Intro.	Convergence conditions	Approximate equation	Even fractions	Questions

Hardy-Littlewood series and (even) continued fractions

Stéphane Seuret, Université Paris-Est

joint work with T. Rivoal (CNRS, Grenoble)

Advances on Fractals and Related Fields

The Chinese University of Hong-Kong

э

1 Introduction

2 Convergence conditions

3 Approximate modular equation

4 Even continued fractions

6 Open questions

< ロ > (四 > (四 > (三 > (三 >)))

∃ 990

$$R_2(x) = \sum_{k=1}^{\infty} \frac{\sin(\pi k^2 x)}{k^2}$$

э.

 R_2 was proposed by Riemann in the 1850's as an example of continuous but nowhere differentiable function (Riemann, Weierstrass, Hardy and Littlewood, Gerver, Itatsu, Jaffard).

1 - Introduction

Non-differentiable Riemann function:

$$R_2(x) = \sum_{k=1}^{\infty} \frac{\sin(\pi k^2 x)}{k^2}$$

 R_2 was proposed by Riemann in the 1850's as an example of continuous but nowhere differentiable function (Riemann, Weierstrass, Hardy and Littlewood, Gerver, Itatsu, Jaffard).

Deep connections with Diophantine approximation:

- Differentiable only at rationals p/q where p and q are both odd.
- The local regularity of R_2 at x depends on a sort of Diophantine type of x.

э

1 - Introduction

Non-differentiable Riemann function:

$$R_2(x) = \sum_{k=1}^{\infty} \frac{\sin(\pi k^2 x)}{k^2}$$

 R_2 was proposed by Riemann in the 1850's as an example of continuous but nowhere differentiable function (Riemann, Weierstrass, Hardy and Littlewood, Gerver, Itatsu, Jaffard).

Deep connections with Diophantine approximation:

- Differentiable only at rationals p/q where p and q are both odd.
- The local regularity of R_2 at x depends on a sort of Diophantine type of x.

Local Hölder exponent of a L^{∞} -function f: When $h_f(x) < 1$,

$$h_f(x) = \liminf_{h \to 0^+} \frac{\log |f(x+h) - f(x)|}{\log h}$$

(when f is differentiable, introduce a Taylor polynomial)

< 67 ▶

* 注入 * 注入

2

Idea: • Use the wavelet $\psi(x) = (x+i)^{-2}$ and compute the wavelet transform of R_2 :

$$W_{R_2}(a,b) = \frac{1}{a} \int_{\mathbb{R}} R_2(x)\psi\left(\frac{x-b}{a}\right) dx$$

and prove (graduate-level complex analysis) that

$$W_{R_2}(a,b) = a (2 \cdot \theta(b+ia) - 1),$$

where $\theta(z) = \sum_{n \in \mathbb{Z}} e^{i\pi n^2 z}$ is the Theta Jacobi function.

向下 イヨト イヨト

э

Idea: • Use the wavelet $\psi(x) = (x+i)^{-2}$ and compute the wavelet transform of R_2 :

$$W_{R_2}(a,b) = \frac{1}{a} \int_{\mathbb{R}} R_2(x)\psi\left(\frac{x-b}{a}\right) dx$$

and prove (graduate-level complex analysis) that

$$W_{R_2}(a,b) = a (2 \cdot \theta(b+ia) - 1),$$

where $\theta(z) = \sum_{n \in \mathbb{Z}} e^{i\pi n^2 z}$ is the Theta Jacobi function.

• Intuitively, from harmonic analysis theorems, if $W_{R_2}(a,b) \sim a^h$ when $a \to 0^+$, then the local exponent of R_2 at b is h.

(日本) イヨン イヨン

э.

Idea: • Use the wavelet $\psi(x) = (x+i)^{-2}$ and compute the wavelet transform of R_2 :

$$W_{R_2}(a,b) = \frac{1}{a} \int_{\mathbb{R}} R_2(x)\psi\left(\frac{x-b}{a}\right) dx$$

and prove (graduate-level complex analysis) that

$$W_{R_2}(a,b) = a (2 \cdot \theta(b+ia) - 1),$$

where $\theta(z) = \sum_{n \in \mathbb{Z}} e^{i\pi n^2 z}$ is the Theta Jacobi function.

• Intuitively, from harmonic analysis theorems, if $W_{R_2}(a,b) \sim a^h$ when $a \to 0^+$, then the local exponent of R_2 at b is h.

• Use the Theta group $(\theta(z+2) = \theta(z) \text{ and } \theta(-1/z) = \theta(z))$ to study $W_{R_2}(a, b)$ when $a \to 0^+$.

Intro.	Convergence conditions	Approximate equation	Even fractions	Questions

• What if we change the exponent:

$$R_s(x) = \sum_{k=1}^{\infty} \frac{\sin(\pi k^2 x)}{k^s}.$$

《曰》 《圖》 《臣》 《臣》

1 9 9 9 P

• What if we change the exponent:

$$R_s(x) = \sum_{k=1}^{\infty} \frac{\sin(\pi k^2 x)}{k^s}.$$

Differences when $1/2 < s \le 1$ and $s \ge 1$.

<ロ> (四) (四) (三) (三)

ъ.

• What if we change the exponent:

$$R_s(x) = \sum_{k=1}^{\infty} \frac{\sin(\pi k^2 x)}{k^s}.$$

Differences when $1/2 < s \le 1$ and $s \ge 1$.

• What if we change the numerator:

$$R^P(x) = \sum_{k=1}^{\infty} \frac{\sin(\pi P(k)x)}{k^2},$$

where P(k) is a polynomial of degree ≥ 3 .

ъ.

• What if we change the exponent:

$$R_s(x) = \sum_{k=1}^{\infty} \frac{\sin(\pi k^2 x)}{k^s}.$$

Differences when $1/2 < s \le 1$ and $s \ge 1$.

• What if we change the numerator:

$$R^P(x) = \sum_{k=1}^{\infty} \frac{\sin(\pi P(k)x)}{k^2},$$

where P(k) is a polynomial of degree ≥ 3 .

• What if we change both:

$$R_s^P(x) = \sum_{k=1}^{\infty} \frac{\sin(\pi P(k)x)}{k^s}$$

Comparable to the preceding question.

・ロン ・四マ ・ヨン ・ヨン

ъ.

• What if we change the exponent:

$$R_s(x) = \sum_{k=1}^{\infty} \frac{\sin(\pi k^2 x)}{k^s}.$$

Differences when $1/2 < s \le 1$ and $s \ge 1$. Subject of this talk: better understand the convergence.

• What if we change the numerator:

$$R^P(x) = \sum_{k=1}^{\infty} \frac{\sin(\pi P(k)x)}{k^2},$$

where P(k) is a polynomial of degree ≥ 3 .

• What if we change both:

$$R_s^P(x) = \sum_{k=1}^{\infty} \frac{\sin(\pi P(k)x)}{k^s}$$

Comparable to the preceding question.

÷.

• What if we change the exponent:

$$R_s(x) = \sum_{k=1}^{\infty} \frac{\sin(\pi k^2 x)}{k^s}.$$

Differences when $1/2 < s \le 1$ and $s \ge 1$. Subject of this talk: better understand the convergence.

• What if we change the numerator:

$$R^P(x) = \sum_{k=1}^{\infty} \frac{\sin(\pi P(k)x)}{k^2},$$

where P(k) is a polynomial of degree ≥ 3 . Few is known.

• What if we change both:

$$R_s^P(x) = \sum_{k=1}^{\infty} \frac{\sin(\pi P(k)x)}{k^s}$$

Comparable to the preceding question. Few is known.

