonempty, the arithmetic sums

m∑
k=1

λkAk = {λ1a1 + . . .+ λmam : ai ∈ Ai}

have nonempty interior for all 0 6= λ1, . . . , λm ∈ R.



Existence of finite patterns

Theorem (Shmerkin and S. 2012)
Fix 0 6= a1, . . . , am ∈ Rd. Let A ⊂ Rd be the ball-type random cut-out
set with scaling exponent

α <
d
m
.

Then almost surely on A 6= ∅, the set A contains the configuration

y + λa1, y + λa2, . . . , y + λam ∈ A

for an open set of parameters λ > 0 (with some y = y(λ) ∈ Rd).
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