Some progresses on Lipschitz equivalence of self-similar sets

Huo-Jun Ruan
(With Hui Rao, Yang Wang and Li-Feng Xi)

Zhejiang University

Chinenes University of Hong Kong – Dec 10-14, 2012
Part I. Lipschitz equivalence of dust-like self-similar sets
Definition

Let E, F be compact sets in \mathbb{R}^d. We say that E and F are **Lipschitz equivalent**, and denote it by $E \sim F$, if there exists a bijection $g : E \to F$ which is bi-Lipschitz, i.e. there exists a constant $C > 0$ such that for all $x, y \in E$,

$$C^{-1}|x - y| \leq |g(x) - g(y)| \leq C|x - y|.$$
Question
Under what conditions, two self-similar sets are Lipschitz equivalent?

- Necessary condition: same Hausdorff dimension.
- The condition is not sufficient even for dust-like case. (The generating IFS satisfies the strong separation condition.)

Example
Let E be the Cantor middle-third set. Let $s = \log 2 / \log 3$ and $3 \cdot r^s = 1$. Let F be the dust-like self-similar set generated as the following figure. Then $E \not\sim F$.
Question
Under what conditions, two self-similar sets are Lipschitz equivalent?

- Necessary condition: same Hausdorff dimension.
- The condition is not sufficient even for dust-like case. (The generating IFS satisfies the strong separation condition.)

Example
Let E be the Cantor middle-third set. Let $s = \log 2 / \log 3$ and $3 \cdot r^s = 1$. Let F be the dust-like self-similar set generated as the following figure. Then $E \not\sim F$.
Question
Under what conditions, two self-similar sets are Lipschitz equivalent?

- Necessary condition: same Hausdorff dimension.
- The condition is not sufficient even for dust-like case. (The generating IFS satisfies the strong separation condition.)

Example
Let E be the Cantor middle-third set. Let $s = \log 2 / \log 3$ and $3 \cdot r^s = 1$. Let F be the dust-like self-similar set generated as the following figure. Then $E \not\sim F$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets
Question

Under what conditions, two self-similar sets are Lipschitz equivalent?

- Necessary condition: same Hausdorff dimension.
- The condition is not sufficient even for dust-like case. (The generating IFS satisfies the strong separation condition.)

Example

Let E be the Cantor middle-third set. Let $s = \log 2 / \log 3$ and $3 \cdot r^s = 1$. Let F be the dust-like self-similar set generated as the following figure. Then $E \not\sim F$.

\[\begin{array}{c}
\text{1/3} \\
\text{1/3} \\
\end{array} \quad \begin{array}{c}
r \\
r \\
r \\
\end{array} \]
Let E, F be dust-like self-similar sets generated by the IFS
$\{\Phi_j\}_{j=1}^{n}, \{\Psi_j\}_{j=1}^{m}$ on \mathbb{R}^d, respectively.

ρ_j (resp. τ_j) is the contraction ratio of Φ_j (resp. Ψ_j).

$\mathbb{Q}(a_1, \ldots, a_m)$: subfield of \mathbb{R} generated by \mathbb{Q} and a_1, \ldots, a_m.

$\text{sgp}(a_1, \ldots, a_m)$: subsemigroup of (\mathbb{R}^+, \times) generated by a_1, \ldots, a_m.

Theorem (Falconer-Marsh, 1992)

Assume that $E \sim F$. Let $s = \dim_H E = \dim_H F$. Then

1. \(\mathbb{Q}(\rho_1^s, \ldots, \rho_m^s) = \mathbb{Q}(\tau_1^s, \ldots, \tau_n^s)\);
2. \(\exists p, q \in \mathbb{Z}^+, \text{ s.t. } \text{sgp}(\rho_1^p, \ldots, \rho_m^p) \subset \text{sgp}(\tau_1, \ldots, \tau_n) \text{ and } \text{sgp}(\tau_1^q, \ldots, \tau_n^q) \subset \text{sgp}(\rho_1, \ldots, \rho_m)\).