(四) (종) (종) (종)

Theorem (F. Chamizo and A. Ubis, preprint 2012)

Let

$$R_s^P(x) = \sum_{n=1}^{+\infty} \frac{e^{i\pi P(n)x}}{n^s},$$

where P is of degree k, then if 1 + k/2 < s < k one has

$$(\nu_0+2)\beta \le d_{R_s^P}\left(\beta + \frac{\alpha-1}{k}\right) \le \begin{cases} \frac{2\beta}{2^{-k}+\beta} & \text{if } 0 \le \beta < \frac{1}{k^{2-k}} \\ \frac{3}{2} - \sqrt{\frac{k+4}{4k} - 2\beta} & \text{if } \frac{1}{k^{2-k}} \le \beta < \frac{1}{2k}, \end{cases}$$

where ν_0 is the greatest multiplicity of the zeros of P'.

- Th

э

▲□ ▶ ▲ □ ▶ ▲ □ ▶

2

2 - Hardy-Littlewood series

For $(x,t) \in \mathbb{R}^2$ and $s \in \mathbb{R}^+$, we study

$$\mathbf{F_s}(\mathbf{x},\mathbf{t}) = \sum_{k=1}^\infty \frac{\mathbf{e}^{i\pi \mathbf{k^2x} + 2i\pi k\mathbf{t}}}{k^s} \quad \text{and} \quad \mathbf{F_s}(\mathbf{x}) = \mathbf{F_s}(\mathbf{x},\mathbf{0}) = \sum_{k=1}^\infty \frac{\mathbf{e}^{i\pi k^2 \mathbf{x}}}{k^s}$$

(신문) (신문)

A 10

2

2 - Hardy-Littlewood series

For $(x,t) \in \mathbb{R}^2$ and $s \in \mathbb{R}^+$, we study

$$\mathbf{F_s}(\mathbf{x},\mathbf{t}) = \sum_{k=1}^\infty \frac{\mathbf{e}^{i\pi \mathbf{k^2x} + 2i\pi k\mathbf{t}}}{k^s} \quad \text{ and } \quad \mathbf{F_s}(\mathbf{x}) = \mathbf{F_s}(\mathbf{x},\mathbf{0}) = \sum_{k=1}^\infty \frac{\mathbf{e}^{i\pi k^2 \mathbf{x}}}{k^s}$$

$$F_{s,n}(x,t) = \sum_{k=1}^{n} \frac{e^{i\pi k^2 x + 2i\pi kt}}{k^s} \quad \text{and} \quad F_{s,n}(x) = \sum_{k=1}^{n} \frac{e^{i\pi k^2 x}}{k^s}.$$

A 10

э

2 - Hardy-Littlewood series

For $(x,t) \in \mathbb{R}^2$ and $s \in \mathbb{R}^+$, we study

$$\mathbf{F_s}(\mathbf{x}, \mathbf{t}) = \sum_{k=1}^\infty \frac{\mathbf{e}^{i\pi \mathbf{k^2x} + 2i\pi k\mathbf{t}}}{k^s} \quad \text{ and } \quad \mathbf{F_s}(\mathbf{x}) = \mathbf{F_s}(\mathbf{x}, \mathbf{0}) = \sum_{k=1}^\infty \frac{\mathbf{e}^{i\pi k^2 \mathbf{x}}}{k^s}$$

We denote its n-th partial sum by

$$F_{s,n}(x,t) = \sum_{k=1}^{n} \frac{e^{i\pi k^2 x + 2i\pi kt}}{k^s} \quad \text{and} \quad F_{s,n}(x) = \sum_{k=1}^{n} \frac{e^{i\pi k^2 x}}{k^s}.$$

• Both are periodic functions of period 2 in x and 1 in t.

3

2 - Hardy-Littlewood series

For $(x,t) \in \mathbb{R}^2$ and $s \in \mathbb{R}^+$, we study

$$\mathbf{F_s}(\mathbf{x}, \mathbf{t}) = \sum_{k=1}^\infty \frac{\mathbf{e}^{i\pi \mathbf{k^2x} + 2i\pi k\mathbf{t}}}{k^s} \quad \text{and} \quad \mathbf{F_s}(\mathbf{x}) = \mathbf{F_s}(\mathbf{x}, \mathbf{0}) = \sum_{k=1}^\infty \frac{\mathbf{e}^{i\pi k^2 \mathbf{x}}}{k^s}$$

$$F_{s,n}(x,t) = \sum_{k=1}^{n} \frac{e^{i\pi k^2 x + 2i\pi kt}}{k^s} \quad \text{and} \quad F_{s,n}(x) = \sum_{k=1}^{n} \frac{e^{i\pi k^2 x}}{k^s}.$$

- Both are periodic functions of period 2 in x and 1 in t.
- For s = 2 and t = 0 the imaginary part of $F_s(x)$ is indeed R_2 .

3

2 - Hardy-Littlewood series

For $(x,t) \in \mathbb{R}^2$ and $s \in \mathbb{R}^+$, we study

$$\mathbf{F_s}(\mathbf{x}, \mathbf{t}) = \sum_{k=1}^\infty \frac{e^{i\pi k^2 \mathbf{x} + 2i\pi k \mathbf{t}}}{k^s} \quad \text{ and } \quad \mathbf{F_s}(\mathbf{x}) = \mathbf{F_s}(\mathbf{x}, \mathbf{0}) = \sum_{k=1}^\infty \frac{e^{i\pi k^2 \mathbf{x}}}{k^s}$$

$$F_{s,n}(x,t) = \sum_{k=1}^{n} \frac{e^{i\pi k^2 x + 2i\pi kt}}{k^s} \quad \text{and} \quad F_{s,n}(x) = \sum_{k=1}^{n} \frac{e^{i\pi k^2 x}}{k^s}.$$

- Both are periodic functions of period 2 in x and 1 in t.
- For s = 2 and t = 0 the imaginary part of $F_s(x)$ is indeed R_2 .
- Absolute convergence if s > 1, and the multifractal properties are the same as those of R_2 .

・ 同 ・ ・ ヨ ・ ・ 同 ・

3

2 - Hardy-Littlewood series

For $(x,t) \in \mathbb{R}^2$ and $s \in \mathbb{R}^+$, we study

$$\mathbf{F_s}(\mathbf{x},\mathbf{t}) = \sum_{k=1}^\infty \frac{\mathbf{e}^{\mathbf{i}\pi \mathbf{k}^2 \mathbf{x} + 2\mathbf{i}\pi k\mathbf{t}}}{k^s} \quad \text{ and } \quad \mathbf{F_s}(\mathbf{x}) = \mathbf{F_s}(\mathbf{x},\mathbf{0}) = \sum_{k=1}^\infty \frac{\mathbf{e}^{\mathbf{i}\pi \mathbf{k}^2 \mathbf{x}}}{k^s}$$

$$F_{s,n}(x,t) = \sum_{k=1}^{n} \frac{e^{i\pi k^2 x + 2i\pi kt}}{k^s} \quad \text{and} \quad F_{s,n}(x) = \sum_{k=1}^{n} \frac{e^{i\pi k^2 x}}{k^s}.$$

- Both are periodic functions of period 2 in x and 1 in t.
- For s = 2 and t = 0 the imaginary part of $F_s(x)$ is indeed R_2 .
- Absolute convergence if s > 1, and the multifractal properties are the same as those of R_2 .
- Almost-everywhere convergence if $1/2 < s \le 1$ (Carleson's theorem), but not everywhere.

2 - Hardy-Littlewood series

For $(x,t) \in \mathbb{R}^2$ and $s \in \mathbb{R}^+$, we study

$$\mathbf{F_s}(\mathbf{x}, \mathbf{t}) = \sum_{k=1}^\infty \frac{e^{i\pi k^2 \mathbf{x} + 2i\pi k \mathbf{t}}}{k^s} \quad \text{ and } \quad \mathbf{F_s}(\mathbf{x}) = \mathbf{F_s}(\mathbf{x}, \mathbf{0}) = \sum_{k=1}^\infty \frac{e^{i\pi k^2 \mathbf{x}}}{k^s}$$

$$F_{s,n}(x,t) = \sum_{k=1}^{n} \frac{e^{i\pi k^2 x + 2i\pi kt}}{k^s} \quad \text{and} \quad F_{s,n}(x) = \sum_{k=1}^{n} \frac{e^{i\pi k^2 x}}{k^s}.$$

- Both are periodic functions of period 2 in x and 1 in t.
- For s = 2 and t = 0 the imaginary part of $F_s(x)$ is indeed R_2 .
- Absolute convergence if s > 1, and the multifractal properties are the same as those of R_2 .
- Almost-everywhere convergence if $1/2 < s \le 1$ (Carleson's theorem), but **not** everywhere.
 - Convergence?
 - Local regularity? (distinguish the points)
 - Exploit the modular forms to rewrite $F_s(x, t)$ in a more explicit form in terms of the Diophantine properties of x (more precisely in terms of the even continued fraction expansion).

