Hardy-Littlewood series and (even) continued fractions

Stéphane Seuret, Université Paris-Est
joint work with T. Rivoal (CNRS, Grenoble)

Advances on Fractals and Related Fields
The Chinese University of Hong-Kong
(1) Introduction
(2) Convergence conditions
(3) Approximate modular equation

4 Even continued fractions
(5) Open questions

1 - Introduction

Non-differentiable Riemann function:

$$
R_{2}(x)=\sum_{k=1}^{\infty} \frac{\sin \left(\pi k^{2} x\right)}{k^{2}}
$$

R_{2} was proposed by Riemann in the 1850 's as an example of continuous but nowhere differentiable function (Riemann, Weierstrass, Hardy and Littlewood, Gerver, Itatsu, Jaffard).

1 - Introduction

Non-differentiable Riemann function:

$$
R_{2}(x)=\sum_{k=1}^{\infty} \frac{\sin \left(\pi k^{2} x\right)}{k^{2}}
$$

R_{2} was proposed by Riemann in the 1850 's as an example of continuous but nowhere differentiable function (Riemann, Weierstrass, Hardy and Littlewood, Gerver, Itatsu, Jaffard).

Deep connections with Diophantine approximation:

- Differentiable only at rationals p / q where p and q are both odd.
- The local regularity of R_{2} at x depends on a sort of Diophantine type of x.

1 - Introduction

Non-differentiable Riemann function:

$$
R_{2}(x)=\sum_{k=1}^{\infty} \frac{\sin \left(\pi k^{2} x\right)}{k^{2}}
$$

R_{2} was proposed by Riemann in the 1850's as an example of continuous but nowhere differentiable function (Riemann, Weierstrass, Hardy and Littlewood, Gerver, Itatsu, Jaffard).

Deep connections with Diophantine approximation:

- Differentiable only at rationals p / q where p and q are both odd.
- The local regularity of R_{2} at x depends on a sort of Diophantine type of x.

Local Hölder exponent of a L^{∞}-function f : When $h_{f}(x)<1$,

$$
h_{f}(x)=\liminf _{h \rightarrow 0^{+}} \frac{\log |f(x+h)-f(x)|}{\log h}
$$

(when f is differentiable, introduce a Taylor polynomial)

Multifractal Spectrum of R_{2} (Jaffard, 1999):

Multifractal Spectrum of R_{2} (Jaffard, 1999):

Idea: - Use the wavelet $\psi(x)=(x+i)^{-2}$ and compute the wavelet transform of R_{2} :

$$
W_{R_{2}}(a, b)=\frac{1}{a} \int_{\mathbb{R}} R_{2}(x) \psi\left(\frac{x-b}{a}\right) d x
$$

and prove (graduate-level complex analysis) that

$$
W_{R_{2}}(a, b)=a(2 \cdot \theta(b+i a)-1),
$$

where $\theta(z)=\sum_{n \in \mathbb{Z}} e^{i \pi n^{2} z}$ is the Theta Jacobi function.

Multifractal Spectrum of R_{2} (Jaffard, 1999):

Idea: - Use the wavelet $\psi(x)=(x+i)^{-2}$ and compute the wavelet transform of R_{2} :

$$
W_{R_{2}}(a, b)=\frac{1}{a} \int_{\mathbb{R}} R_{2}(x) \psi\left(\frac{x-b}{a}\right) d x
$$

and prove (graduate-level complex analysis) that

$$
W_{R_{2}}(a, b)=a(2 \cdot \theta(b+i a)-1),
$$

where $\theta(z)=\sum_{n \in \mathbb{Z}} e^{i \pi n^{2} z}$ is the Theta Jacobi function.

- Intuitively, from harmonic analysis theorems, if $W_{R_{2}}(a, b) \sim a^{h}$ when $a \rightarrow 0^{+}$, then the local exponent of R_{2} at b is h.

Multifractal Spectrum of R_{2} (Jaffard, 1999):

Idea: - Use the wavelet $\psi(x)=(x+i)^{-2}$ and compute the wavelet transform of R_{2} :

$$
W_{R_{2}}(a, b)=\frac{1}{a} \int_{\mathbb{R}} R_{2}(x) \psi\left(\frac{x-b}{a}\right) d x
$$

and prove (graduate-level complex analysis) that

$$
W_{R_{2}}(a, b)=a(2 \cdot \theta(b+i a)-1),
$$

where $\theta(z)=\sum_{n \in \mathbb{Z}} e^{i \pi n^{2} z}$ is the Theta Jacobi function.

- Intuitively, from harmonic analysis theorems, if $W_{R_{2}}(a, b) \sim a^{h}$ when $a \rightarrow 0^{+}$, then the local exponent of R_{2} at b is h.
- Use the Theta group $(\theta(z+2)=\theta(z)$ and $\theta(-1 / z)=\theta(z))$ to study $W_{R_{2}}(a, b)$ when $a \rightarrow 0^{+}$.

Questions:

- What if we change the exponent:

$$
R_{s}(x)=\sum_{k=1}^{\infty} \frac{\sin \left(\pi k^{2} x\right)}{k^{s}} .
$$

Questions:

- What if we change the exponent:

$$
R_{S}(x)=\sum_{k=1}^{\infty} \frac{\sin \left(\pi k^{2} x\right)}{k^{s}} .
$$

Differences when $1 / 2<s \leq 1$ and $s \geq 1$.

Questions:

- What if we change the exponent:

$$
R_{s}(x)=\sum_{k=1}^{\infty} \frac{\sin \left(\pi k^{2} x\right)}{k^{s}} .
$$

Differences when $1 / 2<s \leq 1$ and $s \geq 1$.

- What if we change the numerator:

$$
R^{P}(x)=\sum_{k=1}^{\infty} \frac{\sin (\pi P(k) x)}{k^{2}}
$$

where $P(k)$ is a polynomial of degree ≥ 3.

Questions:

- What if we change the exponent:

$$
R_{S}(x)=\sum_{k=1}^{\infty} \frac{\sin \left(\pi k^{2} x\right)}{k^{s}} .
$$

Differences when $1 / 2<s \leq 1$ and $s \geq 1$.

- What if we change the numerator:

$$
R^{P}(x)=\sum_{k=1}^{\infty} \frac{\sin (\pi P(k) x)}{k^{2}}
$$

where $P(k)$ is a polynomial of degree ≥ 3.

- What if we change both:

$$
R_{s}^{P}(x)=\sum_{k=1}^{\infty} \frac{\sin (\pi P(k) x)}{k^{s}}
$$

Comparable to the preceding question.

Questions:

- What if we change the exponent:

$$
R_{s}(x)=\sum_{k=1}^{\infty} \frac{\sin \left(\pi k^{2} x\right)}{k^{s}} .
$$

Differences when $1 / 2<s \leq 1$ and $s \geq 1$. Subject of this talk: better understand the convergence.

- What if we change the numerator:

$$
R^{P}(x)=\sum_{k=1}^{\infty} \frac{\sin (\pi P(k) x)}{k^{2}}
$$

where $P(k)$ is a polynomial of degree ≥ 3.

- What if we change both:

$$
R_{s}^{P}(x)=\sum_{k=1}^{\infty} \frac{\sin (\pi P(k) x)}{k^{s}}
$$

Comparable to the preceding question.

Questions:

- What if we change the exponent:

$$
R_{s}(x)=\sum_{k=1}^{\infty} \frac{\sin \left(\pi k^{2} x\right)}{k^{s}} .
$$

Differences when $1 / 2<s \leq 1$ and $s \geq 1$. Subject of this talk: better understand the convergence.

- What if we change the numerator:

$$
R^{P}(x)=\sum_{k=1}^{\infty} \frac{\sin (\pi P(k) x)}{k^{2}}
$$

where $P(k)$ is a polynomial of degree ≥ 3. Few is known.

- What if we change both:

$$
R_{s}^{P}(x)=\sum_{k=1}^{\infty} \frac{\sin (\pi P(k) x)}{k^{s}}
$$

Comparable to the preceding question. Few is known.