Using (2), we can show that $E \not\sim F$ in the above example.
Let E, F be dust-like self-similar sets generated by the IFS $\{\Phi_j\}_{j=1}^n$, $\{\Psi_j\}_{j=1}^m$ on \mathbb{R}^d, respectively.

ρ_j (resp. τ_j) is the contraction ratio of Φ_j (resp. Ψ_j).

- $Q(a_1, \ldots, a_m)$: subfield of \mathbb{R} generated by Q and a_1, \ldots, a_m.
- $\text{sgp}(a_1, \ldots, a_m)$: subsemigroup of (\mathbb{R}^+, \times) generated by a_1, \ldots, a_m.

Theorem (Falconer-Marsh, 1992)

Assume that $E \sim F$. Let $s = \dim_H E = \dim_H F$. Then

1. $Q(\rho_1^s, \ldots, \rho_m^s) = Q(\tau_1^s, \ldots, \tau_n^s)$;
2. $\exists p, q \in \mathbb{Z}^+$, s.t. $\text{sgp}(\rho_1^p, \ldots, \rho_m^p) \subset \text{sgp}(\tau_1, \ldots, \tau_n)$ and $\text{sgp}(\tau_1^q, \ldots, \tau_n^q) \subset \text{sgp}(\rho_1, \ldots, \rho_m)$.

Using (2), we can show that $E \not\sim F$ in the above example.
Let E, F be dust-like self-similar sets generated by the IFS
$\{\Phi_j\}_{j=1}^n$, $\{\Psi_j\}_{j=1}^m$ on \mathbb{R}^d, respectively.

ρ_j (resp. τ_j) is the contraction ratio of Φ_j (resp. Ψ_j).

$\mathbb{Q}(a_1, \ldots, a_m)$: subfield of \mathbb{R} generated by \mathbb{Q} and a_1, \ldots, a_m.

$\text{sgp}(a_1, \ldots, a_m)$: subsemigroup of (\mathbb{R}^+, \times) generated by a_1, \ldots, a_m.

Theorem (Falconer-Marsh, 1992)

Assume that $E \sim F$. Let $s = \dim_H E = \dim_H F$. Then

1. $\mathbb{Q}(\rho_1^s, \ldots, \rho_m^s) = \mathbb{Q}(\tau_1^s, \ldots, \tau_n^s)$;
2. $\exists p, q \in \mathbb{Z}^+$, s.t. $\text{sgp}(\rho_1^p, \ldots, \rho_m^p) \subset \text{sgp}(\tau_1, \ldots, \tau_n)$ and $\text{sgp}(\tau_1^q, \ldots, \tau_n^q) \subset \text{sgp}(\rho_1, \ldots, \rho_m)$.

Using (2), we can show that $E \not\sim F$ in the above example.
Let E, F be dust-like self-similar sets generated by the IFS
$\{\Phi_j\}_{j=1}^n, \{\Psi_j\}_{j=1}^m$ on \mathbb{R}^d, respectively.

ρ_j (resp. τ_j) is the contraction ratio of Φ_j (resp. Ψ_j).

$\mathbb{Q}(a_1, \ldots, a_m)$: subfield of \mathbb{R} generated by \mathbb{Q} and a_1, \ldots, a_m.

$\text{sgp}(a_1, \ldots, a_m)$: subsemigroup of (\mathbb{R}^+, \times) generated by a_1, \ldots, a_m.

Theorem (Falconer-Marsh, 1992)

Assume that $E \sim F$. Let $s = \dim_H E = \dim_H F$. Then

1. $\mathbb{Q}(\rho_1^s, \ldots, \rho_m^s) = \mathbb{Q}(\tau_1^s, \ldots, \tau_n^s)$;
2. $\exists p, q \in \mathbb{Z}^+, \text{ s.t. } \text{sgp}(\rho_1^p, \ldots, \rho_m^p) \subset \text{sgp}(\tau_1, \ldots, \tau_n)$ and $\text{sgp}(\tau_1^q, \ldots, \tau_n^q) \subset \text{sgp}(\rho_1, \ldots, \rho_m)$.