A >

3

Theorem (Rivoal, S.)

Let $x = (P_k/Q_k)_{k\geq 0}$ (its continued fraction) be an irrational number in (0,1), and let $t \in \mathbb{R}$.

(i) If $s \in (\frac{1}{2}, 1)$, then $F_s(x, t)$ is absolutely convergent when

$$\sum_{k=0}^{\infty} \frac{(Q_{k+1})^{\frac{1-s}{2}}}{(Q_k)^{\frac{s}{2}}} < \infty.$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

3

Theorem (Rivoal, S.)

Let $x = (P_k/Q_k)_{k \ge 0}$ (its continued fraction) be an irrational number in (0, 1), and let $t \in \mathbb{R}$.

(i) If $s \in (\frac{1}{2}, 1)$, then $F_s(x, t)$ is absolutely convergent when

$$\sum_{k=0}^{\infty} \frac{(Q_{k+1})^{\frac{1-s}{2}}}{(Q_k)^{\frac{s}{2}}} < \infty.$$

(ii) If s = 1, then $F_1(x, t)$ is absolutely convergent when

$$\sum_{k=0}^{\infty} \frac{\log(Q_{k+1})}{(Q_k)^{1/2}} < \infty.$$

★ 문 ► ★ 문 ►

э.

Theorem (Rivoal, S.)

Let $x = (P_k/Q_k)_{k \ge 0}$ (its continued fraction) be an irrational number in (0, 1), and let $t \in \mathbb{R}$.

(i) If $s \in (\frac{1}{2}, 1)$, then $F_s(x, t)$ is absolutely convergent when

$$\sum_{k=0}^{\infty} \frac{(Q_{k+1})^{\frac{1-s}{2}}}{(Q_k)^{\frac{s}{2}}} < \infty.$$

(ii) If s = 1, then $F_1(x, t)$ is absolutely convergent when

$$\sum_{k=0}^{\infty} \frac{\log(Q_{k+1})}{(Q_k)^{1/2}} < \infty.$$

Based on the celebrated "approximate functional equation for the theta series" of Hardy and Littlewood, concerning the growth of the "curlicues" $\sum_{n=1}^{N} e^{i\pi n^2 x}$ (Mordell, Weyl, Klopp, ...)

(同) (ヨ) (ヨ) (ヨ)

Theorem (Rivoal, S.)

Let $x = (P_k/Q_k)_{k \ge 0}$ (its continued fraction) be an irrational number in (0,1), and let $t \in \mathbb{R}$.

(i) If $s \in (\frac{1}{2}, 1)$, then $F_s(x, t)$ is absolutely convergent when

$$\sum_{k=0}^{\infty} \frac{(Q_{k+1})^{\frac{1-s}{2}}}{(Q_k)^{\frac{s}{2}}} < \infty.$$

(ii) If s = 1, then $F_1(x, t)$ is absolutely convergent when

$$\sum_{k=0}^{\infty} \frac{\log(Q_{k+1})}{(Q_k)^{1/2}} < \infty.$$

Based on the celebrated "approximate functional equation for the theta series" of Hardy and Littlewood, concerning the growth of the "curlicues" $\sum_{n=1}^{N} e^{i\pi n^2 x}$ (Mordell, Weyl, Klopp, ...)

Hence, if
$$\mu(x) = \sup\left\{\mu \ge 1: \ \left|x - \frac{p}{q}\right| < \frac{1}{q^{1+\mu}} \text{ for i.m. } q \ge 1\right\}$$
, then

• If 1/2 < s < 1, $F_s(\cdot, t)$ does not converge on a set of Hausdorff dimension $\frac{1-s}{s}$ (real numbers with Diophantine exponent $\mu(x) \geq \frac{s}{1-s}$).

Theorem (Rivoal, S.)

Let $x = (P_k/Q_k)_{k \ge 0}$ (its continued fraction) be an irrational number in (0,1), and let $t \in \mathbb{R}$.

(i) If $s \in (\frac{1}{2}, 1)$, then $F_s(x, t)$ is absolutely convergent when

$$\sum_{k=0}^{\infty} \frac{(Q_{k+1})^{\frac{1-s}{2}}}{(Q_k)^{\frac{s}{2}}} < \infty.$$

(ii) If s = 1, then $F_1(x, t)$ is absolutely convergent when

$$\sum_{k=0}^{\infty} \frac{\log(Q_{k+1})}{(Q_k)^{1/2}} < \infty.$$

Based on the celebrated "approximate functional equation for the theta series" of Hardy and Littlewood, concerning the growth of the "curlicues" $\sum_{n=1}^{N} e^{i\pi n^2 x}$ (Mordell, Weyl, Klopp, ...)

Hence, if
$$\mu(x) = \sup\left\{\mu \ge 1: \ \left|x - \frac{p}{q}\right| < \frac{1}{q^{1+\mu}} \ \text{ for i.m. } q \ge 1\right\}$$
, then

- If 1/2 < s < 1, $F_s(\cdot, t)$ does not converge on a set of Hausdorff dimension $\frac{1-s}{s}$ (real numbers with Diophantine exponent $\mu(x) \geq \frac{s}{1-s}$).
- $F_1(\cdot, t)$ does not converge only on a subset of the Liouville numbers (dimension 0).

・ロシ ・四シ ・ヨシ ・ヨシー

ъ.

3 - Approximate Modular Equation

The modular nature of $F_s(x,t)$ implies that the map of $[-1,1] \setminus \{0\}$ given by

$$T(x) = -\frac{1}{x} \mod 2$$

is more natural than Gauss' here. We will obtain another expression for $F_s(x,t)$.

・日本 ・日本 ・日本

э.

3 - Approximate Modular Equation

The modular nature of $F_s(x,t)$ implies that the map of $[-1,1] \setminus \{0\}$ given by

$$T(x) = -\frac{1}{x} \mod 2$$

is more natural than Gauss' here. We will obtain another expression for $F_s(x,t)$.

Theorem (Rivoal, S.)

For any $x \in (0,1]$, $t \in \mathbb{R}$, $s \ge 0$, we have the estimate when $n \to \infty$

$$F_{s,\mathbf{n}}(x,t) - e^{i\frac{\pi}{4}} e^{-i\pi\frac{\{t\}^2}{x}} |x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor} \left(-\frac{1}{x}, \frac{\{t\}}{x}\right) = \Omega_s(x,t) + \mathcal{O}\left(\frac{1}{n^s\sqrt{|x|}}\right).$$

・ 日・ ・ ヨ・ ・ 日・

3

3 - Approximate Modular Equation

The modular nature of $F_s(x,t)$ implies that the map of $[-1,1] \setminus \{0\}$ given by

$$T(x) = -\frac{1}{x} \mod 2$$

is more natural than Gauss' here. We will obtain another expression for $F_s(x,t)$.

Theorem (Rivoal, S.)

For any $x \in [-1,0)$, $t \in \mathbb{R}$, $s \ge 0$, we have the estimate when $n \to \infty$

$$F_{s,\mathbf{n}}(x,t) - e^{-i\frac{\pi}{4}} e^{-i\pi\frac{\{-t\}^2}{x}} |x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}\rfloor\rfloor} \left(-\frac{1}{x}, \frac{\{-t\}}{x}\right) = \Omega_s(x,-t) + \mathcal{O}\left(\frac{1}{n^s\sqrt{|x|}}\right)$$

3 - Approximate Modular Equation

The modular nature of $F_s(x,t)$ implies that the map of $[-1,1] \setminus \{0\}$ given by

$$T(x) = -\frac{1}{x} \mod 2$$

is more natural than Gauss' here. We will obtain another expression for $F_s(x,t)$.