Theorem (F. Chamizo and A. Ubis, preprint 2012)
Let

$$
R_{s}^{P}(x)=\sum_{n=1}^{+\infty} \frac{e^{i \pi P(n) x}}{n^{s}}
$$

where P is of degree k, then if $1+k / 2<s<k$ one has

$$
\left(\nu_{0}+2\right) \beta \leq d_{R_{s}^{P}}\left(\beta+\frac{\alpha-1}{k}\right) \leq \begin{cases}\frac{2 \beta}{2^{-k}+\beta} & \text { if } 0 \leq \beta<\frac{1}{k 2^{-k}} \\ \frac{3}{2}-\sqrt{\frac{k+4}{4 k}-2 \beta} & \text { if } \frac{1}{k 2^{-k}} \leq \beta<\frac{1}{2 k}\end{cases}
$$

where ν_{0} is the greatest multiplicity of the zeros of P^{\prime}.

2 - Hardy-Littlewood series

For $(x, t) \in \mathbb{R}^{2}$ and $s \in \mathbb{R}^{+}$, we study

$$
\mathbf{F}_{\mathbf{s}}(\mathbf{x}, \mathbf{t})=\sum_{\mathbf{k}=1}^{\infty} \frac{\mathbf{e}^{\mathbf{i} \pi \mathbf{k}^{2} \mathbf{x}+2 \mathbf{i} \pi \mathbf{k t}}}{\mathbf{k}^{\mathbf{s}}} \quad \text { and } \quad \mathbf{F}_{\mathbf{s}}(\mathbf{x})=\mathbf{F}_{\mathbf{s}}(\mathbf{x}, \mathbf{0})=\sum_{\mathbf{k}=1}^{\infty} \frac{\mathbf{e}^{\mathbf{i} \pi \mathbf{k}^{2} \mathbf{x}}}{\mathbf{k}^{\mathbf{s}}}
$$

2 - Hardy-Littlewood series

For $(x, t) \in \mathbb{R}^{2}$ and $s \in \mathbb{R}^{+}$, we study

$$
\mathbf{F}_{\mathbf{s}}(\mathbf{x}, \mathbf{t})=\sum_{\mathbf{k}=1}^{\infty} \frac{\mathbf{e}^{\mathbf{i} \pi \mathbf{k}^{2} \mathbf{x}+2 \mathbf{i} \pi \mathbf{k t}}}{\mathbf{k}^{\mathbf{s}}} \quad \text { and } \quad \mathbf{F}_{\mathbf{s}}(\mathbf{x})=\mathbf{F}_{\mathbf{s}}(\mathbf{x}, \mathbf{0})=\sum_{\mathbf{k}=1}^{\infty} \frac{\mathbf{e}^{\mathbf{i} \pi \mathbf{k}^{2} \mathbf{x}}}{\mathbf{k}^{\mathbf{s}}}
$$

We denote its n-th partial sum by

$$
F_{s, n}(x, t)=\sum_{k=1}^{n} \frac{e^{i \pi k^{2} x+2 i \pi k t}}{k^{s}} \quad \text { and } \quad F_{s, n}(x)=\sum_{k=1}^{n} \frac{e^{i \pi k^{2} x}}{k^{s}}
$$

2 - Hardy-Littlewood series

For $(x, t) \in \mathbb{R}^{2}$ and $s \in \mathbb{R}^{+}$, we study

$$
\mathbf{F}_{\mathbf{s}}(\mathbf{x}, \mathbf{t})=\sum_{\mathbf{k}=1}^{\infty} \frac{\mathbf{e}^{\mathbf{i} \pi \mathbf{k}^{2} \mathbf{x}+2 \mathbf{i} \pi \mathbf{k t}}}{\mathbf{k}^{\mathbf{s}}} \quad \text { and } \quad \mathbf{F}_{\mathbf{s}}(\mathbf{x})=\mathbf{F}_{\mathbf{s}}(\mathbf{x}, \mathbf{0})=\sum_{\mathbf{k}=1}^{\infty} \frac{\mathbf{e}^{\mathbf{i} \pi \mathbf{k}^{2} \mathbf{x}}}{\mathbf{k}^{\mathbf{s}}}
$$

We denote its n-th partial sum by

$$
F_{s, n}(x, t)=\sum_{k=1}^{n} \frac{e^{i \pi k^{2} x+2 i \pi k t}}{k^{s}} \quad \text { and } \quad F_{s, n}(x)=\sum_{k=1}^{n} \frac{e^{i \pi k^{2} x}}{k^{s}}
$$

- Both are periodic functions of period 2 in x and 1 in t.

2 - Hardy-Littlewood series

For $(x, t) \in \mathbb{R}^{2}$ and $s \in \mathbb{R}^{+}$, we study

$$
\mathbf{F}_{\mathbf{s}}(\mathbf{x}, \mathbf{t})=\sum_{\mathbf{k}=1}^{\infty} \frac{\mathbf{e}^{\mathbf{i} \pi \mathbf{k}^{2} \mathbf{x}+2 \mathbf{i} \pi \mathbf{k t}}}{\mathbf{k}^{\mathbf{s}}} \quad \text { and } \quad \mathbf{F}_{\mathbf{s}}(\mathbf{x})=\mathbf{F}_{\mathbf{s}}(\mathbf{x}, \mathbf{0})=\sum_{\mathbf{k}=1}^{\infty} \frac{\mathbf{e}^{\mathbf{i} \pi \mathbf{k}^{2} \mathbf{x}}}{\mathbf{k}^{\mathbf{s}}}
$$

We denote its n-th partial sum by

$$
F_{s, n}(x, t)=\sum_{k=1}^{n} \frac{e^{i \pi k^{2} x+2 i \pi k t}}{k^{s}} \quad \text { and } \quad F_{s, n}(x)=\sum_{k=1}^{n} \frac{e^{i \pi k^{2} x}}{k^{s}}
$$

- Both are periodic functions of period 2 in x and 1 in t.
- For $s=2$ and $t=0$ the imaginary part of $F_{s}(x)$ is indeed R_{2}.

2 - Hardy-Littlewood series

For $(x, t) \in \mathbb{R}^{2}$ and $s \in \mathbb{R}^{+}$, we study

$$
\mathbf{F}_{\mathbf{s}}(\mathbf{x}, \mathbf{t})=\sum_{\mathbf{k}=1}^{\infty} \frac{\mathbf{e}^{\mathbf{i} \pi \mathbf{k}^{2} \mathbf{x}+2 \mathbf{i} \pi \mathbf{k t}}}{\mathbf{k}^{\mathbf{s}}} \quad \text { and } \quad \mathbf{F}_{\mathbf{s}}(\mathbf{x})=\mathbf{F}_{\mathbf{s}}(\mathbf{x}, \mathbf{0})=\sum_{\mathbf{k}=1}^{\infty} \frac{\mathbf{e}^{\mathbf{i} \pi \mathbf{k}^{2} \mathbf{x}}}{\mathbf{k}^{\mathbf{s}}}
$$

We denote its n-th partial sum by

$$
F_{s, n}(x, t)=\sum_{k=1}^{n} \frac{e^{i \pi k^{2} x+2 i \pi k t}}{k^{s}} \quad \text { and } \quad F_{s, n}(x)=\sum_{k=1}^{n} \frac{e^{i \pi k^{2} x}}{k^{s}}
$$

- Both are periodic functions of period 2 in x and 1 in t.
- For $s=2$ and $t=0$ the imaginary part of $F_{s}(x)$ is indeed R_{2}.
- Absolute convergence if $s>1$, and the multifractal properties are the same as those of R_{2}.