Using (2), we can show that $E \not\sim F$ in the above example.
Let E, F be dust-like self-similar sets generated by the IFS \(\{\Phi_j\}_{j=1}^n \), \(\{\Psi_j\}_{j=1}^m \) on \(\mathbb{R}^d \), respectively.

- \(\rho_j \) (resp. \(\tau_j \)) is the contraction ratio of \(\Phi_j \) (resp. \(\Psi_j \)).
- \(\mathbb{Q}(a_1, \ldots, a_m) \): subfield of \(\mathbb{R} \) generated by \(\mathbb{Q} \) and \(a_1, \ldots, a_m \).
- \(\text{sgp}(a_1, \ldots, a_m) \): subsemigroup of \((\mathbb{R}^+, \times) \) generated by \(a_1, \ldots, a_m \).

Theorem (Falconer-Marsh, 1992)

Assume that $E \sim F$. Let $s = \dim_H E = \dim_H F$. Then

1. \(\mathbb{Q}(\rho_1^s, \ldots, \rho_m^s) = \mathbb{Q}(\tau_1^s, \ldots, \tau_n^s) \);
2. \(\exists p, q \in \mathbb{Z}^+ \), s.t. \(\text{sgp}(\rho_1^p, \ldots, \rho_m^p) \subset \text{sgp}(\tau_1, \ldots, \tau_n) \) and \(\text{sgp}(\tau_1^q, \ldots, \tau_n^q) \subset \text{sgp}(\rho_1, \ldots, \rho_m) \).

Using (2), we can show that $E \not\sim F$ in the above example.
Let E, F be dust-like self-similar sets generated by the IFS
\{Φ_j\}_{j=1}^n$, \{$\Psi_j$\}_{j=1}^m on \mathbb{R}^d, respectively.

ρ_j (resp. τ_j) is the contraction ratio of Φ_j (resp. Ψ_j).

$Q(a_1, \ldots, a_m)$: subfield of \mathbb{R} generated by Q and
a_1, \ldots, a_m.

$s_{\text{gp}}(a_1, \ldots, a_m)$: subsemigroup of (\mathbb{R}^+, \times) generated by
a_1, \ldots, a_m.

Theorem (Falconer-Marsh, 1992)

Assume that $E \sim F$. Let $s = \dim_H E = \dim_H F$. Then

1. $Q(\rho_1^s, \ldots, \rho_m^s) = Q(\tau_1^s, \ldots, \tau_n^s)$;
2. $\exists p, q \in \mathbb{Z}^+$, s.t. $s_{\text{gp}}(\rho_1^p, \ldots, \rho_m^p) \subset s_{\text{gp}}(\tau_1, \ldots, \tau_n)$ and
$s_{\text{gp}}(\tau_1^q, \ldots, \tau_n^q) \subset s_{\text{gp}}(\rho_1, \ldots, \rho_m)$.

Using (2), we can show that $E \not\sim F$ in the above example.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets
Question

What’s the necessary and sufficient condition? How about for two branches case?

\[\rho_1 \quad \rho_2 \]

\[\tau_1 \quad \tau_2 \]

- WLOG, we may assume that \(\rho_1 \leq \rho_2, \tau_1 \leq \tau_2 \) and \(\rho_1 \leq \tau_1 \).
- Conjecture. Lipschitz equivalent iff \((\rho_1, \rho_2) = (\tau_1, \tau_2) \).
Question

What’s the necessary and sufficient condition? How about for two branches case?

\[\rho_1 \quad \rho_2 \]
\[\tau_1 \quad \tau_2 \]

- WLOG, we may assume that \(\rho_1 \leq \rho_2 \), \(\tau_1 \leq \tau_2 \) and \(\rho_1 \leq \tau_1 \).
- Conjecture. Lipschitz equivalent iff \((\rho_1, \rho_2) = (\tau_1, \tau_2)\).
Question