Theorem (Rivoal, S.)

For any $x \in [-1,0)$, $t \in \mathbb{R}$, $s \ge 0$, we have the estimate when $n \to \infty$

$$F_{s,\mathbf{n}}(x,t) - e^{-i\frac{\pi}{4}} e^{-i\pi\frac{\{-t\}^2}{x}} |x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}\mid\mathbf{x}\mid\rfloor} \left(-\frac{1}{x}, \frac{\{-t\}}{x}\right) = \Omega_s(x,-t) + \mathcal{O}\left(\frac{1}{n^s\sqrt{|x|}}\right)$$

Just for fun: the function
$$\Omega_s(x,t)$$
 is $\Omega_s(x,t) = \begin{cases} I_s(x,t) & \text{when } x > 0\\ \overline{I_s(-x,-t)} & \text{when } x < 0 \end{cases}$

where:

$$\begin{split} I_s(x,t) &= \int_{1/2-\rho\infty}^{1/2+\rho\infty} \frac{e^{i\pi z^2 x + 2i\pi z\{t\}}}{z^s (1-e^{2i\pi z})} \mathrm{d}z \\ &+ \rho x^s \int_{-\infty}^{\infty} e^{-\pi x u^2} \left(\sum_{k=1}^{\infty} e^{-i\pi (k-\{t\})^2/x} \left(\frac{1}{(\rho x u + k - \{t\})^s} - \frac{1}{k^s} \right) \right) \mathrm{d}u. \end{split}$$

Stéphane Seuret Hardy-Littlewood series

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへぐ

Now we focus on t = 0: In this case, the formula becomes:

$$F_{s,\mathbf{n}}(x) - e^{i\sigma(x)\frac{\pi}{4}} |x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}\rfloor\rfloor} \left(-\frac{1}{x}\right) = \Omega_s(x) + \mathcal{O}\left(\frac{1}{n^s\sqrt{|x|}}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Now we focus on t = 0: In this case, the formula becomes:

$$F_{s,\mathbf{n}}(x) - e^{i\sigma(x)\frac{\pi}{4}} |x|^{s-\frac{1}{2}} F_{s,\lfloor \mathbf{n} |\mathbf{x}| \rfloor} \left(-\frac{1}{x} \right) = \Omega_s(x) + \mathcal{O}\left(\frac{1}{n^s \sqrt{|x|}}\right)$$

As $n \to +\infty$, the resulting "modular" equation is (when it exists!!):

$$F_s(x) - e^{i\frac{\pi}{4}\sigma(x)}x^{s-\frac{1}{2}}F_s\left(-\frac{1}{x}\right) = \Omega_s(x),$$

Important: $\sigma(x)$ is the sign of x.

《曰》 《卽》 《臣》 《臣》 三臣 …

Now we focus on t = 0: In this case, the formula becomes:

$$F_{s,\mathbf{n}}(x) - e^{i\sigma(x)\frac{\pi}{4}} |x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}\rfloor\rfloor} \left(-\frac{1}{x}\right) = \Omega_s(x) + \mathcal{O}\left(\frac{1}{n^s\sqrt{|x|}}\right)$$

As $n \to +\infty$, the resulting "modular" equation is (when it exists!!):

$$F_{s}(x) - e^{i\frac{\pi}{4}\sigma(x)}x^{s-\frac{1}{2}}F_{s}\left(-\frac{1}{x}\right) = \Omega_{s}(x),$$

Important: $\sigma(x)$ is the sign of x.

Given s > 1/2 and $t \in [0, 1)$, this holds at least for almost every $x \in (0, 1)$.

▲御▶ ▲注≯ ★注≯ …

÷.

Now we focus on t = 0: In this case, the formula becomes:

$$F_{s,\mathbf{n}}(x) - e^{i\sigma(x)\frac{\pi}{4}} |x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}\mid\mathbf{x}\mid\rfloor} \left(-\frac{1}{x}\right) = \Omega_s(x) + \mathcal{O}\left(\frac{1}{n^s\sqrt{|x|}}\right)$$

As $n \to +\infty$, the resulting "modular" equation is (when it exists!!):

$$F_{s}(x) - e^{i\frac{\pi}{4}\sigma(x)}x^{s-\frac{1}{2}}F_{s}\left(-\frac{1}{x}\right) = \Omega_{s}(x),$$

Important: $\sigma(x)$ is the sign of x.

Given s > 1/2 and $t \in [0, 1)$, this holds at least for almost every $x \in (0, 1)$. For s = 2, it holds everywhere.
▲御▶ ▲ 理≯ ▲ 理≯ …

3

Now we focus on t = 0: In this case, the formula becomes:

$$F_{s,\mathbf{n}}(x) - e^{i\sigma(x)\frac{\pi}{4}} |x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}\mid\mathbf{x}\mid\rfloor} \left(-\frac{1}{x}\right) = \Omega_s(x) + \mathcal{O}\left(\frac{1}{n^s\sqrt{|x|}}\right)$$

As $n \to +\infty$, the resulting "modular" equation is (when it exists!!):

$$F_{s}(x) - e^{i\frac{\pi}{4}\sigma(x)}x^{s-\frac{1}{2}}F_{s}\left(-\frac{1}{x}\right) = \Omega_{s}(x),$$

Important: $\sigma(x)$ is the sign of x.

Given s > 1/2 and $t \in [0, 1)$, this holds at least for almost every $x \in (0, 1)$. For s = 2, it holds everywhere.

Now, what is the behavior of $\Omega_s(x)$?

Now we focus on t = 0: In this case, the formula becomes:

$$F_{s,\mathbf{n}}(x) - e^{i\sigma(x)\frac{\pi}{4}} |x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}\mid\mathbf{x}\mid\rfloor} \left(-\frac{1}{x}\right) = \Omega_s(x) + \mathcal{O}\left(\frac{1}{n^s\sqrt{|x|}}\right)$$

As $n \to +\infty$, the resulting "modular" equation is (when it exists!!):

$$F_s(x) - e^{i\frac{\pi}{4}\sigma(x)}x^{s-\frac{1}{2}}F_s\left(-\frac{1}{x}\right) = \Omega_s(x),$$

Important: $\sigma(x)$ is the sign of x.

Given s > 1/2 and $t \in [0, 1)$, this holds at least for almost every $x \in (0, 1)$. For s = 2, it holds everywhere.

Now, what is the behavior of $\Omega_s(x)$?

Theore<u>m</u>

(i) When $0 \le s \le 1$, $x \mapsto \Omega_s(x)$ is continuous on $\mathbb{R} \setminus \{0\}$, differentiable at p/q with p, q both odd, and

$$\Omega_s(x) - \frac{\rho^{1-s}\Gamma(\frac{1-s}{2})}{2\pi^{\frac{1-s}{2}}} |x|^{\frac{s-1}{2}} \quad (0 \le s < 1) \quad \text{and} \quad \Omega_1(x) - \log(1/\sqrt{|x|})$$

are bounded on \mathbb{R} .

Now we focus on t = 0: In this case, the formula becomes:

$$F_{s,\mathbf{n}}(x) - e^{i\sigma(x)\frac{\pi}{4}} |x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}\mid\mathbf{x}\mid\rfloor} \left(-\frac{1}{x}\right) = \Omega_s(x) + \mathcal{O}\left(\frac{1}{n^s\sqrt{|x|}}\right)$$

As $n \to +\infty$, the resulting "modular" equation is (when it exists!!):

$$F_{s}(x) - e^{i\frac{\pi}{4}\sigma(x)}x^{s-\frac{1}{2}}F_{s}\left(-\frac{1}{x}\right) = \Omega_{s}(x),$$

Important: $\sigma(x)$ is the sign of x.

