Continuity of subadditive pressure

Pablo Shmerkin, joint work with De-Jun Feng (CUHK)

Department of Mathematics University of Surrey

CUHK, 11 December 2012

< ロ > < 同 > < 回 > < 回 >

Self affine sets

- Let {*f_i*(*x*) = *A_ix* + *t_i*}^{*m*}_{*i*=1} be a finite collection contractive affine maps on some Euclidean space ℝ^d. We refer to the *A_i* as the linear parts and to *t_i* as the translations.
- It is well known that there exists a unique nonempty compact set $X = X(f_1, \ldots, f_m)$ such that

$$X = \bigcup_{i=1}^m f_i(X) = \bigcup_{i=1}^m A_i X + t_i.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Self affine sets

- Let {*f_i*(*x*) = *A_ix* + *t_i*}^{*m*}_{*i*=1} be a finite collection contractive affine maps on some Euclidean space ℝ^d. We refer to the *A_i* as the linear parts and to *t_i* as the translations.
- It is well known that there exists a unique nonempty compact set $X = X(f_1, \ldots, f_m)$ such that

$$X = \bigcup_{i=1}^m f_i(X) = \bigcup_{i=1}^m A_i X + t_i.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

P. Shmerkin (Surrey)

2

・ロト ・ 四ト ・ ヨト ・ ヨト

P. Shmerkin (Surrey)

イロン イ理 とく ヨン 一

2

・ロト ・四ト ・ヨト ・ヨト

P. Shmerkin (Surrey)

2

・ロト ・ 四ト ・ ヨト ・ ヨト

- C There is no hope of finding a general formula for the dimension of a self-affine set.
- The Hausdorff and box counting dimensions of a self-similar set may be different (e.g. McMullen carpets).
- © Both the Hausdorff and box counting dimensions are discontinuous as a function of the generating maps.
- © All of the above remains true even if we assume that the pieces $f_i(X)$ are separated (SSC/OSC).

< 回 > < 三 > < 三 >

- C There is no hope of finding a general formula for the dimension of a self-affine set.
- © The Hausdorff and box counting dimensions of a self-similar set may be different (e.g. McMullen carpets).
- Both the Hausdorff and box counting dimensions are discontinuous as a function of the generating maps.
- © All of the above remains true even if we assume that the pieces $f_i(X)$ are separated (SSC/OSC).

A (10) × (10) × (10) ×

- C There is no hope of finding a general formula for the dimension of a self-affine set.
- C The Hausdorff and box counting dimensions of a self-similar set may be different (e.g. McMullen carpets).
- Both the Hausdorff and box counting dimensions are discontinuous as a function of the generating maps.
- If the above remains true even if we assume that the pieces $f_i(X)$ are separated (SSC/OSC).

< 回 > < 三 > < 三 >

- C There is no hope of finding a general formula for the dimension of a self-affine set.
- C The Hausdorff and box counting dimensions of a self-similar set may be different (e.g. McMullen carpets).
- Both the Hausdorff and box counting dimensions are discontinuous as a function of the generating maps.
- \bigcirc All of the above remains true even if we assume that the pieces $f_i(X)$ are separated (SSC/OSC).

不得る 不良る 不良る

Let $(A_1x + t_1, ..., A_mx + t_m)$ be a self-affine IFS. There exists a very important pressure function $P(A_1, ..., A_m; s)$ with the following properties:

It depends on the linear parts of the affine maps and a nonnegative number $s \ge 0$; the translations do not come in.

- For fixed A = (A₁,..., A_m), P(A, s) is a strictly decreasing function of s. Moreover, P(A, 0) = log m > 0 and lim_{s→∞} P(A, s) = -∞.
- Hence, there is a unique $s_0 = s_0(A)$ such that $P(A, s_0) = 0$. This value s_0 is known as the singularity, singular value or affinity dimension.

< 回 > < 回 > < 回 >

Let $(A_1x + t_1, ..., A_mx + t_m)$ be a self-affine IFS. There exists a very important pressure function $P(A_1, ..., A_m; s)$ with the following properties:

- It depends on the linear parts of the affine maps and a nonnegative number $s \ge 0$; the translations do not come in.
- Por fixed A = (A₁,..., A_m), P(A, s) is a strictly decreasing function of s. Moreover, P(A, 0) = log m > 0 and lim_{s→∞} P(A, s) = -∞.
- 3 Hence, there is a unique $s_0 = s_0(A)$ such that $P(A, s_0) = 0$. This value s_0 is known as the singularity, singular value or affinity dimension.