What’s the necessary and sufficient condition? How about for two branches case?

\[(\rho_1, \rho_2) \]

\[(\tau_1, \tau_2) \]

- WLOG, we may assume that \(\rho_1 \leq \rho_2, \tau_1 \leq \tau_2 \) and \(\rho_1 \leq \tau_1 \).
- Conjecture. Lipschitz equivalent iff \((\rho_1, \rho_2) = (\tau_1, \tau_2) \).
Some Notations

- K: self-similar set determined by the IFS $\{\mathbb{R}^d; f_1, \ldots, f_m\}$.
- ρ_j: contraction ratio of f_j, $\forall j$.
- (ρ_1, \ldots, ρ_m) is called a contraction vector (c.v.) of K.
- For any c.v. $\rho = (\rho_1, \ldots, \rho_m)$ with $\sum \rho_j^d < 1$, we define $\mathcal{D}(\rho)$ to be all dust-like self-similar sets with c.v. ρ in \mathbb{R}^d.
- Throughout the talk, the dimension d will be implicit.
- Define $\dim_H \mathcal{D}(\rho) = \dim_H E$, for some (then for all) $E \in \mathcal{D}(\rho)$.
- $E \sim F$ for any $E, F \in \mathcal{D}(\rho)$.
- Define $\mathcal{D}(\rho) \sim \mathcal{D}(\tau)$ if $E \sim F$ for some $E \in \mathcal{D}(\rho)$ and $F \in \mathcal{D}(\tau)$.
Some Notations

- **K:** self-similar set determined by the IFS $\{\mathbb{R}^d; f_1, \ldots, f_m\}$.
- **ρ_j:** contraction ratio of f_j, $\forall j$.
- (ρ_1, \ldots, ρ_m) is called a contraction vector (c.v.) of K.
- For any c.v. $\vec{\rho} = (\rho_1, \ldots, \rho_m)$ with $\sum \rho_j^d < 1$, we define $D(\vec{\rho})$ to be all dust-like self-similar sets with c.v. $\vec{\rho}$ in \mathbb{R}^d.
- Throughout the talk, the dimension d will be implicit.
- Define $\dim_H D(\vec{\rho}) = \dim_H E$, for some (then for all) $E \in D(\vec{\rho})$.
- $E \sim F$ for any $E, F \in D(\vec{\rho})$.
- Define $D(\vec{\rho}) \sim D(\vec{\tau})$ if $E \sim F$ for some $E \in D(\vec{\rho})$ and $F \in D(\vec{\tau})$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets
Some Notations

- K: self-similar set determined by the IFS $\{\mathbb{R}^d; f_1, \ldots, f_m\}$.
- ρ_j: contraction ratio of f_j, $\forall j$.
- (ρ_1, \ldots, ρ_m) is called a contraction vector (c.v.) of K.
- For any c.v. $\vec{\rho} = (\rho_1, \ldots, \rho_m)$ with $\sum \rho_j^d < 1$, we define $\mathcal{D}(\vec{\rho})$ to be all dust-like self-similar sets with c.v. $\vec{\rho}$ in \mathbb{R}^d.
- Throughout the talk, the dimension d will be implicit.
- Define $\dim_H \mathcal{D}(\vec{\rho}) = \dim_H E$, for some (then for all) $E \in \mathcal{D}(\vec{\rho})$.
- $E \sim F$ for any $E, F \in \mathcal{D}(\vec{\rho})$.
- Define $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\vec{\rho})$ and $F \in \mathcal{D}(\vec{\tau})$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)

Some progresses on Lipschitz equivalence of self-similar sets
Some Notations

- K: self-similar set determined by the IFS $\{\mathbb{R}^d; f_1, \ldots, f_m\}$.
- ρ_j: contraction ratio of f_j, $\forall j$.
- (ρ_1, \ldots, ρ_m) is called a contraction vector (c.v.) of K.
- For any c.v. $\vec{\rho} = (\rho_1, \ldots, \rho_m)$ with $\sum \rho_j^d < 1$, we define $\mathcal{D}(\vec{\rho})$ to be all dust-like self-similar sets with c.v. $\vec{\rho}$ in \mathbb{R}^d.