Given s > 1/2 and $t \in [0, 1)$, this holds at least for almost every $x \in (0, 1)$. For s = 2, it holds everywhere.

Now, what is the behavior of $\Omega_s(x)$?

Theorem

(i) When $0 \le s \le 1$, $x \mapsto \Omega_s(x)$ is continuous on $\mathbb{R} \setminus \{0\}$, differentiable at p/q with p, q both odd, and

$$\Omega_s(x) - \frac{\rho^{1-s} \Gamma(\frac{1-s}{2})}{2\pi^{\frac{1-s}{2}}} |x|^{\frac{s-1}{2}} \quad (0 \le s < 1) \quad \text{and} \quad \Omega_1(x) - \log(1/\sqrt{|x|})$$

are bounded on \mathbb{R} .

(ii) When s > 1, $x \mapsto \Omega_s(x)$ is continuous on \mathbb{R} and differentiable on $\mathbb{R} \setminus \{0\}$.

《曰》 《圖》 《臣》 《臣》

2

4 - Even continued fractions

Idea: Iterate the modular equation.

(日) (四) (王) (王) (王)

ъ.

◆□▶ ◆□▶ ★ ■▶ ★ ■▶ = ■ - - - - - - ●

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that $T(x) = -\frac{1}{x} \mod 2$.

÷.

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that $T(x) = -\frac{1}{x} \mod 2$. Start with the initial modular equation, with t = 0 ($\sigma(x)$ is the sign of x):

$$F_{s,\mathbf{n}}(x) - e^{i\sigma(x)\frac{\pi}{4}} |x|^{s-\frac{1}{2}} F_{s,\lfloor \mathbf{n} |\mathbf{x}| \rfloor} \left(-\frac{1}{x} \right) = \Omega_s(x) + \mathcal{O}\left(\frac{1}{n^s \sqrt{|x|}} \right).$$

÷.

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that $T(x) = -\frac{1}{x} \mod 2$. Start with the initial modular equation, with t = 0 ($\sigma(x)$ is the sign of x):

$$F_{s,\mathbf{n}}(x) \quad - \quad e^{i\sigma(x)\frac{\pi}{4}} |x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}\rfloor\rfloor} \Big(T(x)\Big) \quad = \quad \Omega_s(x) \quad + \quad \mathcal{O}\left(\frac{1}{n^s \sqrt{|x|}}\right).$$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ …

Ξ.

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that $T(x) = -\frac{1}{x} \mod 2$. Start with the initial modular equation, with t = 0 ($\sigma(x)$ is the sign of x):

$$F_{s,\mathbf{n}}(x) \quad - \quad e^{i\sigma(x)\frac{\pi}{4}} |x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}\rfloor\rfloor} \Big(T(x)\Big) \quad = \quad \Omega_s(x) \quad + \quad \mathcal{O}\left(\frac{1}{n^s \sqrt{|x|}}\right).$$

The key point is that $\lfloor \mathbf{n} | \mathbf{x} | \rfloor < n$.

Ξ.

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that $T(x) = -\frac{1}{x} \mod 2$. Start with the initial modular equation, with t = 0 ($\sigma(x)$ is the sign of x):

$$F_{s,\mathbf{n}}(x) \quad - \quad e^{i\sigma(x)\frac{\pi}{4}} |x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}\rfloor\rfloor} \Big(T(x)\Big) \quad = \quad \Omega_s(x) \quad + \quad \mathcal{O}\left(\frac{1}{n^s \sqrt{|x|}}\right).$$

The key point is that $\lfloor \mathbf{n} | \mathbf{x} | \rfloor < n$. We iterate:

Ξ.

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that $T(x) = -\frac{1}{x} \mod 2$. Start with the initial modular equation, with t = 0 ($\sigma(x)$ is the sign of x):

$$F_{s,\mathbf{n}}(x) - e^{i\sigma(x)\frac{\pi}{4}} |x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}\rfloor\rfloor} \left(T(x)\right) = \Omega_s(x) + \mathcal{O}\left(\frac{1}{n^s \sqrt{|x|}}\right).$$

The key point is that $\lfloor \mathbf{n} | \mathbf{x} | \rfloor < n$. We iterate:

$$F_{s,\lfloor \mathbf{n} | \mathbf{x} \rfloor \rfloor} \Big(T(x) \Big) - e^{i\sigma(T(x))\frac{\pi}{4}} |T(x)|^{s-\frac{1}{2}} F_{s,\lfloor \lfloor \mathbf{n} | \mathbf{x} \rfloor \rfloor | \mathbf{T}(\mathbf{x}) | \rfloor} \Big(T^2(x) \Big) = \Omega_s(T(x)) + \mathcal{O}\left(\frac{1}{\lfloor \mathbf{n} | \mathbf{x} \rfloor \rfloor^s \sqrt{|T(x)|}}\right)$$

2

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that $T(x) = -\frac{1}{x} \mod 2$. Start with the initial modular equation, with t = 0 ($\sigma(x)$ is the sign of x):

$$F_{s,\mathbf{n}}(x) - e^{i\sigma(x)\frac{\pi}{4}} |x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}\rfloor\rfloor} \left(T(x)\right) = \Omega_s(x) + \mathcal{O}\left(\frac{1}{n^s \sqrt{|x|}}\right).$$

The key point is that $\lfloor \mathbf{n} | \mathbf{x} | \rfloor < n$. We iterate:

$$F_{s,\lfloor \mathbf{n} \mid \mathbf{x} \mid \rfloor} \Big(T(x) \Big) - e^{i\sigma(T(x))\frac{\pi}{4}} |T(x)|^{s-\frac{1}{2}} F_{s,\lfloor \lfloor \mathbf{n} \mid \mathbf{x} \mid \rfloor \mid \mathbf{T}(\mathbf{x}) \mid \rfloor} \Big(T^2(x) \Big) = \Omega_s(T(x)) + \mathcal{O}\left(\frac{1}{\lfloor \mathbf{n} \mid \mathbf{x} \mid \rfloor^s \sqrt{|T(x)|}}\right)$$

and so on...

э.

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that $T(x) = -\frac{1}{x} \mod 2$. Start with the initial modular equation, with t = 0 ($\sigma(x)$ is the sign of x):

$$F_{s,\mathbf{n}}(x) - e^{i\sigma(x)\frac{\pi}{4}} |x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}\rfloor\rfloor} \left(T(x)\right) = \Omega_s(x) + \mathcal{O}\left(\frac{1}{n^s \sqrt{|x|}}\right).$$

The key point is that $\lfloor \mathbf{n} | \mathbf{x} | \rfloor < n$. We iterate:

$$F_{s,\lfloor \mathbf{n} | \mathbf{x} | \rfloor} \Big(T(x) \Big) - e^{i\sigma(T(x))\frac{\pi}{4}} |T(x)|^{s-\frac{1}{2}} F_{s,\lfloor \lfloor \mathbf{n} | \mathbf{x} | \rfloor | \mathbf{T}(\mathbf{x}) | \rfloor} \Big(T^2(x) \Big) = \Omega_s(T(x)) + \mathcal{O}\left(\frac{1}{\lfloor \mathbf{n} | \mathbf{x} | \rfloor^s \sqrt{|T(x)|}}\right)$$

and so on...

Starting with a given integer n, then the integer $\lfloor \lfloor \cdots \lfloor \lfloor n | x | \rfloor | T(x) | \rfloor \cdots \rfloor | T^{\ell}(x) | \rfloor$ tends to zero, and we get an empty sum.