Let $(A_1x + t_1, ..., A_mx + t_m)$ be a self-affine IFS. There exists a very important pressure function $P(A_1, ..., A_m; s)$ with the following properties:

- It depends on the linear parts of the affine maps and a nonnegative number s ≥ 0; the translations do not come in.
- ② For fixed $A = (A_1, \ldots, A_m)$, P(A, s) is a strictly decreasing function of *s*. Moreover, $P(A, 0) = \log m > 0$ and $\lim_{s \to \infty} P(A, s) = -\infty$.
- If the end of the end

イロト 不得 トイヨト イヨト 二日

Let $(A_1x + t_1, ..., A_mx + t_m)$ be a self-affine IFS. There exists a very important pressure function $P(A_1, ..., A_m; s)$ with the following properties:

- It depends on the linear parts of the affine maps and a nonnegative number s ≥ 0; the translations do not come in.
- ② For fixed $A = (A_1, \ldots, A_m)$, P(A, s) is a strictly decreasing function of *s*. Moreover, $P(A, 0) = \log m > 0$ and $\lim_{s \to \infty} P(A, s) = -\infty$.
- Solution Hence, there is a unique $s_0 = s_0(A)$ such that $P(A, s_0) = 0$. This value s_0 is known as the singularity, singular value or affinity dimension.

- (bouady and Osterle; Falconer) $\dim_H(X) \le \dim_B(X) \le s_0$ for all self-affine sets.
- ⓒ (Falconer; Solomyak) If the norms of the A_i are < 1/2, then for a.e. choice of translation t_1, \ldots, t_m , we have

 $\dim_H(X) = \dim_B(X) = s_0.$

- ⓒ (Falconer; Hueter and Lalley; Käenmäki and S.) There are various explicit conditions on the A_i , t_i which guarantee that the Hausdorff and/or the box counting dimensions of X equal s_0 .
- (Many people) Many generalizations to nonlinear situations, measures (instead of sets), multifractal problems, countably many maps, random settings, etc.

イロト イヨト イヨト イヨト

- (bouady and Osterle; Falconer) $\dim_H(X) \le \dim_B(X) \le s_0$ for all self-affine sets.
- ⓒ (Falconer; Solomyak) If the norms of the A_i are < 1/2, then for a.e. choice of translation t₁,..., t_m, we have

 $\dim_H(X) = \dim_B(X) = s_0.$

- ⓒ (Falconer; Hueter and Lalley; Käenmäki and S.) There are various explicit conditions on the A_i , t_i which guarantee that the Hausdorff and/or the box counting dimensions of X equal s_0 .
- (Many people) Many generalizations to nonlinear situations, measures (instead of sets), multifractal problems, countably many maps, random settings, etc.

イロン イ団と イヨン 一

- (bouady and Osterle; Falconer) $\dim_H(X) \le \dim_B(X) \le s_0$ for all self-affine sets.
- (Falconer; Solomyak) If the norms of the A_i are < 1/2, then for a.e. choice of translation t₁,..., t_m, we have

 $\dim_H(X) = \dim_B(X) = s_0.$

(Falconer; Hueter and Lalley; Käenmäki and S.) There are various explicit conditions on the A_i , t_i which guarantee that the Hausdorff and/or the box counting dimensions of X equal s_0 .

(Many people) Many generalizations to nonlinear situations, measures (instead of sets), multifractal problems, countably many maps, random settings, etc.

- (bouady and Osterle; Falconer) $\dim_H(X) \le \dim_B(X) \le s_0$ for all self-affine sets.
- (Falconer; Solomyak) If the norms of the A_i are < 1/2, then for a.e. choice of translation t_1, \ldots, t_m , we have

 $\dim_H(X) = \dim_B(X) = s_0.$

- ⓒ (Falconer; Hueter and Lalley; Käenmäki and S.) There are various explicit conditions on the A_i , t_i which guarantee that the Hausdorff and/or the box counting dimensions of X equal s_0 .
- (Many people) Many generalizations to nonlinear situations, measures (instead of sets), multifractal problems, countably many maps, random settings, etc.