2 - Hardy-Littlewood series

For $(x, t) \in \mathbb{R}^{2}$ and $s \in \mathbb{R}^{+}$, we study

$$
\mathbf{F}_{\mathbf{s}}(\mathbf{x}, \mathbf{t})=\sum_{\mathbf{k}=1}^{\infty} \frac{\mathbf{e}^{\mathbf{i} \pi \mathbf{k}^{2} \mathbf{x}+2 \mathbf{i} \pi \mathbf{k t}}}{\mathbf{k}^{\mathbf{s}}} \quad \text { and } \quad \mathbf{F}_{\mathbf{s}}(\mathbf{x})=\mathbf{F}_{\mathbf{s}}(\mathbf{x}, \mathbf{0})=\sum_{\mathbf{k}=1}^{\infty} \frac{\mathbf{e}^{\mathbf{i} \pi \mathbf{k}^{2} \mathbf{x}}}{\mathbf{k}^{\mathbf{s}}}
$$

We denote its n-th partial sum by

$$
F_{s, n}(x, t)=\sum_{k=1}^{n} \frac{e^{i \pi k^{2} x+2 i \pi k t}}{k^{s}} \quad \text { and } \quad F_{s, n}(x)=\sum_{k=1}^{n} \frac{e^{i \pi k^{2} x}}{k^{s}}
$$

- Both are periodic functions of period 2 in x and 1 in t.
- For $s=2$ and $t=0$ the imaginary part of $F_{s}(x)$ is indeed R_{2}.
- Absolute convergence if $s>1$, and the multifractal properties are the same as those of R_{2}.
- Almost-everywhere convergence if $1 / 2<s \leq 1$ (Carleson's theorem), but not everywhere.

2 - Hardy-Littlewood series

For $(x, t) \in \mathbb{R}^{2}$ and $s \in \mathbb{R}^{+}$, we study

$$
\mathbf{F}_{\mathbf{s}}(\mathbf{x}, \mathbf{t})=\sum_{\mathbf{k}=1}^{\infty} \frac{\mathbf{e}^{\mathbf{i} \pi \mathbf{k}^{2} \mathbf{x}+2 \mathbf{i} \pi \mathbf{k t}}}{\mathbf{k}^{\mathbf{s}}} \quad \text { and } \quad \mathbf{F}_{\mathbf{s}}(\mathbf{x})=\mathbf{F}_{\mathbf{s}}(\mathbf{x}, \mathbf{0})=\sum_{\mathbf{k}=1}^{\infty} \frac{\mathbf{e}^{\mathbf{i} \pi \mathbf{k}^{2} \mathbf{x}}}{\mathbf{k}^{\mathbf{s}}}
$$

We denote its n-th partial sum by

$$
F_{s, n}(x, t)=\sum_{k=1}^{n} \frac{e^{i \pi k^{2} x+2 i \pi k t}}{k^{s}} \quad \text { and } \quad F_{s, n}(x)=\sum_{k=1}^{n} \frac{e^{i \pi k^{2} x}}{k^{s}}
$$

- Both are periodic functions of period 2 in x and 1 in t.
- For $s=2$ and $t=0$ the imaginary part of $F_{s}(x)$ is indeed R_{2}.
- Absolute convergence if $s>1$, and the multifractal properties are the same as those of R_{2}.
- Almost-everywhere convergence if $1 / 2<s \leq 1$ (Carleson's theorem), but not everywhere.
- Convergence?
- Local regularity? (distinguish the points)
- Exploit the modular forms to rewrite $F_{s}(x, t)$ in a more explicit form in terms of the Diophantine properties of x (more precisely in terms of the even continued fraction expansion).

Theorem (Rivoal, S.)

Let $x=\left(P_{k} / Q_{k}\right)_{k \geq 0}$ (its continued fraction) be an irrational number in $(0,1)$, and let $t \in \mathbb{R}$.
(i) If $s \in\left(\frac{1}{2}, 1\right)$, then $F_{s}(x, t)$ is absolutely convergent when

$$
\sum_{k=0}^{\infty} \frac{\left(Q_{k+1}\right)^{\frac{1-s}{2}}}{\left(Q_{k}\right)^{\frac{s}{2}}}<\infty
$$

Theorem (Rivoal, S.)

Let $x=\left(P_{k} / Q_{k}\right)_{k \geq 0}$ (its continued fraction) be an irrational number in $(0,1)$, and let $t \in \mathbb{R}$.
(i) If $s \in\left(\frac{1}{2}, 1\right)$, then $F_{s}(x, t)$ is absolutely convergent when

$$
\sum_{k=0}^{\infty} \frac{\left(Q_{k+1}\right)^{\frac{1-s}{2}}}{\left(Q_{k}\right)^{\frac{s}{2}}}<\infty
$$

(ii) If $s=1$, then $F_{1}(x, t)$ is absolutely convergent when

$$
\sum_{k=0}^{\infty} \frac{\log \left(Q_{k+1}\right)}{\left(Q_{k}\right)^{1 / 2}}<\infty
$$

Theorem (Rivoal, S.)

Let $x=\left(P_{k} / Q_{k}\right)_{k \geq 0}$ (its continued fraction) be an irrational number in $(0,1)$, and let $t \in \mathbb{R}$.
(i) If $s \in\left(\frac{1}{2}, 1\right)$, then $F_{s}(x, t)$ is absolutely convergent when

$$
\sum_{k=0}^{\infty} \frac{\left(Q_{k+1}\right)^{\frac{1-s}{2}}}{\left(Q_{k}\right)^{\frac{s}{2}}}<\infty
$$

(ii) If $s=1$, then $F_{1}(x, t)$ is absolutely convergent when

$$
\sum_{k=0}^{\infty} \frac{\log \left(Q_{k+1}\right)}{\left(Q_{k}\right)^{1 / 2}}<\infty
$$

Based on the celebrated "approximate functional equation for the theta series" of Hardy and Littlewood, concerning the growth of the "curlicues" $\sum_{n=1}^{N} e^{i \pi n^{2} x}$ (Mordell, Weyl, Klopp, ...)

Theorem (Rivoal, S.)

Let $x=\left(P_{k} / Q_{k}\right)_{k \geq 0}$ (its continued fraction) be an irrational number in $(0,1)$, and let $t \in \mathbb{R}$.
(i) If $s \in\left(\frac{1}{2}, 1\right)$, then $F_{s}(x, t)$ is absolutely convergent when

$$
\sum_{k=0}^{\infty} \frac{\left(Q_{k+1}\right)^{\frac{1-s}{2}}}{\left(Q_{k}\right)^{\frac{s}{2}}}<\infty
$$

(ii) If $s=1$, then $F_{1}(x, t)$ is absolutely convergent when

$$
\sum_{k=0}^{\infty} \frac{\log \left(Q_{k+1}\right)}{\left(Q_{k}\right)^{1 / 2}}<\infty
$$

Based on the celebrated "approximate functional equation for the theta series" of Hardy and Littlewood, concerning the growth of the "curlicues" $\sum_{n=1}^{N} e^{i \pi n^{2} x}$ (Mordell, Weyl, Klopp, ...)
Hence, if $\mu(x)=\sup \left\{\mu \geq 1:\left|x-\frac{p}{q}\right|<\frac{1}{q^{1+\mu}}\right.$ for i.m. $\left.q \geq 1\right\}$, then

- If $1 / 2<s<1, F_{s}(\cdot, t)$ does not converge on a set of Hausdorff dimension $\frac{1-s}{s}$ (real numbers with Diophantine exponent $\mu(x) \geq \frac{s}{1-s}$).

Theorem (Rivoal, S.)

Let $x=\left(P_{k} / Q_{k}\right)_{k \geq 0}$ (its continued fraction) be an irrational number in $(0,1)$, and let $t \in \mathbb{R}$.
(i) If $s \in\left(\frac{1}{2}, 1\right)$, then $F_{s}(x, t)$ is absolutely convergent when

$$
\sum_{k=0}^{\infty} \frac{\left(Q_{k+1}\right)^{\frac{1-s}{2}}}{\left(Q_{k}\right)^{\frac{s}{2}}}<\infty
$$

(ii) If $s=1$, then $F_{1}(x, t)$ is absolutely convergent when

$$
\sum_{k=0}^{\infty} \frac{\log \left(Q_{k+1}\right)}{\left(Q_{k}\right)^{1 / 2}}<\infty
$$

Based on the celebrated "approximate functional equation for the theta series" of Hardy and Littlewood, concerning the growth of the "curlicues" $\sum_{n=1}^{N} e^{i \pi n^{2} x}$ (Mordell, Weyl, Klopp, ...)
Hence, if $\mu(x)=\sup \left\{\mu \geq 1:\left|x-\frac{p}{q}\right|<\frac{1}{q^{1+\mu}}\right.$ for i.m. $\left.q \geq 1\right\}$, then

- If $1 / 2<s<1, F_{s}(\cdot, t)$ does not converge on a set of Hausdorff dimension $\frac{1-s}{s}$ (real numbers with Diophantine exponent $\left.\mu(x) \geq \frac{s}{1-s}\right)$.
- $F_{1}(\cdot, t)$ does not converge only on a subset of the Liouville numbers (dimension 0).

3 - Approximate Modular Equation

The modular nature of $F_{s}(x, t)$ implies that the map of $[-1,1] \backslash\{0\}$ given by

$$
T(x)=-\frac{1}{x} \quad \bmod 2
$$

is more natural than Gauss' here. We will obtain another expression for $F_{s}(x, t)$.

3 - Approximate Modular Equation

The modular nature of $F_{s}(x, t)$ implies that the map of $[-1,1] \backslash\{0\}$ given by

$$
T(x)=-\frac{1}{x} \quad \bmod 2
$$

is more natural than Gauss' here. We will obtain another expression for $F_{s}(x, t)$.

Theorem (Rivoal, S.)

For any $x \in(0,1], t \in \mathbb{R}, s \geq 0$, we have the estimate when $n \rightarrow \infty$

$$
F_{s, \mathbf{n}}(x, t)-e^{i \frac{\pi}{4}} e^{-i \pi \frac{\{t\}^{2}}{x}}|x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}\left(-\frac{1}{x}, \frac{\{t\}}{x}\right)=\Omega_{s}(x, t)+\mathcal{O}\left(\frac{1}{n^{s} \sqrt{|x|}}\right) .
$$

3 - Approximate Modular Equation

The modular nature of $F_{s}(x, t)$ implies that the map of $[-1,1] \backslash\{0\}$ given by

$$
T(x)=-\frac{1}{x} \quad \bmod 2
$$

is more natural than Gauss' here. We will obtain another expression for $F_{s}(x, t)$.

Theorem (Rivoal, S.)

For any $x \in[-1,0), t \in \mathbb{R}, s \geq 0$, we have the estimate when $n \rightarrow \infty$

$$
F_{s, \mathbf{n}}(x, t)-e^{-i \frac{\pi}{4}} e^{-i \pi \frac{\{-t\}^{2}}{x}}|x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}\left(-\frac{1}{x}, \frac{\{-t\}}{x}\right)=\Omega_{s}(x,-t)+\mathcal{O}\left(\frac{1}{n^{s} \sqrt{|x|}}\right)
$$

3 - Approximate Modular Equation

The modular nature of $F_{s}(x, t)$ implies that the map of $[-1,1] \backslash\{0\}$ given by

$$
T(x)=-\frac{1}{x} \quad \bmod 2
$$

is more natural than Gauss' here. We will obtain another expression for $F_{s}(x, t)$.

Theorem (Rivoal, S.)

For any $x \in[-1,0), t \in \mathbb{R}, s \geq 0$, we have the estimate when $n \rightarrow \infty$
$F_{s, \mathbf{n}}(x, t)-e^{-i \frac{\pi}{4}} e^{-i \pi \frac{\{-t\}^{2}}{x}}|x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}\left(-\frac{1}{x}, \frac{\{-t\}}{x}\right)=\Omega_{s}(x,-t)+\mathcal{O}\left(\frac{1}{n^{s} \sqrt{|x|}}\right)$
Just for fun: the function $\Omega_{s}(x, t)$ is $\Omega_{s}(x, t)=\left\{\begin{array}{cl}I_{s}(x, t) & \text { when } x>0 \\ I_{s}(-x,-t) & \text { when } x<0\end{array}\right.$, where:

$$
\begin{aligned}
I_{s}(x, t) & =\int_{1 / 2-\rho \infty}^{1 / 2+\rho \infty} \frac{e^{i \pi z^{2} x+2 i \pi z\{t\}}}{z^{s}\left(1-e^{2 i \pi z}\right)} \mathrm{d} z \\
& +\rho x^{s} \int_{-\infty}^{\infty} e^{-\pi x u^{2}}\left(\sum_{k=1}^{\infty} e^{-i \pi(k-\{t\})^{2} / x}\left(\frac{1}{(\rho x u+k-\{t\})^{s}}-\frac{1}{k^{s}}\right)\right) \mathrm{d} u .
\end{aligned}
$$

Now we focus on $t=0$: In this case, the formula becomes:

$$
F_{s, \mathbf{n}}(x)-e^{i \sigma(x) \frac{\pi}{4}}|x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}\left(-\frac{1}{x}\right)=\Omega_{s}(x)+\mathcal{O}\left(\frac{1}{n^{s} \sqrt{|x|}}\right)
$$

Now we focus on $t=0$: In this case, the formula becomes:

$$
F_{s, \mathbf{n}}(x)-e^{i \sigma(x) \frac{\pi}{4}}|x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}\left(-\frac{1}{x}\right)=\Omega_{s}(x)+\mathcal{O}\left(\frac{1}{n^{s} \sqrt{|x|}}\right) .
$$

As $n \rightarrow+\infty$, the resulting "modular" equation is (when it exists!!):

$$
F_{s}(x)-e^{i \frac{\pi}{4} \sigma(x)} x^{s-\frac{1}{2}} F_{s}\left(-\frac{1}{x}\right)=\Omega_{s}(x),
$$

Important: $\sigma(x)$ is the sign of x.

Now we focus on $t=0$: In this case, the formula becomes:

$$
F_{s, \mathbf{n}}(x)-e^{i \sigma(x) \frac{\pi}{4}}|x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}\left(-\frac{1}{x}\right)=\Omega_{s}(x)+\mathcal{O}\left(\frac{1}{n^{s} \sqrt{|x|}}\right)
$$

As $n \rightarrow+\infty$, the resulting "modular" equation is (when it exists!!):

$$
F_{s}(x)-e^{i \frac{\pi}{4} \sigma(x)} x^{s-\frac{1}{2}} F_{s}\left(-\frac{1}{x}\right)=\Omega_{s}(x),
$$

Important: $\sigma(x)$ is the sign of x.
Given $s>1 / 2$ and $t \in[0,1)$, this holds at least for almost every $x \in(0,1)$.

Now we focus on $t=0$: In this case, the formula becomes:

$$
F_{s, \mathbf{n}}(x)-e^{i \sigma(x) \frac{\pi}{4}}|x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}\left(-\frac{1}{x}\right)=\Omega_{s}(x)+\mathcal{O}\left(\frac{1}{n^{s} \sqrt{|x|}}\right)
$$

As $n \rightarrow+\infty$, the resulting "modular" equation is (when it exists!!):

$$
F_{s}(x)-e^{i \frac{\pi}{4} \sigma(x)} x^{s-\frac{1}{2}} F_{s}\left(-\frac{1}{x}\right)=\Omega_{s}(x),
$$

Important: $\sigma(x)$ is the sign of x.
Given $s>1 / 2$ and $t \in[0,1)$, this holds at least for almost every $x \in(0,1)$.
For $s=2$, it holds everywhere.

Now we focus on $t=0$: In this case, the formula becomes:

$$
F_{s, \mathbf{n}}(x)-e^{i \sigma(x) \frac{\pi}{4}}|x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}\left(-\frac{1}{x}\right)=\Omega_{s}(x)+\mathcal{O}\left(\frac{1}{n^{s} \sqrt{|x|}}\right) .
$$

As $n \rightarrow+\infty$, the resulting "modular" equation is (when it exists!!):

$$
F_{s}(x)-e^{i \frac{\pi}{4} \sigma(x)} x^{s-\frac{1}{2}} F_{s}\left(-\frac{1}{x}\right)=\Omega_{s}(x),
$$

Important: $\sigma(x)$ is the sign of x.
Given $s>1 / 2$ and $t \in[0,1)$, this holds at least for almost every $x \in(0,1)$.
For $s=2$, it holds everywhere.
Now, what is the behavior of $\Omega_{s}(x)$?

Now we focus on $t=0$: In this case, the formula becomes:

$$
F_{s, \mathbf{n}}(x)-e^{i \sigma(x) \frac{\pi}{4}}|x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}\left(-\frac{1}{x}\right)=\Omega_{s}(x)+\mathcal{O}\left(\frac{1}{n^{s} \sqrt{|x|}}\right)
$$

As $n \rightarrow+\infty$, the resulting "modular" equation is (when it exists!!):

$$
F_{s}(x)-e^{i \frac{\pi}{4} \sigma(x)} x^{s-\frac{1}{2}} F_{s}\left(-\frac{1}{x}\right)=\Omega_{s}(x),
$$

Important: $\sigma(x)$ is the sign of x.
Given $s>1 / 2$ and $t \in[0,1)$, this holds at least for almost every $x \in(0,1)$.
For $s=2$, it holds everywhere.
Now, what is the behavior of $\Omega_{s}(x)$?

Theorem

(i) When $0 \leq s \leq 1, x \longmapsto \Omega_{s}(x)$ is continuous on $\mathbb{R} \backslash\{0\}$, differentiable at p / q with p, q both odd, and

$$
\Omega_{s}(x)-\frac{\rho^{1-s} \Gamma\left(\frac{1-s}{2}\right)}{2 \pi^{\frac{1-s}{2}}}|x|^{\frac{s-1}{2}} \quad(0 \leq s<1) \quad \text { and } \quad \Omega_{1}(x)-\log (1 / \sqrt{|x|})
$$

are bounded on \mathbb{R}.

Now we focus on $t=0$: In this case, the formula becomes:

$$
F_{s, \mathbf{n}}(x)-e^{i \sigma(x) \frac{\pi}{4}}|x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}\left(-\frac{1}{x}\right)=\Omega_{s}(x)+\mathcal{O}\left(\frac{1}{n^{s} \sqrt{|x|}}\right)
$$

As $n \rightarrow+\infty$, the resulting "modular" equation is (when it exists!!):

$$
F_{s}(x)-e^{i \frac{\pi}{4} \sigma(x)} x^{s-\frac{1}{2}} F_{s}\left(-\frac{1}{x}\right)=\Omega_{s}(x),
$$

Important: $\sigma(x)$ is the sign of x.
Given $s>1 / 2$ and $t \in[0,1)$, this holds at least for almost every $x \in(0,1)$.
For $s=2$, it holds everywhere.
Now, what is the behavior of $\Omega_{s}(x)$?

Theorem

(i) When $0 \leq s \leq 1, x \longmapsto \Omega_{s}(x)$ is continuous on $\mathbb{R} \backslash\{0\}$, differentiable at p / q with p, q both odd, and

$$
\Omega_{s}(x)-\frac{\rho^{1-s} \Gamma\left(\frac{1-s}{2}\right)}{2 \pi^{\frac{1-s}{2}}}|x|^{\frac{s-1}{2}} \quad(0 \leq s<1) \quad \text { and } \quad \Omega_{1}(x)-\log (1 / \sqrt{|x|})
$$

are bounded on \mathbb{R}.
(ii) When $s>1, x \longmapsto \Omega_{s}(x)$ is continuous on \mathbb{R} and differentiable on $\mathbb{R} \backslash\{0\}$.

Plot of $\operatorname{Im}\left(F_{0.7,1000}(x)-e^{i \pi / 4} x^{0.2} F_{0.7,\lfloor 1000 x\rfloor}(-1 / x)\right)$ on $[0,2]$

4 - Even continued fractions

Idea: Iterate the modular equation.

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that $T(x)=-\frac{1}{x} \bmod 2$.

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that $T(x)=-\frac{1}{x} \bmod 2$.
Start with the initial modular equation, with $t=0(\sigma(x)$ is the sign of $x)$:

$$
F_{s, \mathbf{n}}(x)-e^{i \sigma(x) \frac{\pi}{4}}|x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}\left(-\frac{1}{x}\right) \quad=\quad \Omega_{s}(x)+\mathcal{O}\left(\frac{1}{n^{s} \sqrt{|x|}}\right) .
$$

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that $T(x)=-\frac{1}{x} \bmod 2$.
Start with the initial modular equation, with $t=0(\sigma(x)$ is the sign of $x)$:

$$
F_{s, \mathbf{n}}(x)-e^{i \sigma(x) \frac{\pi}{4}}|x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}(T(x)) \quad=\quad \Omega_{s}(x)+\mathcal{O}\left(\frac{1}{n^{s} \sqrt{|x|}}\right) .
$$

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that $T(x)=-\frac{1}{x} \bmod 2$.
Start with the initial modular equation, with $t=0(\sigma(x)$ is the sign of $x)$:

$$
F_{s, \mathbf{n}}(x)-e^{i \sigma(x) \frac{\pi}{4}}|x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}(T(x)) \quad=\quad \Omega_{s}(x)+\mathcal{O}\left(\frac{1}{n^{s} \sqrt{|x|}}\right) .
$$

The key point is that $\lfloor\mathbf{n}|\mathbf{x}|\rfloor<n$.

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that $T(x)=-\frac{1}{x} \bmod 2$.
Start with the initial modular equation, with $t=0(\sigma(x)$ is the sign of $x)$:

$$
F_{s, \mathbf{n}}(x)-e^{i \sigma(x) \frac{\pi}{4}}|x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}(T(x)) \quad=\quad \Omega_{s}(x)+\mathcal{O}\left(\frac{1}{n^{s} \sqrt{|x|}}\right) .
$$

The key point is that $\lfloor\mathbf{n}|\mathbf{x}|\rfloor<n$. We iterate:

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that $T(x)=-\frac{1}{x} \bmod 2$.
Start with the initial modular equation, with $t=0(\sigma(x)$ is the sign of $x)$:

$$
F_{s, \mathbf{n}}(x)-e^{i \sigma(x) \frac{\pi}{4}}|x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}(T(x)) \quad=\quad \Omega_{s}(x)+\mathcal{O}\left(\frac{1}{n^{s} \sqrt{|x|}}\right) .
$$

The key point is that $\lfloor\mathbf{n}|\mathbf{x}|\rfloor<n$. We iterate:
$F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}(T(x))-e^{i \sigma(T(x)) \frac{\pi}{4}}|T(x)|^{s-\frac{1}{2}} F_{s,\lfloor\lfloor\mathbf{n}|\mathbf{x}|\rfloor|\mathbf{T}(\mathbf{x})|\rfloor}\left(T^{2}(x)\right)=\Omega_{s}(T(x))+\mathcal{O}\left(\frac{1}{\left\lfloor\left.\mathbf{n}|\mathbf{x}|\right|^{s} \sqrt{|T(x)|}\right.}\right)$

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that $T(x)=-\frac{1}{x} \bmod 2$.
Start with the initial modular equation, with $t=0(\sigma(x)$ is the sign of $x)$:

$$
F_{s, \mathbf{n}}(x)-e^{i \sigma(x) \frac{\pi}{4}}|x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}(T(x)) \quad=\quad \Omega_{s}(x)+\mathcal{O}\left(\frac{1}{n^{s} \sqrt{|x|}}\right) .
$$

The key point is that $\lfloor\mathbf{n}|\mathbf{x}|\rfloor<n$. We iterate:
$F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}(T(x))-e^{i \sigma(T(x)) \frac{\pi}{4}}|T(x)|^{s-\frac{1}{2}} F_{s,\lfloor\lfloor\mathbf{n}|\mathbf{x}|\rfloor|\mathbf{T}(\mathbf{x})|\rfloor}\left(T^{2}(x)\right)=\Omega_{s}(T(x))+\mathcal{O}\left(\frac{1}{\left\lfloor\left.\mathbf{n}|\mathbf{x}|\right|^{s} \sqrt{|T(x)|}\right.}\right)$
and so on...

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that $T(x)=-\frac{1}{x} \bmod 2$.
Start with the initial modular equation, with $t=0(\sigma(x)$ is the sign of $x)$:

$$
F_{s, \mathbf{n}}(x)-e^{i \sigma(x) \frac{\pi}{4}}|x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}(T(x)) \quad=\quad \Omega_{s}(x)+\mathcal{O}\left(\frac{1}{n^{s} \sqrt{|x|}}\right)
$$

The key point is that $\lfloor\mathbf{n}|\mathbf{x}|\rfloor<n$. We iterate:
$F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}(T(x))-e^{i \sigma(T(x)) \frac{\pi}{4}}|T(x)|^{s-\frac{1}{2}} F_{s,\lfloor\lfloor\mathbf{n}|\mathbf{x}|\rfloor|\mathbf{T}(\mathbf{x})|\rfloor}\left(T^{2}(x)\right)=\Omega_{s}(T(x))+\mathcal{O}\left(\frac{1}{\lfloor\mathbf{n}|\mathbf{x}|\rfloor^{s} \sqrt{|T(x)|}}\right)$
and so on...
Starting with a given integer n, then the integer $\left\lfloor\lfloor\cdots\lfloor\lfloor n|x|\rfloor|T(x)|\rfloor \cdots\rfloor\left|T^{\ell}(x)\right|\right\rfloor$ tends to zero, and we get an empty sum.

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that $T(x)=-\frac{1}{x} \bmod 2$.
Start with the initial modular equation, with $t=0(\sigma(x)$ is the sign of $x)$:

$$
F_{s, \mathbf{n}}(x)-e^{i \sigma(x) \frac{\pi}{4}}|x|^{s-\frac{1}{2}} F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}(T(x)) \quad=\quad \Omega_{s}(x)+\mathcal{O}\left(\frac{1}{n^{s} \sqrt{|x|}}\right) .
$$

The key point is that $\lfloor\mathbf{n}|\mathbf{x}|\rfloor<n$. We iterate:
$F_{s,\lfloor\mathbf{n}|\mathbf{x}|\rfloor}(T(x))-e^{i \sigma(T(x)) \frac{\pi}{4}}|T(x)|^{s-\frac{1}{2}} F_{s,\lfloor\lfloor\mathbf{n}|\mathbf{x}|\rfloor|\mathbf{T}(\mathbf{x})|\rfloor}\left(T^{2}(x)\right)=\Omega_{s}(T(x))+\mathcal{O}\left(\frac{1}{\lfloor\mathbf{n}|\mathbf{x}|\rfloor^{s} \sqrt{|T(x)|}}\right)$
and so on...
Starting with a given integer n, then the integer $\left\lfloor\lfloor\cdots\lfloor\lfloor n|x|\rfloor|T(x)|\rfloor \cdots\rfloor\left|T^{\ell}(x)\right|\right\rfloor$ tends to zero, and we get an empty sum.

At the end, one gets

$$
F_{s, n}(x)=\sum_{j=0}^{K(n, x)} e^{i \frac{\pi}{4}} \sum_{\ell=0}^{j-1} \sigma\left(T^{\ell} x\right)\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}} \Omega_{s}\left(T^{j}(x)\right)
$$

for some integer $K(n, x)$ that tends to infinity when n tends to infinity.

Theorem

Let $s \in\left(\frac{1}{2}, 1\right)$. If $x \in(-1,1)$ is an irrational number such that

$$
\sum_{j=0}^{\infty} \frac{\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}}}{\left|T^{j}(x)\right|^{\frac{1-s}{2}}}<\infty
$$

then $F_{s}(x)$ is also convergent and the following identity holds:

$$
F_{s}(x)=\sum_{j=0}^{\infty} e^{i \frac{\pi}{4}} \sum_{\ell=0}^{j-1} \sigma\left(T^{\ell} x\right)\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}} \Omega_{s}\left(T^{j}(x)\right)
$$

Theorem

Let $s \in\left(\frac{1}{2}, 1\right)$. If $x \in(-1,1)$ is an irrational number such that

$$
\sum_{j=0}^{\infty} \frac{\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}}}{\left|T^{j}(x)\right|^{\frac{1-s}{2}}}<\infty
$$

then $F_{s}(x)$ is also convergent and the following identity holds:

$$
F_{s}(x)=\sum_{j=0}^{\infty} e^{i \frac{\pi}{4}} \sum_{\ell=0}^{j-1} \sigma\left(T^{\ell} x\right)\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}} \Omega_{s}\left(T^{j}(x)\right)
$$

Theorem

If

$$
\sum_{j=0}^{\infty} \sqrt{\left|x T(x) \cdots T^{j-1}(x)\right|}\left(1+\log \left(\frac{1}{\left|T^{j} x\right|}\right)\right)<\infty
$$

then $F_{1}(x)$ is also convergent and the following identity holds:

$$
F_{1}(x)=\sum_{j=0}^{\infty} e^{i \frac{\pi}{4} \sum_{\ell=0}^{j-1} \sigma\left(T^{\ell} x\right)} \sqrt{\left|x T(x) \cdots T^{j-1}(x)\right|} \Omega_{1}\left(T^{j}(x)\right)
$$

Theorem

Let $s \in\left(\frac{1}{2}, 1\right)$. If $x \in(-1,1)$ is an irrational number such that

$$
\sum_{j=0}^{\infty} \frac{\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}}}{\left|T^{j}(x)\right|^{\frac{1-s}{2}}}<\infty
$$

then $F_{s}(x)$ is also convergent and the following identity holds:

$$
F_{s}(x)=\sum_{j=0}^{\infty} e^{i \frac{\pi}{4}} \sum_{\ell=0}^{j-1} \sigma\left(T^{\ell} x\right)\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}} \Omega_{s}\left(T^{j}(x)\right)
$$

Theorem

If

$$
\sum_{j=0}^{\infty} \sqrt{\left|x T(x) \cdots T^{j-1}(x)\right|}\left(1+\log \left(\frac{1}{\left|T^{j} x\right|}\right)\right)<\infty
$$

then $F_{1}(x)$ is also convergent and the following identity holds:

$$
F_{1}(x)=\sum_{j=0}^{\infty} e^{i \frac{\pi}{4} \sum_{\ell=0}^{j-1} \sigma\left(T^{\ell} x\right)} \sqrt{\left|x T(x) \cdots T^{j-1}(x)\right|} \Omega_{1}\left(T^{j}(x)\right)
$$

Now we need to understand the convergence of sums like

$$
\sum_{j=0}^{\infty} \frac{\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}}}{\left|T^{j}(x)\right|^{\frac{1-s}{2}}}
$$

Now we need to understand the convergence of sums like

$$
\sum_{j=0}^{\infty} \frac{\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}}}{\left|T^{j}(x)\right|^{\frac{1-s}{2}}}
$$

$([-1,1], T)$ is a dynamical system with parabolic points -1 and 1 .

Infinite ergodic measure.

Now we need to understand the convergence of sums like

$$
\sum_{j=0}^{\infty} \frac{\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}}}{\left|T^{j}(x)\right|^{\frac{1-s}{2}}}
$$

$([-1,1], T)$ is a dynamical system with parabolic points -1 and 1 .

Infinite ergodic measure.

As with Gauss $G(x)=1 / x \bmod 1$, using T one can associate with each irrational real number $x \in[-1,1] \backslash\{0\}$ a kind of continued fraction:

Now we need to understand the convergence of sums like

$$
\sum_{j=0}^{\infty} \frac{\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}}}{\left|T^{j}(x)\right|^{\frac{1-s}{2}}}
$$

$([-1,1], T)$ is a dynamical system with parabolic points -1 and 1 .

Infinite ergodic measure.

As with Gauss $G(x)=1 / x \bmod 1$, using T one can associate with each irrational real number $x \in[-1,1] \backslash\{0\}$ a kind of continued fraction:

Proposition

x has a unique even continued fraction (ECF) expansion $x=\frac{e_{1}}{a_{1}+\frac{e_{2}}{a_{2}+\frac{e_{3}}{a_{3}+\ldots}}}$

- a_{j} the unique even integer such that $T^{j}(x)-a_{j} \in(-1,1)$
- $e_{j}=\sigma\left(T^{j}(x)\right) \in\{-1,1\}$.

Schweiger, Kraaikamp, Lopes, Sinai (and students)..

We define the n-th convergent and the n-th remainder respectively as

$$
\frac{p_{n}}{q_{n}}:=\frac{1}{a_{1}+\frac{e_{1}}{a_{2}+\frac{e_{2}}{\ddots}+\frac{e_{n-1}}{a_{n}}}} \quad \text { and } \quad x_{n}:=\frac{e_{n}}{a_{n+1}+\frac{e_{n+1}}{a_{n+2}+\frac{e_{n+2}}{\ddots}}} .
$$

(small letters p_{n} / q_{n} for ECF, and capital letters P_{n} / Q_{n} for SCF)

We define the n-th convergent and the n-th remainder respectively as

$$
\frac{p_{n}}{q_{n}}:=\frac{1}{a_{1}+\frac{e_{1}}{a_{2}+\frac{e_{2}}{\ddots}+\frac{e_{n-1}}{a_{n}}}} \quad \text { and } \quad x_{n}:=\frac{e_{n}}{a_{n+1}+\frac{e_{n+1}}{a_{n+2}+\frac{e_{n+2}}{\ddots}}} .
$$

(small letters p_{n} / q_{n} for ECF, and capital letters P_{n} / Q_{n} for SCF)
ECF expansions are obtained from the classical expansions via an iterative method: for any positive integers (A, B, C) and any $\gamma \geq 0$, observe that

$$
\begin{aligned}
& \qquad A+\frac{1}{B+\frac{1}{C+\gamma}}=(A+1)+\frac{-1}{2+\frac{-1}{2+\ldots .+\frac{-1}{2+\frac{-1}{(C+1)+\gamma}}}}, \\
& \text { where the term } \frac{-1}{2+\ldots} \text { appears exactly } B-1 \text { times. }
\end{aligned}
$$

We define the n-th convergent and the n-th remainder respectively as

$$
\frac{p_{n}}{q_{n}}:=\frac{1}{a_{1}+\frac{e_{1}}{a_{2}+\frac{e_{2}}{\ddots}+\frac{e_{n-1}}{a_{n}}}} \quad \text { and } \quad x_{n}:=\frac{e_{n}}{a_{n+1}+\frac{e_{n+1}}{a_{n+2}+\frac{e_{n+2}}{\ddots}}} .
$$

(small letters p_{n} / q_{n} for ECF, and capital letters P_{n} / Q_{n} for SCF)
ECF expansions are obtained from the classical expansions via an iterative method: for any positive integers (A, B, C) and any $\gamma \geq 0$, observe that

$$
\begin{aligned}
& A+\frac{1}{B+\frac{1}{C+\gamma}}=(A+1)+\frac{-1}{2+\frac{-1}{2+\ldots .+\frac{-1}{2+\frac{-1}{(C+1)+\gamma}}}}, \\
& \text { term } \frac{-1}{-} \text { appears exactly } B-1 \text { times. }
\end{aligned}
$$

where the term $\frac{-1}{2+\ldots}$ appears exactly $B-1$ times.
From $x:=\frac{1}{A_{1}+\frac{1}{A_{2}+\frac{1}{\ddots+\frac{1}{A_{n}+\ldots}}}}$, we apply the singularization each time
If all the A_{n} 's are even, then this expansion is indeed the ECF of x.

Proposition

For every irrational $x \in[0,1]$ and every $j \geq 1$, we have

$$
\begin{gathered}
q_{n+1}>q_{n}, \quad \lim _{n \rightarrow+\infty}\left(q_{n+1}-q_{n}\right)=+\infty \\
\frac{1}{2 q_{n+1}} \leq\left|x T(x) \cdots T^{n}(x)\right|=\frac{1}{\left|q_{n+1}+e_{n+1} x_{n+1} q_{n}\right|} \leq \frac{1}{q_{n+1}-q_{n}} .
\end{gathered}
$$

But...

Proposition

For every irrational $x \in[0,1]$ and every $j \geq 1$, we have

$$
\begin{gathered}
q_{n+1}>q_{n}, \quad \lim _{n \rightarrow+\infty}\left(q_{n+1}-q_{n}\right)=+\infty \\
\frac{1}{2 q_{n+1}} \leq\left|x T(x) \cdots T^{n}(x)\right|=\frac{1}{\left|q_{n+1}+e_{n+1} x_{n+1} q_{n}\right|} \leq \frac{1}{q_{n+1}-q_{n}} .
\end{gathered}
$$

But...Major difference with Gauss: There is no uniform growth of $q_{n+1}-q_{n}!!!$

Proposition

For every irrational $x \in[0,1]$ and every $j \geq 1$, we have

$$
\begin{gathered}
q_{n+1}>q_{n}, \quad \lim _{n \rightarrow+\infty}\left(q_{n+1}-q_{n}\right)=+\infty \\
\frac{1}{2 q_{n+1}} \leq\left|x T(x) \cdots T^{n}(x)\right|=\frac{1}{\left|q_{n+1}+e_{n+1} x_{n+1} q_{n}\right|} \leq \frac{1}{q_{n+1}-q_{n}}
\end{gathered}
$$

But...Major difference with Gauss: There is no uniform growth of $q_{n+1}-q_{n}!!!$
Recall that

$$
F_{s}(x)=\sum_{j=0}^{\infty} e^{i \frac{\pi}{4}} \sum_{\ell=0}^{j-1} \sigma\left(T^{\ell} x\right)\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}} \Omega_{s}\left(T^{j}(x)\right)
$$

The series

$$
\sum_{n \geq 1}\left|x T(x) \cdots T^{n}(x)\right|^{\alpha}
$$

may diverge (Aaronson, Sinai and students studied convergence in probability), while

$$
\sum_{n \geq 1}\left|x G(x) \cdots G^{n}(x)\right|^{\alpha}
$$

always converges, since $\left|x G(x) \cdots G^{n}(x)\right| \leq \frac{1}{Q_{n}}$.

$$
\mu(x)=\sup \left\{\mu \geq 1:\left|x-\frac{p}{q}\right|<\frac{1}{q^{1+\mu}} \text { for infinitely many integers } q \geq 1\right\}
$$

$$
\mu(x)=\sup \left\{\mu \geq 1:\left|x-\frac{p}{q}\right|<\frac{1}{q^{1+\mu}} \text { for infinitely many integers } q \geq 1\right\}
$$

Theorem

Let Ω be a bounded function, differentiable at 1 and -1 . The series

$$
\begin{gathered}
\sum_{j=1}^{\infty}\left|x T(x) \cdots T^{j-1}(x)\right|^{\alpha} \Omega\left(T^{j}(x)\right) \\
\text { converges if } \left.\quad \sum_{n=1}^{\infty} \frac{Q_{n+1}}{Q_{n}^{\alpha+1}}<\infty \quad \text { (i.e. when } \mu(x) \leq 1+\alpha\right) .
\end{gathered}
$$

$$
\mu(x)=\sup \left\{\mu \geq 1:\left|x-\frac{p}{q}\right|<\frac{1}{q^{1+\mu}} \text { for infinitely many integers } q \geq 1\right\}
$$

Theorem

Let Ω be a bounded function, differentiable at 1 and -1 . The series

$$
\sum_{j=1}^{\infty}\left|x T(x) \cdots T^{j-1}(x)\right|^{\alpha} \Omega\left(T^{j}(x)\right)
$$

converges if $\quad \sum_{n=1}^{\infty} \frac{Q_{n+1}}{Q_{n}^{\alpha+1}}<\infty \quad$ (i.e. when $\left.\mu(x) \leq 1+\alpha\right)$.

Theorem

For any $\alpha>0$ and $\beta \geq 0$, and any irrational number $x \in(0,1)$, the series

$$
\sum_{j=0}^{\infty} \frac{\left|x T(x) \cdots T^{j-1}(x)\right|^{\alpha}}{\left|T^{j}(x)\right|^{\beta}}
$$

converges if $\quad \sum_{n=1}^{\infty} \frac{Q_{n+1}^{\beta+1}}{Q_{n}^{\alpha+\beta+1}}<\infty \quad$ (i.e. when $\left.\mu(x) \leq 1+\frac{\alpha}{\beta+1}\right)$.

$$
\mu(x)=\sup \left\{\mu \geq 1:\left|x-\frac{p}{q}\right|<\frac{1}{q^{1+\mu}} \text { for infinitely many integers } q \geq 1\right\}
$$

Theorem

Let Ω be a bounded function, differentiable at 1 and -1 . The series

$$
\sum_{j=1}^{\infty}\left|x T(x) \cdots T^{j-1}(x)\right|^{\alpha} \Omega\left(T^{j}(x)\right) e^{i \frac{\pi}{4}} \sum_{\ell=0}^{j-1} \sigma\left(T^{\ell} x\right)
$$

converges for any $\alpha>0$ and any irrational number $x \in(0,1)$.