▲御▶ ▲ 理▶ ▲ 理▶ …

3

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that $T(x) = -\frac{1}{x} \mod 2$. Start with the initial modular equation, with t = 0 ($\sigma(x)$ is the sign of x):

$$F_{s,\mathbf{n}}(x) - e^{i\sigma(x)\frac{\pi}{4}} |x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}\rfloor\rfloor} \left(T(x)\right) = \Omega_s(x) + \mathcal{O}\left(\frac{1}{n^s \sqrt{|x|}}\right).$$

The key point is that $\lfloor \mathbf{n} | \mathbf{x} | \rfloor < n$. We iterate:

$$F_{s,\lfloor \mathbf{n} | \mathbf{x} \rfloor \rfloor} \Big(T(x) \Big) - e^{i\sigma(T(x))\frac{\pi}{4}} |T(x)|^{s-\frac{1}{2}} F_{s,\lfloor\lfloor \mathbf{n} | \mathbf{x} \rfloor \rfloor | \mathbf{T}(\mathbf{x}) | \rfloor} \Big(T^2(x) \Big) = \Omega_s(T(x)) + \mathcal{O}\left(\frac{1}{\lfloor \mathbf{n} | \mathbf{x} \rfloor \rfloor^s \sqrt{|T(x)|}}\right)$$

and so on...

Starting with a given integer n, then the integer $\lfloor \lfloor \cdots \lfloor \lfloor n |x| \rfloor |T(x)| \rfloor \cdots \rfloor |T^{\ell}(x)| \rfloor$ tends to zero, and we get an empty sum.

At the end, one gets

$$F_{s,n}(x) = \sum_{j=0}^{K(n,x)} e^{i\frac{\pi}{4} \sum_{\ell=0}^{j-1} \sigma(T^{\ell}x)} |xT(x)\cdots T^{j-1}(x)|^{s-\frac{1}{2}} \Omega_s(T^j(x))$$

for some integer K(n, x) that tends to infinity when n tends to infinity.

Intro.	Convergence conditions	Approximate equation	Even fractions	Question
	Theorem			
	Let $s \in (\frac{1}{2}, 1)$. If $x \in (-1, 1)$ is an irrational number such that			
	$\sum_{j=0}^{\infty} \frac{ x }{2}$	$\frac{T(x)\cdots T^{j-1}(x) ^{s-\frac{1}{2}}}{ T^{j}(x) ^{\frac{1-s}{2}}} < \infty$	ο,	
	holds:			
	$F_s(x) = \sum_{j=0}^{\infty} e^{i\frac{\pi}{4}\sum_{\ell=0}^{j-1}}$	$\sigma(T^{\ell}x)$ $ xT(x)\cdots T^{j-1}(x) ^{2}$	$s-\frac{1}{2}\Omega_s(T^j(x)).$	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let $s \in (\frac{1}{2}, 1)$. If $x \in (-1, 1)$ is an irrational number such that

$$\sum_{j=0}^{\infty} \frac{|xT(x)\cdots T^{j-1}(x)|^{s-\frac{1}{2}}}{|T^{j}(x)|^{\frac{1-s}{2}}} < \infty,$$

then $F_s(x)$ is also convergent and the following identity holds:

$$F_s(x) = \sum_{j=0}^{\infty} e^{i \frac{\pi}{4} \sum_{\ell=0}^{j-1} \sigma(T^{\ell}x)} |xT(x) \cdots T^{j-1}(x)|^{s-\frac{1}{2}} \Omega_s(T^j(x)).$$

Theorem

If

$$\sum_{j=0}^{\infty} \sqrt{|xT(x)\cdots T^{j-1}(x)|} \Big(1 + \log\Big(\frac{1}{|T^j x|}\Big)\Big) < \infty,$$

then $F_1(x)$ is also convergent and the following identity holds:

$$F_1(x) = \sum_{j=0}^{\infty} e^{i \frac{\pi}{4} \sum_{\ell=0}^{j-1} \sigma(T^{\ell}x)} \sqrt{|xT(x)\cdots T^{j-1}(x)|} \Omega_1(T^j(x))$$

Intro.	Convergence conditions	Approximate equation	Even fractions	Question
	Theorem			
	ch that			
	$\sum_{j=0}^{\infty} \frac{ z }{2}$	$\frac{cT(x)\cdots T^{j-1}(x) ^{s-\frac{1}{2}}}{ T^{j}(x) ^{\frac{1-s}{2}}} < \infty$	٥,	
	then $F_s(x)$ is also convergent	and the following identity	holds:	

 $F_s(x) = \sum_{j=0}^{\infty} e^{i\frac{\pi}{4} \sum_{\ell=0}^{j-1} \sigma(T^\ell x)} |xT(x)\cdots T^{j-1}(x)|^{s-\frac{1}{2}} \Omega_s(T^j(x)).$

Theorem

If

$$\sum_{j=0}^{\infty} \sqrt{|xT(x)\cdots T^{j-1}(x)|} \Big(1 + \log\Big(\frac{1}{|T^j x|}\Big)\Big) < \infty,$$

then $F_1(x)$ is also convergent and the following identity holds:

$$F_1(x) = \sum_{j=0}^{\infty} e^{i \frac{\pi}{4} \sum_{\ell=0}^{j-1} \sigma(T^{\ell}x)} \sqrt{|xT(x)\cdots T^{j-1}(x)|} \Omega_1(T^j(x))$$

◆□▶ ◆□▶ ★ ■▶ ★ ■▶ = ■ - - - - - - ●

Now we need to understand the convergence of sums like

$$\sum_{j=0}^{\infty} \frac{|xT(x)\cdots T^{j-1}(x)|^{s-\frac{1}{2}}}{|T^{j}(x)|^{\frac{1-s}{2}}}.$$

米 臣 医 米 臣 医

A ►

2

Now we need to understand the convergence of sums like

$$\sum_{j=0}^{\infty} \frac{|xT(x)\cdots T^{j-1}(x)|^{s-\frac{1}{2}}}{|T^{j}(x)|^{\frac{1-s}{2}}}$$

([-1, 1], T) is a dynamical system with parabolic points -1 and 1.

Infinite ergodic measure.

-77 ▶

2

Now we need to understand the convergence of sums like

$$\sum_{j=0}^{\infty} \frac{|xT(x)\cdots T^{j-1}(x)|^{s-\frac{1}{2}}}{|T^{j}(x)|^{\frac{1-s}{2}}}$$

([-1, 1], T) is a dynamical system with parabolic points -1 and 1.

Infinite ergodic measure.

As with Gauss $G(x) = 1/x \mod 1$, using T one can associate with each irrational real number $x \in [-1, 1] \setminus \{0\}$ a kind of continued fraction:

 e_1

 $a_1 +$

Now we need to understand the convergence of sums like

$$\sum_{j=0}^{\infty} \frac{|xT(x)\cdots T^{j-1}(x)|^{s-\frac{1}{2}}}{|T^{j}(x)|^{\frac{1-s}{2}}}$$

([-1, 1], T) is a dynamical system with parabolic points -1 and 1.

Infinite ergodic measure.

As with Gauss $G(x) = 1/x \mod 1$, using T one can associate with each irrational real number $x \in [-1, 1] \setminus \{0\}$ a kind of continued fraction:

Proposition

x has a unique even continued fraction (ECF) expansion x = --

• a_j the unique even integer such that $T^j(x) - a_j \in (-1, 1)$

•
$$e_j = \sigma(T^j(x)) \in \{-1, 1\}.$$

Schweiger, Kraaikamp, Lopes, Sinai (and students)...

・ロシ ・四シ ・ヨシ ・ヨシー

÷.

We define the n-th convergent and the n-th remainder respectively as

$$\frac{p_n}{q_n} := \frac{1}{a_1 + \frac{e_1}{a_2 + \frac{e_2}{\cdots + \frac{e_{n-1}}{a_n}}}} \quad \text{and} \quad x_n := \frac{e_n}{a_{n+1} + \frac{e_{n+1}}{a_{n+2} + \frac{e_{n+2}}{\cdots}}}$$

(small letters p_n/q_n for ECF, and capital letters P_n/Q_n for SCF)

3

We define the n-th convergent and the n-th remainder respectively as

$$\frac{p_n}{q_n} := \frac{1}{a_1 + \frac{e_1}{a_2 + \frac{e_2}{\cdots + \frac{e_{n-1}}{a_n}}}} \quad \text{and} \quad x_n := \frac{e_n}{a_{n+1} + \frac{e_{n+1}}{a_{n+2} + \frac{e_{n+2}}{\cdots + \frac{e_{n+2}}{a_n}}}$$

(small letters p_n/q_n for ECF, and capital letters P_n/Q_n for SCF)

ECF expansions are obtained from the classical expansions via an iterative method: for any positive integers (A, B, C) and any $\gamma \ge 0$, observe that

$$A + \frac{1}{B + \frac{1}{C + \gamma}} = (A + 1) + \frac{-1}{2 + \frac{-1}{2 + \dots + \frac{-1}{2 + \frac{-1}{2 + \dots + \frac{-1}{2 + \frac{-1}{(C + 1) + \gamma}}}}}$$

where the term $\frac{-1}{2 + \dots}$ appears exactly $B - 1$ times.