イロト 不得 トイヨト イヨト 二日

Summary so far

C The problem of calculating the dimension of a specific self-affine set is untractable.

- However, the singularity dimension is in some sense the "expected" value of the Hausdorff/box dimension (it is always an upper bound, it is typically the dimension and also in concrete classes of examples).
- The singularity dimension s₀(A₁,..., A_m) is defined by the condition P(A₁,..., A_m; s₀) = 0.

Summary so far

- C The problem of calculating the dimension of a specific self-affine set is untractable.
- However, the singularity dimension is in some sense the "expected" value of the Hausdorff/box dimension (it is always an upper bound, it is typically the dimension and also in concrete classes of examples).
 - The singularity dimension s₀(A₁,..., A_m) is defined by the condition P(A₁,..., A_m; s₀) = 0.

Summary so far

- C The problem of calculating the dimension of a specific self-affine set is untractable.
- However, the singularity dimension is in some sense the "expected" value of the Hausdorff/box dimension (it is always an upper bound, it is typically the dimension and also in concrete classes of examples).
 - The singularity dimension s₀(A₁,..., A_m) is defined by the condition P(A₁,..., A_m; s₀) = 0.

The question and the result

Question (Folklore, Solomyak, Falconer and Sloan)

Is the singularity dimension continuous as a function of A_1, \ldots, A_m ? More generally, is the subadditive pressure $P(A_1, \ldots, A_m; s)$ jointly continuous?

Theorem (D-J Feng and P.S.)

Yes, the subadditive pressure is continuous and hence so is the singularity dimension as a function of the defining linear maps.

The question and the result

Question (Folklore, Solomyak, Falconer and Sloan)

Is the singularity dimension continuous as a function of A_1, \ldots, A_m ? More generally, is the subadditive pressure $P(A_1, \ldots, A_m; s)$ jointly continuous?

Theorem (D-J Feng and P.S.)

Yes, the subadditive pressure is continuous and hence so is the singularity dimension as a function of the defining linear maps.

・ロト ・ 四ト ・ ヨト ・ ヨト

Estimating the Hausdorff measure of X in \mathbb{R}^2

In order to estimate the s-dimensional Hasudorff measure of X, we use that

$$X \subset \bigcup_{(i_1...i_k)} f_{i_1}\cdots f_{i_k}(B).$$

This is a cover of *X* by ellipses.

We can cover each ellipse by disks separately (this may not be optimal if the ellipses overlap substantially or are aligned in a pattern that makes it better to cover many at once).

How to cover a very eccentric ellipse efficiently?

Estimating the Hausdorff measure of X in \mathbb{R}^2

In order to estimate the s-dimensional Hasudorff measure of X, we use that

$$X \subset \bigcup_{(i_1\ldots i_k)} f_{i_1}\cdots f_{i_k}(B).$$

This is a cover of *X* by ellipses.

We can cover each ellipse by disks separately (this may not be optimal if the ellipses overlap substantially or are aligned in a pattern that makes it better to cover many at once).

How to cover a very eccentric ellipse efficiently?

Estimating the Hausdorff measure of X in \mathbb{R}^2

In order to estimate the s-dimensional Hasudorff measure of X, we use that

$$X \subset \bigcup_{(i_1\ldots i_k)} f_{i_1}\cdots f_{i_k}(B).$$

This is a cover of *X* by ellipses.

We can cover each ellipse by disks separately (this may not be optimal if the ellipses overlap substantially or are aligned in a pattern that makes it better to cover many at once).

How to cover a very eccentric ellipse efficiently?

How to cover an ellipse efficiently

P. Shmerkin (Surrey)

э

How to cover an ellipse efficiently

P. Shmerkin (Surrey)

э

How to cover an ellipse efficiently

P. Shmerkin (Surrey)

э

The singular value function (SVF) $\phi^{s}(A)$ is the contribution to *s*-dimensional Hausdorff measure of the ellipse A(B)

Given $A \in GL_d(\mathbb{R})$, $\alpha_1(A) \ge \cdots \ge \alpha_d(A) > 0$ are the singular values of A (i.e. the semi-axes of the ellipsoid A(B), or the square roots of the eigenvalues of A^*A .)

