Iterated function systems with a given continuous stationary distribution

Örjan Stenflo Uppsala university stenflo@math.uu.se

AFRT 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Notation

IFS with probabilities { \mathbb{R}^d ; $f_i, p_i, i = 1, ..., n$ }

 $f_i : \mathbb{R}^d \to \mathbb{R}^d$, i = 1, ..., n, are functions, p_i are associated non-negative numbers with $\sum_{i=1}^n p_i = 1$.

The address map

If the maps $f_i : \mathbb{R}^d \to \mathbb{R}^d$ are contractions, i.e. if there exists a constant c < 1 such that $|f_i(x) - f_i(y)| \le c|x - y|$, for all $x, y \in \mathbb{R}^d$, then the limits

$$\widehat{Z}(\mathbf{i}) = \lim_{k \to \infty} f_{i_1} \circ f_{i_2} \cdots \circ f_{i_k}(x),$$

exist for any $\mathbf{i} = i_1 i_2 i_3 \dots \in \{1, \dots, n\}^{\mathbb{N}}$, (with limits independent of $x \in \mathbb{R}^d$).

Set and measure attractors

In particular it then follows that

• the set

$$\mathsf{A} := \{\widehat{\mathsf{Z}}(\mathsf{i}), \mathsf{i} \in \{1, ..., n\}^{\mathbb{N}}\}$$

is the unique nonempty compact set A satisfying

$$A=\cup_{i=1}^n f_i(A),$$

(the set-attractor)

Set and measure attractors

In particular it then follows that

• the set

$$\mathsf{A} := \{\widehat{\mathsf{Z}}(\mathsf{i}), \mathsf{i} \in \{1, ..., n\}^{\mathbb{N}}\}$$

is the unique nonempty compact set A satisfying

$$A=\cup_{i=1}^n f_i(A),$$

(the set-attractor)

• the measure $\mu(\cdot) := P(\mathbf{i}; \widehat{Z}(\mathbf{i}) \in \cdot)$ is the unique probability measure μ , supported on A, satisfying the invariance equation

$$\mu(\cdot) = \sum_{i=1}^n p_i \mu(f_i^{-1}(\cdot)).$$

(the measure-attractor)

Invariant measures/stationary measures

The measure-attractor, μ , is the unique stationary distribution of the Markov chain $\{X_k\}$ obtained by random (independent) iterations with the functions, f_i , chosen with the corresponding probabilities, p_i , i.e. μ is the unique probability measure with the property that if X_0 is μ -distributed and we recursively define

$$X_{k+1}=f_{I_{k+1}}(X_k),$$

where $\{I_k\}$ is a sequence of independent random variables with $P(I_k = i) = p_i$, then $\{X_k\}$ will be a (strictly) stationary process.

Sufficient average contraction conditions for a.s. convergence of reversed iterates/existence of address map

$$E\mathbf{d}(f_{i_1} \circ f_{i_2} \cdots \circ f_{i_k}(x), f_{i_1} \circ f_{i_2} \cdots \circ f_{i_k}(y)) \leq c\mathbf{d}(x, y), \quad (1)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all x, y, for some c < 1, $k \ge 1$, and metric **d**.

Sufficient average contraction conditions for a.s. convergence of reversed iterates/existence of address map

$$E\mathbf{d}(f_{i_1}\circ f_{i_2}\cdots\circ f_{i_k}(x),f_{i_1}\circ f_{i_2}\cdots\circ f_{i_k}(y))\leq c\mathbf{d}(x,y),\qquad(1)$$

for all x, y, for some c < 1, $k \ge 1$, and metric **d**.

If for instance,
$$d = 1$$
, and we use $\mathbf{d}(x, y) = \int_{x}^{y} \phi(t) dt$, where $\phi(x) = E |\frac{d}{dx} f_{i_1} \circ f_{i_2} \cdots \circ f_{i_k})(x)|$, then if

$$E|\Big(\frac{d}{dx}f_{i_1}\circ f_{i_2}\cdots \circ f_{i_{m+1}}\Big)(x)| \leq cE|\Big(\frac{d}{dx}f_{i_1}\circ f_{i_2}\cdots \circ f_{i_m}\Big)(x)|,$$

for any x, for some $m \ge 0$, then (1) holds (with k = 1).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The inverse problem

Given a probability distribution $\mu,$ find an IFSp having μ as its unique measure-attractor.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The inverse problem

Given a probability distribution $\mu,$ find an IFSp having μ as its unique measure-attractor.

Easier question: Given a probability measure μ , find a Markov chain having μ as its unique stationary distribution. (Theorem: Any Markov chain can be generated by an IFS with an uncountable number of maps)

Given a probability distribution $\mu,$ find an IFSp having μ as its unique measure-attractor.

Easier question: Given a probability measure μ , find a Markov chain having μ as its unique stationary distribution. (Theorem: Any Markov chain can be generated by an IFS with an uncountable number of maps)

(Applications: Image coding, simulations, parametrisations of probability distributions, useful theoretical representations.)

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Let μ be a probability measure on \mathbb{R} , and let $F(x) = \mu((-\infty, x])$ denote its distribution function.

Let μ be a probability measure on \mathbb{R} , and let $F(x) = \mu((-\infty, x])$ denote its distribution function.