Throughout the talk, the dimension d will be implicit.

Define $\dim_H \mathcal{D}(\vec{\rho}) = \dim_H E$, for some (then for all) $E \in \mathcal{D}(\vec{\rho})$.

$E \sim F$ for any $E, F \in \mathcal{D}(\vec{\rho})$.

Define $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\vec{\rho})$ and $F \in \mathcal{D}(\vec{\tau})$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets
Some Notations

- **K**: self-similar set determined by the IFS $\{\mathbb{R}^d; f_1, \ldots, f_m\}$.
- **ρ_j**: contraction ratio of f_j, $\forall j$.
- (ρ_1, \ldots, ρ_m) is called a **contraction vector (c.v.)** of K.
- For any c.v. $\vec{\rho} = (\rho_1, \ldots, \rho_m)$ with $\sum \rho_j^d < 1$, we define $\mathcal{D}(\vec{\rho})$ to be all dust-like self-similar sets with c.v. $\vec{\rho}$ in \mathbb{R}^d.
- Throughout the talk, the dimension d will be implicit.

- Define $\dim_{\mathcal{H}}\mathcal{D}(\vec{\rho}) = \dim_{\mathcal{H}}E$, for some (then for all) $E \in \mathcal{D}(\vec{\rho})$.
- $E \sim F$ for any $E, F \in \mathcal{D}(\vec{\rho})$.
- Define $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\vec{\rho})$ and $F \in \mathcal{D}(\vec{\tau})$.
Some Notations

- K: self-similar set determined by the IFS $\{\mathbb{R}^d; f_1, \ldots, f_m\}$.
- ρ_j: contraction ratio of f_j, $\forall j$.
- (ρ_1, \ldots, ρ_m) is called a contraction vector (c.v.) of K.
- For any c.v. $\rho = (\rho_1, \ldots, \rho_m)$ with $\sum \rho_j^d < 1$, we define $\mathcal{D}(\rho)$ to be all dust-like self-similar sets with c.v. ρ in \mathbb{R}^d.
- Throughout the talk, the dimension d will be implicit.
- Define $\dim_H \mathcal{D}(\rho) = \dim_H E$, for some (then for all) $E \in \mathcal{D}(\rho)$.
- $E \sim F$ for any $E, F \in \mathcal{D}(\rho)$.
- Define $\mathcal{D}(\rho) \sim \mathcal{D}(\tau)$ if $E \sim F$ for some $E \in \mathcal{D}(\rho)$ and $F \in \mathcal{D}(\tau)$.
Some Notations

- K: self-similar set determined by the IFS $\{\mathbb{R}^d; f_1, \ldots, f_m\}$.
- ρ_j: contraction ratio of f_j, $\forall j$.
- (ρ_1, \ldots, ρ_m) is called a contraction vector (c.v.) of K.
- For any c.v. $\vec{\rho} = (\rho_1, \ldots, \rho_m)$ with $\sum \rho_j^d < 1$, we define $\mathcal{D}(\vec{\rho})$ to be all dust-like self-similar sets with c.v. $\vec{\rho}$ in \mathbb{R}^d.
- Throughout the talk, the dimension d will be implicit.
- Define $\dim_H \mathcal{D}(\vec{\rho}) = \dim_H E$, for some (then for all) $E \in \mathcal{D}(\vec{\rho})$.
- $E \sim F$ for any $E, F \in \mathcal{D}(\vec{\rho})$.
- Define $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\vec{\rho})$ and $F \in \mathcal{D}(\vec{\tau})$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)
K: self-similar set determined by the IFS \(\{\mathbb{R}^d; f_1, \ldots, f_m\} \).

\(\rho_j \): contraction ratio of \(f_j \), \(\forall j \).