Then

$$\phi^{s}(A) = \alpha_{1}(A) \cdots \alpha_{m}(A) \alpha_{m+1}^{s-m}.$$

If d = 2, then

$$\begin{split} \phi^{s}(A) &= \alpha_{1}(A)^{s} & \text{if } \lfloor s \rfloor = 1, \\ \phi^{s}(A) &= \alpha_{1}(A)\alpha_{2}(A)^{s-1} & \text{if } \lfloor s \rfloor = 2. \end{split}$$

The singular value function (SVF) $\phi^{s}(A)$ is the contribution to *s*-dimensional Hausdorff measure of the ellipse A(B)

Given $A \in GL_d(\mathbb{R})$, $\alpha_1(A) \ge \cdots \ge \alpha_d(A) > 0$ are the singular values of A (i.e. the semi-axes of the ellipsoid A(B), or the square roots of the eigenvalues of A^*A .)

Then

$$\phi^{s}(A) = \alpha_{1}(A) \cdots \alpha_{m}(A) \alpha_{m+1}^{s-m}.$$

If d = 2, then

$$\begin{split} \phi^{s}(A) &= \alpha_{1}(A)^{s} & \text{if } \lfloor s \rfloor = 1, \\ \phi^{s}(A) &= \alpha_{1}(A)\alpha_{2}(A)^{s-1} & \text{if } \lfloor s \rfloor = 2. \end{split}$$

The singular value function (SVF) $\phi^{s}(A)$ is the contribution to *s*-dimensional Hausdorff measure of the ellipse A(B)

Given $A \in GL_d(\mathbb{R})$, $\alpha_1(A) \ge \cdots \ge \alpha_d(A) > 0$ are the singular values of A (i.e. the semi-axes of the ellipsoid A(B), or the square roots of the eigenvalues of A^*A .)

Then

$$\phi^{s}(A) = \alpha_{1}(A) \cdots \alpha_{m}(A) \alpha_{m+1}^{s-m}.$$

If d = 2, then

$$\begin{split} \phi^{s}(A) &= \alpha_{1}(A)^{s} & \text{if } \lfloor s \rfloor = 1, \\ \phi^{s}(A) &= \alpha_{1}(A)\alpha_{2}(A)^{s-1} & \text{if } \lfloor s \rfloor = 2. \end{split}$$

The singular value function (SVF) $\phi^{s}(A)$ is the contribution to *s*-dimensional Hausdorff measure of the ellipse A(B)

Given $A \in GL_d(\mathbb{R})$, $\alpha_1(A) \ge \cdots \ge \alpha_d(A) > 0$ are the singular values of A (i.e. the semi-axes of the ellipsoid A(B), or the square roots of the eigenvalues of A^*A .)

Then

$$\phi^{s}(A) = \alpha_{1}(A) \cdots \alpha_{m}(A) \alpha_{m+1}^{s-m}.$$

If d = 2, then

$$\begin{split} \phi^{s}(A) &= \alpha_{1}(A)^{s} & \text{if } \lfloor s \rfloor = 1, \\ \phi^{s}(A) &= \alpha_{1}(A)\alpha_{2}(A)^{s-1} & \text{if } \lfloor s \rfloor = 2. \end{split}$$

Definition

Let $A = (A_1, ..., A_m) \in (GL_d(\mathbb{R}))^m$. Given $s \ge 0$, the subadditive topological pressure P(A, s) is defined as

$$P(A, s) = \lim_{n \to \infty} \frac{1}{n} \log \left(\sum_{i_1 \dots i_n} \phi^s(A_{i_1} \cdots A_{i_n}) \right)$$

P. Shmerkin (Surrey)

CUHK, 11 December 2012 12 / 20

Theorem (Folklore, Falconer-Sloan, Käenmäki-S.)

 $A \rightarrow P(A, s)$ is always upper semicontinuous. Under each of the following assumptions, A is a point of continuity of map $P(\cdot, s)$:

- (A₁,..., A_m) satisfies certain strong irreducibility condition.
- $A_1 = \cdots = A_m$ is an upper triangular map.
- All A_i map a projective closed convex set into its interior (cone condition) and s ≤ 1.
- All exterior powers of A_i satisfy the cone condition.