The generalised inverse distribution function is defined by

$$F^{-1}(u) = \inf_{x \in \mathbb{R}} \{F(x) \ge u\}, \quad 0 \le u \le 1.$$

Let μ be a probability measure on \mathbb{R} , and let $F(x) = \mu((-\infty, x])$ denote its distribution function.

The generalised inverse distribution function is defined by

$$F^{-1}(u) = \inf_{x \in \mathbb{R}} \{F(x) \ge u\}, \quad 0 \le u \le 1.$$

Properties $F^{-1}(F(x)) \le x$ and $F(F^{-1}(u)) \ge u$. (If μ is continuous, i.e. if F is continuous then $F(F^{-1}(u)) = u$, for 0 < u < 1.)

Let μ be a probability measure on \mathbb{R} , and let $F(x) = \mu((-\infty, x])$ denote its distribution function.

The generalised inverse distribution function is defined by

$$F^{-1}(u) = \inf_{x \in \mathbb{R}} \{F(x) \ge u\}, \quad 0 \le u \le 1.$$

Properties $F^{-1}(F(x)) \leq x$ and $F(F^{-1}(u)) \geq u$. (If μ is continuous, i.e. if F is continuous then $F(F^{-1}(u)) = u$, for 0 < u < 1.) Therefore, if $U \in U(0, 1)$, the uniform distribution on the unit interval, then

$$P(F^{-1}(U) \le x) = P(U \le F(x)) = F(x),$$

i.e. $F^{-1}(U)$ is a μ -distributed random variable.

A simple solution to the inverse problem for continuous probability measures on \mathbb{R} .

Theorem

A continuous distribution, μ , on \mathbb{R} with distribution function, F, is the measure-attractor of the IFS with monotone maps

$$f_i(x) := F^{-1} \circ u_i \circ F(x),$$

and probabilities $p_i = 1/n$, where $u_i(u) = u/n + (i-1)/n$, $0 \le u \le 1$, i = 1, 2, ..., n.

Proof

If \widehat{Z}^F denotes the limit of the reversed iterates of the system with f_i chosen with probability 1/n, (and \widehat{Z}^U denotes the corresponding for the IFS with maps u_i) then

$$\begin{aligned} \widehat{Z}^F &:= \lim_{k \to \infty} \widehat{Z}^F_k(x) := \lim_{k \to \infty} f_{I_1} \circ \cdots \circ f_{I_k}(x) \\ &= \lim_{k \to \infty} F^{-1} \circ u_{I_1} \circ F \circ F^{-1} \circ u_{I_2} \circ F \circ F^{-1} \circ u_{I_k} \circ F(x) \\ &= \lim_{k \to \infty} F^{-1} \widehat{Z}^U_k(F(x)) = F^{-1}(\widehat{Z}^U) \quad a.s. \end{aligned}$$

Proof

If \widehat{Z}^F denotes the limit of the reversed iterates of the system with f_i chosen with probability 1/n, (and \widehat{Z}^U denotes the corresponding for the IFS with maps u_i) then

$$\begin{aligned} \widehat{Z}^F &:= \lim_{k \to \infty} \widehat{Z}^F_k(x) := \lim_{k \to \infty} f_{I_1} \circ \dots \circ f_{I_k}(x) \\ &= \lim_{k \to \infty} F^{-1} \circ u_{I_1} \circ F \circ F^{-1} \circ u_{I_2} \circ F \circ F^{-1} \circ u_{I_k} \circ F(x) \\ &= \lim_{k \to \infty} F^{-1} \widehat{Z}^U_k(F(x)) = F^{-1}(\widehat{Z}^U) \quad a.s. \end{aligned}$$

From the above it follows that

$$P(\widehat{Z}^F \leq y) = P(F^{-1}(\widehat{Z}^U) \leq y) = P(\widehat{Z}^U \leq F(y)) = F(y).$$

If μ is a continuous probability measure being the measure-attractor of $\{\mathbb{R}; f_i, p_i, i = 1, ..., n\}$, with $p_i \neq 1/n$ for some n, then there exists another IFSp (non-overlapping, with uniform probabilities) having μ as its measure-attractor.

Example

Let μ be the probability measure with triangular density function

$$d(x) = \begin{cases} x & 0 \le x \le 1\\ 2-x & 1 \le x \le 2 \end{cases}.$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Example

Let μ be the probability measure with triangular density function

$$d(x) = \begin{cases} x & 0 \le x \le 1\\ 2-x & 1 \le x \le 2 \end{cases}$$

Then μ is the unique stationary distribution of the Markov chain generated by random iteration with the functions

$$f_1(x) = egin{cases} rac{x}{\sqrt{2}} & 0 \leq x \leq 1 \ \sqrt{2x - rac{x^2}{2} - 1} & 1 \leq x \leq 2, \end{cases}$$

and

$$f_2(x) = egin{cases} 2 - \sqrt{1 - rac{x^2}{2}} & 0 \leq x \leq 1 \ 2 - \sqrt{2 - 2x + rac{x^2}{2}} & 1 \leq x \leq 2, \end{cases}$$

chosen uniformly at random.

Histograms of the empirical distribution along a trajectory of a Markov chain having the triangular distribution as its unique stationary distribution.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Histograms of the empirical distribution along a trajectory of a Markov chain having the triangular distribution as its unique stationary distribution.

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへの

Example: Exponential distributions (upper figures), 1-variable mixtures of these exponential distributions (lower figures)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで