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All new results are joint with Michal Rams, Warsaw
IMPAN

Michal visited me last week in Budapest and while
we were preparing our joint talk, he got a terrible flu
which prevented him from participating in this
conference.
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Fractal percolation, introduced by
Mandelbrot early 1970’s:
We partition the unit square into M2 congruent sub
squares each of them are independently retained
with probability p and discarded with probability
1− p. In the squares retained after the previous step
we repeat the same process at infinitum.
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Let Λn be the union of the level n retained squares.
Then the statistically self-similar set of interest is:

Λ :=
∞⋂

n=1

Λn.

It was proved by Falconer and independently
Mauldin, Willims that conditioned on non-extinction:

dimH Λ = dimB Λ =
log(M2 · p)

log M
a.s.

The expected number of descendants of every
square is: M2 · p. Therefore, if M2 · p < 1 then
Λ = ∅ a.s.
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So, we have almost surely:
If p ≤ 1/M2 then Λ = ∅.
If 1/M2 < p < 1/M then dimH(Λ) < 1 (but Λ 6= ∅
with positive probability).

If p > 1
M then either
(a) Λ = ∅ or
(b) dimH(Λ) > 1 .

Recall:

dimH Λ = dimB Λ =
log(M2 · p)

log M
a.s.
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Marstrand Theorem

Theorem (Marstrand)
Let B ⊂ R2 be a Borel set.

1 If dimH(B) ≤ 1 then for Leb-a.e. θ, we have

dimH(projθ(B)) = dimH(B)

2 If dimH(B) > 1 then for Leb-a.e. θ, we have

Leb (projθ(B)) > 0.
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Orthogonal projection to `θ

proj
θ (Λ

)

Λ

θ

`θ
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Radial and co-radial projections
with center t

1
C

Λ

Projt(Λ)
t

Let CProjt(Λ) := {dist(t, x) : x ∈ Λ} ( CProjt(Λ) is
the set of the length of dashed lines above).
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The co-radial projection

CProjt(Λ)CProjt(Λ)CProjt(Λ)

Λ

t
CProjt(Λ)CProjt(Λ)CProjt(Λ)
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Λ percolates

Let Λ(ω) be a realization of this random Cantor set.
We say that Λ(ω) percolates if there is a connected
component of Λ(ω) which connects the left and the
right walls of the square [0, 1]2.

Let us write E|!| for the event that the random
self-similar set Λ percolates.
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Theorem [J.T Chayes, L. Chayes, R.
Durrett] [1]
Let TD be the event that Λ is totally disconnected.
That is all connected components are singletons. Let

pc := inf
{

p : Pp
(
E|!|

)
> 0
}

Then 0 < pc < 1 and

pc = sup {p : Pp (TD) = 1} .

If p < pc < 1 then all connected components of Λ
are singletons. If p > pc then Λ percolates with
positive probability.

Michał Rams, Károly Simon (IMPAN, TU Budapest)Projections of Mandelbrot percolations CUHK 15 / 38



Theorem [J.T Chayes, L. Chayes, R.
Durrett] [1]
Let TD be the event that Λ is totally disconnected.
That is all connected components are singletons. Let

pc := inf
{

p : Pp
(
E|!|

)
> 0
}

Then 0 < pc < 1 and

pc = sup {p : Pp (TD) = 1} .

If p < pc < 1 then all connected components of Λ
are singletons. If p > pc then Λ percolates with
positive probability.

Michał Rams, Károly Simon (IMPAN, TU Budapest)Projections of Mandelbrot percolations CUHK 15 / 38



Theorem [J.T Chayes, L. Chayes, R.
Durrett] [1]
Let TD be the event that Λ is totally disconnected.
That is all connected components are singletons. Let

pc := inf
{

p : Pp
(
E|!|

)
> 0
}

Then 0 < pc < 1 and

pc = sup {p : Pp (TD) = 1} .

If p < pc < 1 then all connected components of Λ
are singletons. If p > pc then Λ percolates with
positive probability.

Michał Rams, Károly Simon (IMPAN, TU Budapest)Projections of Mandelbrot percolations CUHK 15 / 38



Theorem [J.T Chayes, L. Chayes, R.
Durrett] [1]
Let TD be the event that Λ is totally disconnected.
That is all connected components are singletons. Let

pc := inf
{

p : Pp
(
E|!|

)
> 0
}

Then 0 < pc < 1 and

pc = sup {p : Pp (TD) = 1} .

If p < pc < 1 then all connected components of Λ
are singletons. If p > pc then Λ percolates with
positive probability.

Michał Rams, Károly Simon (IMPAN, TU Budapest)Projections of Mandelbrot percolations CUHK 15 / 38



Theorem (Falconer and Grimmett)
Assume that

p > 1
M (1)

Then the orthogonal projection to the x-axis and to
the y-axis of Λ contain an interval almost surely,
conditioned on non-extinction.

Our research was inspired by this paper. The idea of
the proof: use large deviation theory for the
INDEPENDENT number of level n successors of
squares which are in the same vertical column.
dimH Λ > 1 =⇒ ∃n,∃ a level n column with
exponentially many squares. This column is the
biggest column on the next figure.
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There are exponentially many level n
squares in it. When we move from level
n to level n + 1 independently each of
them gives birth an expected number of
pM > 1 number of level n + 1 squares in
the red column. By large deviation th.
there is a superexponentially small
probability that the number of level
n + 1 squares is not more that a fixed
α > 1 multiple of the level n squares in
the red column. This implies that in
each column on the figure there will be
α > 1 times more squares of level n + 1
than of level n except with a super
exponentially small probability.