Theorem (Folklore, Falconer-Sloan, Käenmäki-S.)

 $A \rightarrow P(A, s)$ is always upper semicontinuous. Under each of the following assumptions, A is a point of continuity of map $P(\cdot, s)$:

- (A₁,..., A_m) satisfies certain strong irreducibility condition.
- $A_1 = \cdots = A_m$ is an upper triangular map.
- All A_i map a projective closed convex set into its interior (cone condition) and s ≤ 1.
- All exterior powers of A_i satisfy the cone condition.

Theorem (Folklore, Falconer-Sloan, Käenmäki-S.)

 $A \rightarrow P(A, s)$ is always upper semicontinuous. Under each of the following assumptions, A is a point of continuity of map $P(\cdot, s)$:

- (*A*₁,..., *A_m*) satisfies certain strong irreducibility condition.
- $A_1 = \cdots = A_m$ is an upper triangular map.
- All A_i map a projective closed convex set into its interior (cone condition) and s ≤ 1.
- All exterior powers of A_i satisfy the cone condition.

Theorem (Folklore, Falconer-Sloan, Käenmäki-S.)

 $A \rightarrow P(A, s)$ is always upper semicontinuous. Under each of the following assumptions, A is a point of continuity of map $P(\cdot, s)$:

- (*A*₁,..., *A_m*) satisfies certain strong irreducibility condition.
- $A_1 = \cdots = A_m$ is an upper triangular map.
- All A_i map a projective closed convex set into its interior (cone condition) and s ≤ 1.
- All exterior powers of A_i satisfy the cone condition.

Theorem (Folklore, Falconer-Sloan, Käenmäki-S.)

 $A \rightarrow P(A, s)$ is always upper semicontinuous. Under each of the following assumptions, A is a point of continuity of map $P(\cdot, s)$:

- (*A*₁,..., *A_m*) satisfies certain strong irreducibility condition.
- $A_1 = \cdots = A_m$ is an upper triangular map.
- All A_i map a projective closed convex set into its interior (cone condition) and s ≤ 1.
- All exterior powers of A_i satisfy the cone condition.

Theorem (Folklore, Falconer-Sloan, Käenmäki-S.)

 $A \rightarrow P(A, s)$ is always upper semicontinuous. Under each of the following assumptions, A is a point of continuity of map $P(\cdot, s)$:

- (A_1, \ldots, A_m) satisfies certain strong irreducibility condition.
- $A_1 = \cdots = A_m$ is an upper triangular map.
- All A_i map a projective closed convex set into its interior (cone condition) and s ≤ 1.
- All exterior powers of A_i satisfy the cone condition.

We prove continuity of more general subadditive pressures arising in:

- The study of dimension of certain non-affine, non-conformal repellers,
- The multifractal spectrum of Gibbs measures on self-affine sets,
- Some randomized models of self-affine sets.

Our result also implies that equilibrium measures for P(A, s) are continuous as a function of A.

A (10) A (10) A (10) A

We prove continuity of more general subadditive pressures arising in:

- The study of dimension of certain non-affine, non-conformal repellers,
- The multifractal spectrum of Gibbs measures on self-affine sets,
- Some randomized models of self-affine sets.

Our result also implies that equilibrium measures for P(A, s) are continuous as a function of A.

We prove continuity of more general subadditive pressures arising in:

- The study of dimension of certain non-affine, non-conformal repellers,
- The multifractal spectrum of Gibbs measures on self-affine sets,
- Some randomized models of self-affine sets.

Our result also implies that equilibrium measures for P(A, s) are continuous as a function of A.

We prove continuity of more general subadditive pressures arising in:

- The study of dimension of certain non-affine, non-conformal repellers,
- The multifractal spectrum of Gibbs measures on self-affine sets,
- Some randomized models of self-affine sets.

Our result also implies that equilibrium measures for P(A, s) are continuous as a function of A.

We prove continuity of more general subadditive pressures arising in:

- The study of dimension of certain non-affine, non-conformal repellers,
- The multifractal spectrum of Gibbs measures on self-affine sets,
- Some randomized models of self-affine sets.