\((\rho_1, \ldots, \rho_m)\) is called a contraction vector (c.v.) of \(K \).

For any c.v. \(\overrightarrow{\rho} = (\rho_1, \ldots, \rho_m) \) with \(\sum \rho_j^d < 1 \), we define \(\mathcal{D}(\overrightarrow{\rho}) \) to be all dust-like self-similar sets with c.v. \(\overrightarrow{\rho} \) in \(\mathbb{R}^d \).

Throughout the talk, the dimension \(d \) will be implicit.

Define \(\dim_H \mathcal{D}(\overrightarrow{\rho}) = \dim_H E \), for some (then for all) \(E \in \mathcal{D}(\overrightarrow{\rho}) \).

\(E \sim F \) for any \(E, F \in \mathcal{D}(\overrightarrow{\rho}) \).

Define \(\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau}) \) if \(E \sim F \) for some \(E \in \mathcal{D}(\overrightarrow{\rho}) \) and \(F \in \mathcal{D}(\overrightarrow{\tau}) \).
Step 1 to solve the Question on two branches case

Assume that $\mathcal{D}(\rho_1, \rho_2) \sim \mathcal{D}(\tau_1, \tau_2)$. By FM’ theorem, one of followings must happen:

(1). $\log \rho_1 / \log \rho_2 \notin \mathbb{Q}$.

(2). $\exists \lambda \in (0, 1)$, and $p_1, q_1, p_2, q_2 \in \mathbb{Z}^+$ such that

$$\rho_1 = \lambda^{p_1}, \quad \rho_2 = \lambda^{p_2}, \quad \tau_1 = \lambda^{q_1}, \quad \tau_2 = \lambda^{q_2}.$$
Step 1 to solve the Question on two branches case

Assume that $\mathcal{D}(\rho_1, \rho_2) \sim \mathcal{D}(\tau_1, \tau_2)$. By FM' theorem, one of followings must happen:

(1). $\log \rho_1 / \log \rho_2 \not\in \mathbb{Q}$.

(2). $\exists \lambda \in (0, 1)$, and $p_1, q_1, p_2, q_2 \in \mathbb{Z}^+$ such that

$$\rho_1 = \lambda^{p_1}, \quad \rho_2 = \lambda^{p_2}, \quad \tau_1 = \lambda^{q_1}, \quad \tau_2 = \lambda^{q_2}.$$
Let’s study case (2) first.

From \(s = \dim_H D(\rho_1, \rho_2) = \dim_H D(\tau_1, \tau_2) \), we have

\[
(\lambda^{p_1})^s + (\lambda^{p_2})^s = (\lambda^{q_1})^s + (\lambda^{q_2}) = 1.
\]

Denote \(x = \lambda^s \), then

\[
x^{p_1} + x^{p_2} = x^{q_1} + x^{q_2} = 1.
\]

That is,

\[
x^{p_1} + x^{p_2} - 1 = 0 \quad \text{and} \quad x^{q_1} + x^{q_2} - 1 = 0
\]

have same root in \((0, 1)\), where \(p_1 \geq p_2, q_1 \geq q_2, p_1 \geq q_1 \).

Using Ljunggren’s result on the irreducibility of trinomials \(x^n \pm x^m \pm 1 \), we proved that the above happens iff

- \((p_1, p_2) = (q_1, q_2)\) or
- \((p_1, p_2, q_1, q_2) = \gamma(5, 1, 3, 2)\) for some \(\gamma \in \mathbb{Z}^+ \).
Step 2 to solve the Question

Let’s study case (2) first.