M−n
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Theorem [R., S.] (When p > 1
M )

We assume that
p >

1
M
.

Then the following statements hold almost surely
conditioned on Λ 6= ∅:

∀θ ∈ [0, π], projθ(Λ) containes an interval .

Further,

∀t ∈ R2, Projt(Λ) and CProjt(Λ) contain an interval .
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The Sun at 2:12 p.m.

The Sun at noon

The Sun at 11:00 a.m.

ΛΛΛ

The intervals in the shadow of the random dust EEE at different times
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Theorem [R., S.] If 1
M2 < p ≤ 1

M

Theorem
Let ` ⊂ R2 be a straight line and let Λ` be the
orthogonal projection of Λ to `.

Then for almost all realizations of Λ (conditioned on
Λ 6= ∅) and for all straight lines ` we have:

dimH(Λ`) = dimH(Λ). (2)

Actually much more is true:
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Lines intersect ≤ c · n squares of
level n

Theorem (R., S.)
If 1

M2 < p ≤ 1
M then for almost all realizations of Λ

(conditioned on Λ 6= ∅) and for all straight lines ` :
there exists a constant C such that the number of
level nnn squares having nonempty intersection
with ΛΛΛ is at most c · nc · nc · n.
On the other hand, almost surely for n big enough,
we can find some line of 45◦ angle which intersects
const · n level n squares.
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M−n

Recall:
1

M2 < p ≤ 1
M ⇒ Then every line ` intersects at most

const · n level n squares.
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Summary
1 If 0 < p ≤ 1/M2 then Λ dies out in finitely many

steps almost surely.
2 If 1

M2 < p < 1
M The Λ 6= ∅ with positive probability

but dimH(Λ) = log(M2p)
M < 1. For almost all

non-empty realizations, for all projections (all
radial, co-radial and all orthogonal projections)
the dimension of Λ does not decrease
under the projection .

3 If 1
M < p < pc. Conditioned on non-extinction,

almost surely: all projections of Λ contain some
intervals but Λ is totally disconnected .

4 If p ≥ pc then Λ percolates.
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Definition
We say that f [0, 1]2 → R is a strictly monotonic
smooth function if f ∈ C2[0, 1] and f ′x 6= 0, f ′y 6= 0.

Theorem (R., S.)
If p > 1

M (dimH Λ > 1) then for every strictly monotonic
smooth function f , f (Λ) contains an interval , almost
surely conditioned on non-extinction.

Examples:
{x + y : (x, y) ∈ Λ} ⊃ interval .
{x · y : (x, y) ∈ Λ} ⊃ interval .
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y

a

Similarly, the arithmetic sum

Λ1 + Λ2 := {a : `a ∩ Λ1 × Λ2 6= ∅} .
is the 45◦ projection of Λ1 × Λ2.
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a

a

a

(x, y, z)

(x, y, 0)

x

y

Sa Sa := {(x, y, z) : x+ y + z = a}

a = x + y + z⇐⇒ (x, y, z) ∈ Sa

Λ1 + Λ2 + Λ3 = {a : Sa ∩ Λ1 × Λ2 × Λ3 6= ∅} .
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Recall:
If 1

M2 < p ≤ 1
M then for almost all realizations of Λ

(conditioned on Λ 6= ∅) and for all straight lines ` :
there exists a constant C such that the number of
level nnn squares having nonempty intersection
with ΛΛΛ is at most c · nc · nc · n.

The same theorem holds if we substitute the
two-dimensional Mandelbrot percolation Cantor set
with the product of two one dimensional Cantor sets
having the same M and probabilities p1, p2 such that
p = p1 · p2.
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Let Λ1,Λ2,Λ3 be one dimensional Mandelbrot
percolation fractals constructed with the same M but
with may be different probabilities p1, p2, p3. Let Λ be
the three dimensional Mandelbrot percolation with
the same M and

p := p1p2p3

The random Cantor sets

Λ1 × Λ2 × Λ3 and Λ

share many common features:

dim Λ1 × Λ2 × Λ3 = dim Λ =
log M3p
log M

.

conditioned on non-extinction.
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Dependency in the product set

Λ123 := Λ1 × Λ2 × Λ3, Λ12 := Λ1 × Λ2.

In Λ123 and in Λ12 there is NO independence
between the successors of two cubes having one
side common.

a
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Λ and Λ12 are a little bit different from
the point of 45◦ projection

a

a

From now we focus on Λ123:
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Let En be the set of selected level n cubes in Λn
1,2,3.

Since dimB Λ123 > 1 so for a τ > 0:

#En ≈ Mn ·Mτ ·n.

The colored planes: 3Mn

planes that are orthogonal
to (1, 1, 1) and the
consecutive ones are
separated by M−n. By
pigeon hole principle one
of the planes intersects
const ·Mτn selected level n
cubes. Assume that this is
the blue plane.

x

z

y

a

a

a

a+M−n

a+M−n

a+M−n

a−M−n

a−M−n

a−M−n
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Among the Mτn cubes which intersect the blue plane
the ones sharing one common side are NOT
independent. For example those who intersect the
red line are NOT independent.

a

a

a

b

b
M−n
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;

dimH Λ123 > 1 but dimH Λ12, dimH Λ23, dimH Λ31 < 1 .

a

a

a

b

b
M−n

M−n

The point is that on the red dashed line there could
be potentially Mn selected level n squares but in
reality there will be only c · n selected squares.
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An easy combinatorial
Lemma shows that for a
t > 0 constant there are
Mnt selected level n
squares that have

no common sides (so
what ever happens in
these cubes in the
future
is independent )
such that they all
intersect the blue
plane.

a

a

a

Then we use Large deviation theory similarly to
Falconer Grimett to get intervals in the projection.
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