Our result also implies that equilibrium measures for P(A, s) are continuous as a function of A.

Variational principle

Theorem (A. Käenmäki)

Given A, s,

$$P(\boldsymbol{A},\boldsymbol{s}) = max \left\{ h_{\mu} + \lim_{n \to \infty} \frac{1}{n} \int \log \phi^{\boldsymbol{s}}(\boldsymbol{A}_{i_1} \cdots \boldsymbol{A}_{i_n}) d\mu(\mathbf{i}) \right\},\$$

where the maximum is over all ergodic measures μ on $\{1, \ldots, m\}^{\mathbb{Z}}$, and h_{μ} is measure-theoretical entropy.

Definition

A measure μ achieving the maximum is called an equilibrium measure.

Question

Is the set of ergodic equilibrium measures always finite?

Variational principle

Theorem (A. Käenmäki)

Given A, s,

$$P(\boldsymbol{A},\boldsymbol{s}) = max \left\{ h_{\mu} + \lim_{n \to \infty} \frac{1}{n} \int \log \phi^{\boldsymbol{s}}(\boldsymbol{A}_{i_1} \cdots \boldsymbol{A}_{i_n}) d\mu(\mathbf{i}) \right\},\$$

where the maximum is over all ergodic measures μ on $\{1, \ldots, m\}^{\mathbb{Z}}$, and h_{μ} is measure-theoretical entropy.

Definition

A measure μ achieving the maximum is called an equilibrium measure.

Question

Is the set of ergodic equilibrium measures always finite?

< 日 > < 同 > < 回 > < 回 > < □ > <

Variational principle

Theorem (A. Käenmäki)

Given A, s,

$$P(A, s) = max \left\{ h_{\mu} + \lim_{n \to \infty} \frac{1}{n} \int \log \phi^{s}(A_{i_{1}} \cdots A_{i_{n}}) d\mu(\mathbf{i}) \right\},$$

where the maximum is over all ergodic measures μ on $\{1, \ldots, m\}^{\mathbb{Z}}$, and h_{μ} is measure-theoretical entropy.

Definition

A measure μ achieving the maximum is called an equilibrium measure.

Question

Is the set of ergodic equilibrium measures always finite?

Theorem

Given an ergodic measure μ , there exist $\lambda_1 > ... > \lambda_k$ and $d_1, ..., d_k$, such that for μ -almost all **i** there exists a measurable decomposition

$$\mathbb{R}^d = \bigoplus_{j=1}^k E_j(\mathbf{i})$$

such that for μ -a.e. i,

- $I im E_j(\mathbf{i}) = d_j,$
- $(a) E_j(\sigma \mathbf{i}) = A_{i_1} E_j(\mathbf{i}) \text{ for all } j,$
- 3 For each nonzero $v \in E_j(i)$,

$$\lim_{n\to\infty}\frac{1}{n}\log|A_{i_n}\cdots A_{i_1}v|=\lambda_j.$$

Theorem

Given an ergodic measure μ , there exist $\lambda_1 > ... > \lambda_k$ and $d_1, ..., d_k$, such that for μ -almost all **i** there exists a measurable decomposition

$$\mathbb{R}^d = \bigoplus_{j=1}^k E_j(\mathbf{i})$$

such that for μ -a.e. i,

- dim $E_j(\mathbf{i}) = d_j$,
- $E_j(\sigma \mathbf{i})) = A_{i_1} E_j(\mathbf{i}) \text{ for all } j,$
- 3) For each nonzero $v \in E_j(i)$,

$$\lim_{n\to\infty}\frac{1}{n}\log|A_{i_n}\cdots A_{i_1}v|=\lambda_j.$$

Theorem

Given an ergodic measure μ , there exist $\lambda_1 > ... > \lambda_k$ and $d_1, ..., d_k$, such that for μ -almost all **i** there exists a measurable decomposition

$$\mathbb{R}^d = \bigoplus_{j=1}^k E_j(\mathbf{i})$$

such that for μ -a.e. i,

- dim $E_j(\mathbf{i}) = d_j$,
- **2** $E_j(\sigma \mathbf{i}) = A_{i_1}E_j(\mathbf{i})$ for all j,