Theorem

For any $\alpha>0$ and $\beta \geq 0$, and any irrational number $x \in(0,1)$, the series

$$
\sum_{j=0}^{\infty} \frac{\left|x T(x) \cdots T^{j-1}(x)\right|^{\alpha}}{\left|T^{j}(x)\right|^{\beta}}
$$

converges if $\quad \sum_{n=1}^{\infty} \frac{Q_{n+1}^{\beta+1}}{Q_{n}^{\alpha+\beta+1}}<\infty \quad$ (i.e. when $\left.\mu(x) \leq 1+\frac{\alpha}{\beta+1}\right)$.

$$
\mu(x)=\sup \left\{\mu \geq 1:\left|x-\frac{p}{q}\right|<\frac{1}{q^{1+\mu}} \text { for infinitely many integers } q \geq 1\right\}
$$

Theorem

Let Ω be a bounded function, differentiable at 1 and -1 . The series

$$
\sum_{j=1}^{\infty}\left|x T(x) \cdots T^{j-1}(x)\right|^{\alpha} \Omega\left(T^{j}(x)\right) e^{i \frac{\pi}{4} \sum_{\ell=0}^{j-1} \sigma\left(T^{\ell} x\right)}
$$

converges for any $\alpha>0$ and any irrational number $x \in(0,1)$.

Theorem

For any $\alpha>0$ and $\beta \geq 0$, and any irrational number $x \in(0,1)$, the series

$$
\sum_{j=0}^{\infty} \frac{\left|x T(x) \cdots T^{j-1}(x)\right|^{\alpha}}{\left|T^{j}(x)\right|^{\beta}} e^{i \frac{\pi}{4}} \sum_{\ell=0}^{j-1} \sigma\left(T^{\ell} x\right)
$$

converges if $\quad \sum_{n=1}^{\infty} \frac{Q_{n+1}^{\beta}}{Q_{n}^{\alpha+\beta}}<\infty \quad$ (i.e. when $\left.\mu(x) \leq 1+\frac{\alpha}{\beta}\right)$.

Now, we put things together. Fix $s \in\left(\frac{1}{2}, 1\right)$:

Now, we put things together. Fix $s \in\left(\frac{1}{2}, 1\right)$:

- $F_{s}(x, t)$ is convergent when $\sum_{k=0}^{\infty} \frac{\left(Q_{k+1}\right)^{\frac{1-s}{2}}}{\left(Q_{k}\right)^{\frac{s}{2}}}<\infty$, i.e. when $\mu(x) \leq \frac{s}{1-s}$.

Now, we put things together. Fix $s \in\left(\frac{1}{2}, 1\right)$:

- $F_{s}(x, t)$ is convergent when $\sum_{k=0}^{\infty} \frac{\left(Q_{k+1}\right)^{\frac{1-s}{2}}}{\left(Q_{k}\right)^{\frac{s}{2}}}<\infty$, i.e. when $\mu(x) \leq \frac{s}{1-s}$.
- We proved that $F_{s}(x)=\sum_{j=0}^{\infty} e^{i \frac{\pi}{4}} \sum_{\ell=0}^{j-1} \sigma\left(T^{\ell} x\right)\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}} \Omega_{s}\left(T^{j}(x)\right)$.
holds if $\sum_{j=0}^{\infty} \frac{\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}}}{\left|T^{j}(x)\right|^{\frac{1-s}{2}}}<\infty$, i.e. when $\mu(x) \leq 1+\frac{s-\frac{1}{2}}{1+\frac{1-s}{2}}=\frac{2+s}{3-s}$.

Now, we put things together. Fix $s \in\left(\frac{1}{2}, 1\right)$:

- $F_{s}(x, t)$ is convergent when $\sum_{k=0}^{\infty} \frac{\left(Q_{k+1}\right)^{\frac{1-s}{2}}}{\left(Q_{k}\right)^{\frac{s}{2}}}<\infty$, i.e. when $\mu(x) \leq \frac{s}{1-s}$.
- We proved that $F_{s}(x)=\sum_{j=0}^{\infty} e^{i \frac{\pi}{4}} \sum_{\ell=0}^{j-1} \sigma\left(T^{\ell} x\right)\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}} \Omega_{s}\left(T^{j}(x)\right)$.
holds if $\sum_{j=0}^{\infty} \frac{\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}}}{\left|T^{j}(x)\right|^{\frac{1-s}{2}}}<\infty$, i.e. when $\mu(x) \leq 1+\frac{s-\frac{1}{2}}{1+\frac{1-s}{2}}=\frac{2+s}{3-s}$.
Problem: $\frac{2+s}{3-s}<\frac{s}{1-s}$, so we are not optimal...

Now, we put things together. Fix $s \in\left(\frac{1}{2}, 1\right)$:

- $F_{s}(x, t)$ is convergent when $\sum_{k=0}^{\infty} \frac{\left(Q_{k+1}\right)^{\frac{1-s}{2}}}{\left(Q_{k}\right)^{\frac{s}{2}}}<\infty$, i.e. when $\mu(x) \leq \frac{s}{1-s}$.
- We proved that $F_{s}(x)=\sum_{j=0}^{\infty} e^{i \frac{\pi}{4}} \sum_{\ell=0}^{j-1} \sigma\left(T^{\ell} x\right)\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}} \Omega_{s}\left(T^{j}(x)\right)$.
holds if $\sum_{j=0}^{\infty} \frac{\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}}}{\left|T^{j}(x)\right|^{\frac{1-s}{2}}}<\infty$, i.e. when $\mu(x) \leq 1+\frac{s-\frac{1}{2}}{1+\frac{1-s}{2}}=\frac{2+s}{3-s}$.
Problem: $\frac{2+s}{3-s}<\frac{s}{1-s}$, so we are not optimal...
Solution: Only a technical detail in the proof forces us to ensure absolute convergence of the sum $\sum_{j=0}^{\infty} e^{i \frac{\pi}{4}}{ }_{\ell=0}^{j-1} \sigma\left(T^{\ell} x\right) \quad\left|x T(x) \cdots T^{j-1}(x)\right|^{s-\frac{1}{2}}$. If we could replace it with the simple convergence, then we would be optimal.

Theorem

The same properties (and the same convergence problem) hold for F_{1}.

Theorem

The same properties (and the same convergence problem) hold for F_{1}.

Let's come back to R_{2} :
$R_{2}(x)=\sum_{k=1}^{\infty} \frac{\sin \left(\pi k^{2} x\right)}{k^{2}}=\operatorname{Im}\left(\sum_{j=0}^{\infty} e^{i \frac{\pi}{4}} \sum_{\ell=0}^{j-1} \sigma\left(T^{\ell} x\right)\left|x T(x) \cdots T^{j-1}(x)\right|^{\frac{3}{2}} \Omega_{2}\left(T^{j}(x)\right)\right)$,
where Ω_{2} is differentiable (except at 0).
The use of T instead of G explains why the regularity depends on the approximation rate by rationals p / q with p, q both odd.

5. Questions

- Find some courage to finish the theorem...
- Use the modular expression to completely characterize the multifractal properties of R_{s}, for $s>1$.
- Distinguish, for R_{s} with $1 / 2<s \leq 1$, the different local behaviors according to the Diophantine exponent.
- Understand the approximation rate for the even convergents.
- Apply the same techniques to other functions.

5. Questions

- Find some courage to finish the theorem...
- Use the modular expression to completely characterize the multifractal properties of R_{s}, for $s>1$.
- Distinguish, for R_{s} with $1 / 2<s \leq 1$, the different local behaviors according to the Diophantine exponent.
- Understand the approximation rate for the even convergents.
- Apply the same techniques to other functions.

谢 谢