We define the *n*-th convergent and the *n*-th remainder respectively as

$$\frac{p_n}{q_n} := \frac{1}{a_1 + \frac{e_1}{a_2 + \frac{e_2}{\cdots + \frac{e_{n-1}}{a_n}}}} \quad \text{and} \quad x_n := \frac{e_n}{a_{n+1} + \frac{e_{n+1}}{a_{n+2} + \frac{e_{n+2}}{\cdots}}}$$

(small letters p_n/q_n for ECF, and capital letters P_n/Q_n for SCF)

ECF expansions are obtained from the classical expansions via an iterative method: for any positive integers (A, B, C) and any $\gamma \ge 0$, observe that

 $A + \frac{1}{B + \frac{1}{C + \gamma}} = (A + 1) + \frac{-1}{2 + \frac{-1}{2 + \dots + \frac{-1}{2 + \frac{-1}{(C + 1) + \gamma}}}},$ where the term $\frac{-1}{2 + \dots}$ appears exactly B - 1 times. From $x := \frac{1}{A_1 + \frac{1}{A_2 + \frac{1}{\ddots + \frac{1}{A_n + \dots}}}}$, we apply the *singularization* each time we have an odd A_n .

If all the A_n 's are even, then this expansion is indeed the ECE of $x_{n} \in A_n$

< ロ > (四 > (四 > (三 > (三 >)))

÷.

Proposition

For every irrational $x \in [0, 1]$ and every $j \ge 1$, we have

$$q_{n+1} > q_n$$
, $\lim_{n \to +\infty} (q_{n+1} - q_n) = +\infty$

$$\frac{1}{2q_{n+1}} \le |xT(x)\cdots T^n(x)| = \frac{1}{|q_{n+1} + e_{n+1}x_{n+1}q_n|} \le \frac{1}{q_{n+1} - q_n}.$$

But...

◆□▶ ◆□▶ ★ ■▶ ★ ■▶ = ■ - - - - - - ●

Proposition

For every irrational $x \in [0, 1]$ and every $j \ge 1$, we have

$$q_{n+1} > q_n$$
, $\lim_{n \to +\infty} (q_{n+1} - q_n) = +\infty$

$$\frac{1}{2q_{n+1}} \le |xT(x)\cdots T^n(x)| = \frac{1}{|q_{n+1} + e_{n+1}x_{n+1}q_n|} \le \frac{1}{q_{n+1} - q_n}.$$

But...**Major difference with Gauss:** There is no uniform growth of $q_{n+1} - q_n$!!!

▲御▶ ▲ 理≯ ▲ 理≯ …

2

Proposition

For every irrational $x \in [0,1]$ and every $j \ge 1$, we have

$$q_{n+1} > q_n$$
, $\lim_{n \to +\infty} (q_{n+1} - q_n) = +\infty$

$$\frac{1}{2q_{n+1}} \le |xT(x)\cdots T^n(x)| = \frac{1}{|q_{n+1} + e_{n+1}x_{n+1}q_n|} \le \frac{1}{q_{n+1} - q_n}.$$

But...**Major difference with Gauss:** There is no uniform growth of $q_{n+1} - q_n \parallel \parallel$

Recall that

$$F_s(x) = \sum_{j=0}^{\infty} e^{i\frac{\pi}{4}\sum_{\ell=0}^{j-1}\sigma(T^{\ell}x)} |xT(x)\cdots T^{j-1}(x)|^{s-\frac{1}{2}} \Omega_s(T^j(x)).$$

The series

$$\sum_{n\geq 1} |xT(x)\cdots T^n(x)|^{\alpha}$$

may diverge (Aaronson, Sinai and students studied convergence in probability), while

$$\sum_{n\geq 1} |xG(x)\cdots G^n(x)|^{\alpha}$$
 always converges, since $|xG(x)\cdots G^n(x)|\leq \frac{1}{Q_n}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\mu(x) = \sup \left\{ \mu \ge 1: \ \left| x - \frac{p}{q} \right| < \frac{1}{q^{1+\mu}} \ \text{ for infinitely many integers } q \ge 1 \right\}.$$

▲ロト ▲園ト ▲ヨト ▲ヨト 三目 - のへで

$$\mu(x) = \sup\left\{ \mu \ge 1: \ \left| x - \frac{p}{q} \right| < \frac{1}{q^{1+\mu}} \ \text{ for infinitely many integers } q \ge 1 \right\}$$

Theore<u>m</u>

Let Ω be a bounded function, differentiable at 1 and -1. The series

$$\sum_{j=1}^{\infty} |xT(x)\cdots T^{j-1}(x)|^{\alpha} \Omega(T^{j}(x))$$

converges if $\sum_{n=1}^{\infty} \frac{Q_{n+1}}{Q_n^{\alpha+1}} <$

$$\infty$$
 (i.e. when $\mu(x) \leq 1 + \alpha$).

$$\mu(x) = \sup\left\{ \mu \ge 1: \ \left| x - \frac{p}{q} \right| < \frac{1}{q^{1+\mu}} \ \text{ for infinitely many integers } q \ge 1 \right\}$$

Theorem

Let Ω be a bounded function, differentiable at 1 and -1. The series

$$\sum_{j=1}^{\infty} |xT(x)\cdots T^{j-1}(x)|^{\alpha} \Omega(T^{j}(x))$$

converges if $\sum_{n=1}^{\infty} \frac{Q_{n+1}}{Q_n^{\alpha+1}}$

$$<\infty$$
 (*i.e.* when $\mu(x) \le 1 + \alpha$).

Theorem

For any $\alpha > 0$ and $\beta \ge 0$, and any irrational number $x \in (0, 1)$, the series

$$\begin{split} \sum_{j=0}^{\infty} \frac{|xT(x)\cdots T^{j-1}(x)|^{\alpha}}{|T^{j}(x)|^{\beta}} \\ \sum_{n=1}^{\infty} \frac{Q_{n+1}^{\beta+1}}{Q_{n}^{\alpha+\beta+1}} < \infty \quad \left(i.e. \ \text{when } \mu(x) \leq 1 + \frac{\alpha}{\beta+1}\right) \end{split}$$

converges if

$$\mu(x) = \sup\left\{\mu \ge 1: \ \left|x - \frac{p}{q}\right| < \frac{1}{q^{1+\mu}} \text{ for infinitely many integers } q \ge 1\right\}.$$

Theorem

Let Ω be a bounded function, differentiable at 1 and -1. The series

$$\sum_{j=1}^{\infty} |xT(x)\cdots T^{j-1}(x)|^{\alpha} \Omega\left(T^{j}(x)\right) e^{i\frac{\pi}{4} \sum_{\ell=0}^{j-1} \sigma(T^{\ell}x)}$$

converges for any $\alpha > 0$ and any irrational number $x \in (0, 1)$.

Theorem

For any $\alpha > 0$ and $\beta > 0$, and any irrational number $x \in (0, 1)$, the series

$$\begin{split} & \sum_{j=0}^{\infty} \frac{|xT(x)\cdots T^{j-1}(x)|^{\alpha}}{|T^{j}(x)|^{\beta}} \\ & \text{converges if} \quad \sum_{n=1}^{\infty} \frac{Q_{n+1}^{\beta+1}}{Q_{n}^{\alpha+\beta+1}} < \infty \quad \Big(i.e. \text{ when } \mu(x) \leq 1 + \frac{\alpha}{\beta+1}\Big). \end{split}$$

$$\mu(x) = \sup\left\{ \mu \ge 1: \ \left| x - \frac{p}{q} \right| < \frac{1}{q^{1+\mu}} \ \text{ for infinitely many integers } q \ge 1 \right\}$$

Theorem.