3) For each nonzero $v \in E_i(i)$,

$$\lim_{n\to\infty}\frac{1}{n}\log|A_{i_n}\cdots A_{i_1}v|=\lambda_j.$$

Theorem

Given an ergodic measure μ , there exist $\lambda_1 > ... > \lambda_k$ and $d_1, ..., d_k$, such that for μ -almost all **i** there exists a measurable decomposition

$$\mathbb{R}^d = \bigoplus_{j=1}^k E_j(\mathbf{i})$$

such that for μ -a.e. i,

- dim $E_j(\mathbf{i}) = d_j$,
- **2** $E_j(\sigma \mathbf{i}) = A_{i_1}E_j(\mathbf{i})$ for all j,

3 For each nonzero $v \in E_j(\mathbf{i})$,

$$\lim_{n\to\infty}\frac{1}{n}\log|A_{i_n}\cdots A_{i_1}v|=\lambda_j.$$

- From now on assume d = 2 for simplicity (the ideas are the same in higher dimensions, but there are substantial technical issues).
- Suppose μ is an ergodic measure with different Lyapunov exponents λ⁺ > λ⁻. Write ℝ² = E⁺(i) ⊕ E⁻(i) for the Oseledets decomposition.
- Key observation: suppose that for some i and some large n, *E*⁺(i) ~ *E*⁺(σⁿi) and *E*[−](i) ~ *E*[−](σⁿi). Then *A_{in}* ··· *A_{in}* maps a narrow cone around *E*⁺(i) into itself.

- From now on assume d = 2 for simplicity (the ideas are the same in higher dimensions, but there are substantial technical issues).
- Suppose μ is an ergodic measure with different Lyapunov exponents λ⁺ > λ⁻. Write ℝ² = E⁺(i) ⊕ E⁻(i) for the Oseledets decomposition.
- Key observation: suppose that for some i and some large n, $E^+(\mathbf{i}) \sim E^+(\sigma^n \mathbf{i})$ and $E^-(\mathbf{i}) \sim E^-(\sigma^n \mathbf{i})$. Then $A_{i_n} \cdots A_{i_1}$ maps a narrow cone around $E^+(\mathbf{i})$ into itself.

3

- From now on assume d = 2 for simplicity (the ideas are the same in higher dimensions, but there are substantial technical issues).
- Suppose μ is an ergodic measure with different Lyapunov exponents λ⁺ > λ⁻. Write ℝ² = E⁺(i) ⊕ E⁻(i) for the Oseledets decomposition.
- Key observation: suppose that for some i and some large n, *E*⁺(i) ~ *E*⁺(σⁿi) and *E*[−](i) ~ *E*[−](σⁿi). Then *A*_{in} ··· *A*_{i1} maps a narrow cone around *E*⁺(i) into itself.

We consider the space X of all splittings ℝ² = E⁺ ⊕ E⁻, which has a natural metric.

- The push-down of the measure μ under the Oseledets splitting is a measure on \mathcal{X} . Let $\Sigma = (\widetilde{E}^+, \widetilde{E}^-)$ be a point in the support.
- Let X_ε be the ε neighborhood of Σ. By the ergodic theorem (or Poincaré recurrence), for μ-a.e. i for which the splitting is in X_ε, there are infinitely many n ≥ 1 such that the splitting of σⁿi is also in X_ε.
- By the key remark, when this happens we know that A_{in} ··· A_{i1} maps the cone C(*E*⁺, ε) into its interior.

< ロ > < 同 > < 回 > < 回 >

- We consider the space X of all splittings ℝ² = E⁺ ⊕ E⁻, which has a natural metric.
- The push-down of the measure μ under the Oseledets splitting is a measure on \mathcal{X} . Let $\Sigma = (\widetilde{E}^+, \widetilde{E}^-)$ be a point in the support.
- Let X_ε be the ε neighborhood of Σ. By the ergodic theorem (or Poincaré recurrence), for μ-a.e. i for which the splitting is in X_ε, there are infinitely many n ≥ 1 such that the splitting of σⁿi is also in X_ε.
- By the key remark, when this happens we know that A_{in} ··· A_{i1} maps the cone C(*E*⁺, ε) into its interior.

