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Self affine sets

Let {fi(x) = Aix + ti}mi=1 be a finite collection contractive affine
maps on some Euclidean space Rd . We refer to the Ai as the
linear parts and to ti as the translations.
It is well known that there exists a unique nonempty compact set
X = X (f1, . . . , fm) such that

X =
m⋃

i=1

fi(X ) =
m⋃

i=1

AiX + ti .
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Dimension of self-affine sets: bad news

/ There is no hope of finding a general formula for the dimension of
a self-affine set.

/ The Hausdorff and box counting dimensions of a self-similar set
may be different (e.g. McMullen carpets).

/ Both the Hausdorff and box counting dimensions are
discontinuous as a function of the generating maps.

/ All of the above remains true even if we assume that the pieces
fi(X ) are separated (SSC/OSC).
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Subadditive pressure

Let (A1x + t1, . . . ,Amx + tm) be a self-affine IFS. There exists a very
important pressure function P(A1, . . . ,Am; s) with the following
properties:

1 It depends on the linear parts of the affine maps and a
nonnegative number s ≥ 0; the translations do not come in.

2 For fixed A = (A1, . . . ,Am), P(A, s) is a strictly decreasing function
of s. Moreover, P(A,0) = log m > 0 and lims→∞ P(A, s) = −∞.

3 Hence, there is a unique s0 = s0(A) such that P(A, s0) = 0. This
value s0 is known as the singularity, singular value or affinity
dimension.
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Singularity dimension and dimension: good news

, (Douady and Osterle; Falconer) dimH(X ) ≤ dimB(X ) ≤ s0 for all
self-affine sets.

, (Falconer; Solomyak) If the norms of the Ai are < 1/2, then for
a.e. choice of translation t1, . . . , tm, we have

dimH(X ) = dimB(X ) = s0.

, (Falconer; Hueter and Lalley; Käenmäki and S.) There are various
explicit conditions on the Ai , ti which guarantee that the Hausdorff
and/or the box counting dimensions of X equal s0.

, (Many people) Many generalizations to nonlinear situations,
measures (instead of sets), multifractal problems, countably many
maps, random settings, etc.
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Summary so far

/ The problem of calculating the dimension of a specific self-affine
set is untractable.

, However, the singularity dimension is in some sense the
“expected” value of the Hausdorff/box dimension (it is always an
upper bound, it is typically the dimension and also in concrete
classes of examples).
The singularity dimension s0(A1, . . . ,Am) is defined by the
condition P(A1, . . . ,Am; s0) = 0.
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The question and the result

Question (Folklore, Solomyak, Falconer and Sloan)
Is the singularity dimension continuous as a function of A1, . . . ,Am?
More generally, is the subadditive pressure P(A1, . . . ,Am; s) jointly
continuous?

Theorem (D-J Feng and P.S.)
Yes, the subadditive pressure is continuous and hence so is the
singularity dimension as a function of the defining linear maps.
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Estimating the Hausdorff measure of X in R2

In order to estimate the s-dimensional Hasudorff measure of X , we
use that

X ⊂
⋃

(i1...ik )

fi1 · · · fik (B).

This is a cover of X by ellipses.

We can cover each ellipse by disks separately (this may not be optimal
if the ellipses overlap substantially or are aligned in a pattern that
makes it better to cover many at once).

How to cover a very eccentric ellipse efficiently?
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How to cover an ellipse efficiently
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Singular value function

The singular value function (SVF) φs(A) is the contribution to
s-dimensional Hausdorff measure of the ellipse A(B)

Given A ∈ GLd (R), α1(A) ≥ · · · ≥ αd (A) > 0 are the singular values of
A (i.e. the semi-axes of the ellipsoid A(B), or the square roots of the
eigenvalues of A∗A.)

Then
φs(A) = α1(A) · · ·αm(A)αs−m

m+1.

If d = 2, then

φs(A) = α1(A)s if bsc = 1,

φs(A) = α1(A)α2(A)s−1 if bsc = 2.
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Subadditive pressure

Definition
Let A = (A1, . . . ,Am) ∈ (GLd (R))m. Given s ≥ 0, the subadditive
topological pressure P(A, s) is defined as

P(A, s) = lim
n→∞

1
n

log

∑
i1...in

φs(Ai1 · · ·Ain )

 .
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Some earlier partial continuity results

Theorem (Folklore, Falconer-Sloan, Käenmäki-S.)
A→ P(A, s) is always upper semicontinuous. Under each of the
following assumptions, A is a point of continuity of map P(·, s):

(A1, . . . ,Am) satisfies certain strong irreducibility condition.
A1 = · · · = Am is an upper triangular map.
All Ai map a projective closed convex set into its interior (cone
condition) and s ≤ 1.
All exterior powers of Ai satisfy the cone condition.
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Some generalizations

We prove continuity of more general subadditive pressures arising in:

The study of dimension of certain non-affine, non-conformal
repellers,
The multifractal spectrum of Gibbs measures on self-affine sets,
Some randomized models of self-affine sets.