Let Ω be a bounded function, differentiable at 1 and -1. The series

$$\sum_{j=1}^{\infty} |xT(x)\cdots T^{j-1}(x)|^{\alpha} \Omega\left(T^{j}(x)\right) e^{i\frac{\pi}{4} \sum_{\ell=0}^{j-1} \sigma(T^{\ell}x)}$$

converges for any $\alpha > 0$ and any irrational number $x \in (0, 1)$.

Theorem

For any $\alpha > 0$ and $\beta \ge 0$, and any irrational number $x \in (0,1)$, the series

$$\sum_{j=0}^{\infty} \frac{|xT(x)\cdots T^{j-1}(x)|^{\alpha}}{|T^{j}(x)|^{\beta}} e^{i\frac{\pi}{4} \sum_{\ell=0}^{j-1} \sigma(T^{\ell}x)}$$

 $\textit{converges if} \quad \sum_{i=1}^{\infty} \frac{Q_{n+1}^{\beta}}{Q_{n}^{\alpha+\beta}} < \infty \quad \Big(i.e. \ \textit{when} \ \mu(x) \leq 1 + \frac{\alpha}{\beta} \Big).$

(日) (四) (王) (王) (王)

ъ.

Now, we put things together. Fix $s \in (\frac{1}{2}, 1)$:

(日) (四) (王) (王) (王)

ъ.

Now, we put things together. Fix $s \in (\frac{1}{2}, 1)$:

•
$$F_s(x,t)$$
 is convergent when $\sum_{k=0}^{\infty} \frac{(Q_{k+1})^{\frac{1-s}{2}}}{(Q_k)^{\frac{s}{2}}} < \infty$, i.e. when $\mu(x) \le \frac{s}{1-s}$

Stéphane Seuret Hardy-Littlewood series

ъ.

Now, we put things together. Fix $s \in (\frac{1}{2}, 1)$:

•
$$F_s(x,t)$$
 is convergent when $\sum_{k=0}^{\infty} \frac{(Q_{k+1})^{\frac{1-s}{2}}}{(Q_k)^{\frac{s}{2}}} < \infty$, i.e. when $\mu(x) \le \frac{s}{1-s}$.

• We proved that
$$F_s(x) = \sum_{j=0}^{\infty} e^{i \frac{\pi}{4} \sum_{\ell=0}^{j-1} \sigma(T^\ell x)} |xT(x) \cdots T^{j-1}(x)|^{s-\frac{1}{2}} \Omega_s(T^j(x)).$$

holds if $\sum_{j=0}^{\infty} \frac{|xT(x) \cdots T^{j-1}(x)|^{s-\frac{1}{2}}}{|T^j(x)|^{\frac{1-s}{2}}} < \infty$, i.e. when $\mu(x) \le 1 + \frac{s-\frac{1}{2}}{1+\frac{1-s}{2}} = \frac{2+s}{3-s}.$
◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ○ ○ ○ ○

Now, we put things together. Fix $s \in (\frac{1}{2}, 1)$:

•
$$F_s(x,t)$$
 is convergent when $\sum_{k=0}^{\infty} \frac{(Q_{k+1})^{\frac{1-s}{2}}}{(Q_k)^{\frac{s}{2}}} < \infty$, i.e. when $\mu(x) \le \frac{s}{1-s}$.

• We proved that
$$F_s(x) = \sum_{j=0}^{\infty} e^{i \frac{\pi}{4} \sum_{\ell=0}^{j-1} \sigma(T^\ell x)} |xT(x) \cdots T^{j-1}(x)|^{s-\frac{1}{2}} \Omega_s(T^j(x)).$$

holds if $\sum_{j=0}^{\infty} \frac{|xT(x) \cdots T^{j-1}(x)|^{s-\frac{1}{2}}}{|T^j(x)|^{\frac{1-s}{2}}} < \infty$, i.e. when $\mu(x) \le 1 + \frac{s-\frac{1}{2}}{1+\frac{1-s}{2}} = \frac{2+s}{3-s}.$

Problem: $\frac{2+s}{3-s} < \frac{s}{1-s}$, so we are not optimal...

Now, we put things together. Fix $s \in (\frac{1}{2}, 1)$:

•
$$F_s(x,t)$$
 is convergent when $\sum_{k=0}^{\infty} \frac{(Q_{k+1})^{\frac{1-s}{2}}}{(Q_k)^{\frac{s}{2}}} < \infty$, i.e. when $\mu(x) \le \frac{s}{1-s}$.

• We proved that
$$F_s(x) = \sum_{j=0}^{\infty} e^{i\frac{\pi}{4} \sum_{\ell=0}^{j-1} \sigma(T^\ell x)} |xT(x)\cdots T^{j-1}(x)|^{s-\frac{1}{2}} \Omega_s(T^j(x)).$$

holds if $\sum_{j=0}^{\infty} \frac{|xT(x)\cdots T^{j-1}(x)|^{s-\frac{1}{2}}}{|T^j(x)|^{\frac{1-s}{2}}} < \infty$, i.e. when $\mu(x) \le 1 + \frac{s-\frac{1}{2}}{1+\frac{1-s}{2}} = \frac{2+s}{3-s}.$

Problem: $\frac{2+s}{3-s} < \frac{s}{1-s}$, so we are not optimal...

Solution: Only a technical detail in the proof forces us to ensure absolute convergence of the sum $\sum_{j=0}^{\infty} e^{i \frac{\pi}{4} \sum_{\ell=0}^{j-1} \sigma(T^{\ell}x)} |xT(x) \cdots T^{j-1}(x)|^{s-\frac{1}{2}}$. If we could not support the sum of the sum

replace it with the simple convergence, then we would be optimal.

Intro.	Convergence conditions	Approximate equation	Even fractions	Questions

Theorem

The same properties (and the same convergence problem) hold for F_1 .

回 と く ヨ と く ヨ と …

2

Intro.	Convergence conditions	Approximate equation	Even fractions	Questions

Theorem

The same properties (and the same convergence problem) hold for F_1 .

Let's come back to R_2 :

$$R_2(x) = \sum_{k=1}^{\infty} \frac{\sin(\pi k^2 x)}{k^2} = \operatorname{Im}\left(\sum_{j=0}^{\infty} e^{i\frac{\pi}{4}\sum_{\ell=0}^{j-1}\sigma(T^\ell x)} |xT(x)\cdots T^{j-1}(x)|^{\frac{3}{2}} \Omega_2(T^j(x))\right),$$

where Ω_2 is differentiable (except at 0).

The use of T instead of G explains why the regularity depends on the approximation rate by rationals p/q with p, q both odd.

・ 同 ト ・ ヨ ト ・ モ ト

э.

Intro.	Convergence conditions	Approximate equation	Even fractions	\mathbf{Q} uestions
5. Que	stions			

- Find some courage to finish the theorem...
- Use the modular expression to completely characterize the multifractal properties of R_s , for s > 1.

• Distinguish, for R_s with $1/2 < s \le 1$, the different local behaviors according to the Diophantine exponent.

- Understand the approximation rate for the even convergents.
- Apply the same techniques to other functions.

• ...

▲□ ▶ ▲ □ ▶ ▲ □ ▶

э.

Intro.	Convergence conditions	Approximate equation	Even fractions	\mathbf{Q} uestions
5. Que	stions			

• Find some courage to finish the theorem...

• Use the modular expression to completely characterize the multifractal properties of R_s , for s > 1.

• Distinguish, for R_s with $1/2 < s \leq 1,$ the different local behaviors according to the Diophantine exponent.

- Understand the approximation rate for the even convergents.
- Apply the same techniques to other functions.

• ...

谢谢

3