- We consider the space X of all splittings ℝ² = E⁺ ⊕ E⁻, which has a natural metric.
- The push-down of the measure μ under the Oseledets splitting is a measure on \mathcal{X} . Let $\Sigma = (\widetilde{E}^+, \widetilde{E}^-)$ be a point in the support.
- Let X_ε be the ε neighborhood of Σ. By the ergodic theorem (or Poincaré recurrence), for μ-a.e. i for which the splitting is in X_ε, there are infinitely many n ≥ 1 such that the splitting of σⁿi is also in X_ε.
- By the key remark, when this happens we know that A_{i_n} · · · A_{i₁} maps the cone C(*ε*⁺, ε) into its interior.

- We consider the space X of all splittings ℝ² = E⁺ ⊕ E⁻, which has a natural metric.
- The push-down of the measure μ under the Oseledets splitting is a measure on \mathcal{X} . Let $\Sigma = (\widetilde{E}^+, \widetilde{E}^-)$ be a point in the support.
- Let X_ε be the ε neighborhood of Σ. By the ergodic theorem (or Poincaré recurrence), for μ-a.e. i for which the splitting is in X_ε, there are infinitely many n ≥ 1 such that the splitting of σⁿi is also in X_ε.
- By the key remark, when this happens we know that A_{i_n} ··· A_{i₁} maps the cone C(*E*⁺, ε) into its interior.

We know that μ { β : $\mathbf{i} \in \mathcal{X}_{\varepsilon}$ } > 0. By the ergodic theorem and the previous remarks, we can find arbitrarily large *n* and a collection of words $I = \{(i_n, \ldots, i_1)\}$ such that:

2 There is a cone $C(\tilde{E}^+, \varepsilon)$ which is mapped into its interior by $A_{i_n} \cdots A_{i_1}$ for $(i_n \dots i_1) \in I$.

It follows that the IFS $\{A_{i_n} \cdots A_{i_1} : (i_n \dots i_1) \in I\}$ has pressure arbitrarily close to that of the original IFS (after normalization) and satisfies the cone condition. QED.

A (10) A (10)

We know that μ { β : $\mathbf{i} \in \mathcal{X}_{\varepsilon}$ } > 0. By the ergodic theorem and the previous remarks, we can find arbitrarily large *n* and a collection of words $I = \{(i_n, \ldots, i_1)\}$ such that:

2 There is a cone $C(\tilde{E}^+, \varepsilon)$ which is mapped into its interior by $A_{i_n} \cdots A_{i_1}$ for $(i_n \dots i_1) \in I$.

It follows that the IFS $\{A_{i_n} \cdots A_{i_1} : (i_n \dots i_1) \in I\}$ has pressure arbitrarily close to that of the original IFS (after normalization) and satisfies the cone condition. QED.

We know that μ { β : $\mathbf{i} \in \mathcal{X}_{\varepsilon}$ } > 0. By the ergodic theorem and the previous remarks, we can find arbitrarily large *n* and a collection of words $I = \{(i_n, \ldots, i_1)\}$ such that:

2 There is a cone $C(\tilde{E}^+, \varepsilon)$ which is mapped into its interior by $A_{i_n} \cdots A_{i_1}$ for $(i_n \dots i_1) \in I$.

It follows that the IFS $\{A_{i_n} \cdots A_{i_1} : (i_n \dots i_1) \in I\}$ has pressure arbitrarily close to that of the original IFS (after normalization) and satisfies the cone condition. QED.

We know that μ { β : $\mathbf{i} \in \mathcal{X}_{\varepsilon}$ } > 0. By the ergodic theorem and the previous remarks, we can find arbitrarily large *n* and a collection of words $I = \{(i_n, \ldots, i_1)\}$ such that:

2 There is a cone $C(\tilde{E}^+, \varepsilon)$ which is mapped into its interior by $A_{i_n} \cdots A_{i_1}$ for $(i_n \dots i_1) \in I$.

It follows that the IFS $\{A_{i_n} \cdots A_{i_1} : (i_n \dots i_1) \in I\}$ has pressure arbitrarily close to that of the original IFS (after normalization) and satisfies the cone condition. QED.

The end

Thanks!

P. Shmerkin (Surrey)

Continuity of subadditive pressure

CUHK, 11 December 2012 20 / 20

æ

・ロト ・ 四ト ・ ヨト ・ ヨト