Our result also implies that equilibrium measures for P(A, s) are
continuous as a function of A.
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Variational principle

Theorem (A. Käenmäki)
Given A, s,

P(A, s) = max
{

hµ + lim
n→∞

1
n

∫
logφs(Ai1 · · ·Ain )dµ(i)

}
,

where the maximum is over all ergodic measures µ on {1, . . . ,m}Z,
and hµ is measure-theoretical entropy.

Definition
A measure µ achieving the maximum is called an equilibrium measure.

Question
Is the set of ergodic equilibrium measures always finite?
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Oseledets Theorem
Theorem
Given an ergodic measure µ, there exist λ1 > . . . > λk and d1, . . . ,dk ,
such that for µ-almost all i there exists a measurable decomposition

Rd =
k⊕

j=1

Ej(i)

such that for µ-a.e. i,
1 dim Ej(i) = dj ,
2 Ej(σi)) = Ai1Ej(i) for all j ,
3 For each nonzero v ∈ Ej(i),

lim
n→∞

1
n

log |Ain · · ·Ai1v | = λj .
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Idea of proof I

From now on assume d = 2 for simplicity (the ideas are the same
in higher dimensions, but there are substantial technical issues).
Suppose µ is an ergodic measure with different Lyapunov
exponents λ+ > λ−. Write R2 = E+(i)⊕ E−(i) for the Oseledets
decomposition.
Key observation: suppose that for some i and some large n,
E+(i) ∼ E+(σni) and E−(i) ∼ E−(σni). Then Ain · · ·Ai1 maps a
narrow cone around E+(i) into itself.

P. Shmerkin (Surrey) Continuity of subadditive pressure CUHK, 11 December 2012 17 / 20



Idea of proof I

From now on assume d = 2 for simplicity (the ideas are the same
in higher dimensions, but there are substantial technical issues).
Suppose µ is an ergodic measure with different Lyapunov
exponents λ+ > λ−. Write R2 = E+(i)⊕ E−(i) for the Oseledets
decomposition.
Key observation: suppose that for some i and some large n,
E+(i) ∼ E+(σni) and E−(i) ∼ E−(σni). Then Ain · · ·Ai1 maps a
narrow cone around E+(i) into itself.

P. Shmerkin (Surrey) Continuity of subadditive pressure CUHK, 11 December 2012 17 / 20



Idea of proof I

From now on assume d = 2 for simplicity (the ideas are the same
in higher dimensions, but there are substantial technical issues).
Suppose µ is an ergodic measure with different Lyapunov
exponents λ+ > λ−. Write R2 = E+(i)⊕ E−(i) for the Oseledets
decomposition.
Key observation: suppose that for some i and some large n,
E+(i) ∼ E+(σni) and E−(i) ∼ E−(σni). Then Ain · · ·Ai1 maps a
narrow cone around E+(i) into itself.

P. Shmerkin (Surrey) Continuity of subadditive pressure CUHK, 11 December 2012 17 / 20



Idea of proof II

We consider the space X of all splittings R2 = E+ ⊕ E−, which
has a natural metric.
The push-down of the measure µ under the Oseledets splitting is
a measure on X . Let Σ = (Ẽ+, Ẽ−) be a point in the support.
Let Xε be the ε neighborhood of Σ. By the ergodic theorem (or
Poincaré recurrence), for µ-a.e. i for which the splitting is in Xε,
there are infinitely many n ≥ 1 such that the splitting of σni is also
in Xε.
By the key remark, when this happens we know that Ain · · ·Ai1
maps the cone C(Ẽ+, ε) into its interior.
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Idea of proof III

We know that µ{ß : i ∈ Xε} > 0. By the ergodic theorem and the
previous remarks, we can find arbitrarily large n and a collection of
words I = {(in, . . . , i1)} such that:

1
∑

(in...i1)∈I µ[in . . . i1] > c(ε) > 0.

2 There is a cone C(Ẽ+, ε) which is mapped into its interior by
Ain · · ·Ai1 for (in . . . i1) ∈ I.

It follows that the IFS {Ain · · ·Ai1 : (in . . . i1) ∈ I} has pressure arbitrarily
close to that of the original IFS (after normalization) and satisfies the
cone condition. QED.
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The end

Thanks!
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