- From \(s = \dim_H \mathcal{D}(\rho_1, \rho_2) = \dim_H \mathcal{D}(\tau_1, \tau_2) \), we have
 \[
 (\lambda^{p_1})^s + (\lambda^{p_2})^s = (\lambda^{q_1})^s + (\lambda^{q_2})^s = 1.
 \]

- Denote \(x = \lambda^s \), then
 \[
 x^{p_1} + x^{p_2} = x^{q_1} + x^{q_2} = 1.
 \]

That is,

\[
\begin{align*}
 x^{p_1} + x^{p_2} - 1 &= 0 \quad \text{and} \quad x^{q_1} + x^{q_2} - 1 &= 0
\end{align*}
\]

have same root in \((0, 1)\), where \(p_1 \geq p_2, q_1 \geq q_2, p_1 \geq q_1 \).

- Using Ljunggren’s result on the irreducibility of trinomials \(x^n \pm x^m \pm 1 \), we proved that the above happens iff
 - \((p_1, p_2) = (q_1, q_2)\) or
 - \((p_1, p_2, q_1, q_2) = \gamma(5, 1, 3, 2)\) for some \(\gamma \in \mathbb{Z}^+ \).
Let’s study case (2) first.

- From $s = \dim_H \mathcal{D}(\rho_1, \rho_2) = \dim_H \mathcal{D}(\tau_1, \tau_2)$, we have

 $$(\lambda^{p_1})^s + (\lambda^{p_2})^s = (\lambda^{q_1})^s + (\lambda^{q_2}) = 1.$$

 Denote $x = \lambda^s$, then

 $$x^{p_1} + x^{p_2} = x^{q_1} + x^{q_2} = 1.$$

 That is,

 $$x^{p_1} + x^{p_2} - 1 = 0 \quad \text{and} \quad x^{q_1} + x^{q_2} - 1 = 0$$

 have same root in $(0, 1)$, where $p_1 \geq p_2, q_1 \geq q_2, p_1 \geq q_1$.

- Using Ljunggren’s result on the irreducibility of trinomials $x^n \pm x^m \pm 1$, we proved that the above happens iff

 - $(p_1, p_2) = (q_1, q_2)$ or
 - $(p_1, p_2, q_1, q_2) = \gamma(5, 1, 3, 2)$ for some $\gamma \in \mathbb{Z}^+$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)
Some progresses on Lipschitz equivalence of self-similar sets
Step 2 to solve the Question

Let’s study case (2) first.

From \(s = \dim_H \mathcal{D}(\rho_1, \rho_2) = \dim_H \mathcal{D}(\tau_1, \tau_2) \), we have

\[
(\lambda^{p_1})^s + (\lambda^{p_2})^s = (\lambda^{q_1})^s + (\lambda^{q_2})^s = 1.
\]

Denote \(x = \lambda^s \), then

\[
x^{p_1} + x^{p_2} = x^{q_1} + x^{q_2} = 1.
\]

That is,

\[
x^{p_1} + x^{p_2} - 1 = 0 \quad \text{and} \quad x^{q_1} + x^{q_2} - 1 = 0
\]

have same root in \((0, 1)\), where \(p_1 \geq p_2, \quad q_1 \geq q_2, \quad p_1 \geq q_1 \).

Using Ljunggren’s result on the irreducibility of trinomials \(x^n \pm x^m \pm 1 \), we proved that the above happens iff

1. \((p_1, p_2) = (q_1, q_2)\) or
2. \((p_1, p_2, q_1, q_2) = \gamma(5, 1, 3, 2)\) for some \(\gamma \in \mathbb{Z}^+ \).
Thus, Case (2) holds will imply \((\rho_1, \rho_2) = (\tau_1, \tau_2)\) or there exists \(\lambda \in (0, 1)\), s.t.

\[
(\rho_1, \rho_2, \tau_1, \tau_2) = (\lambda^5, \lambda, \lambda^3, \lambda^2).
\] (1)

We can check that \(D(\lambda^5, \lambda) \sim D(\lambda^3, \lambda^2)\) as following figure.
Step 2 to solve the Question

Thus, Case (2) holds will imply \((\rho_1, \rho_2) = (\tau_1, \tau_2)\) or there exists \(\lambda \in (0, 1)\), s.t.

\[
(\rho_1, \rho_2, \tau_1, \tau_2) = (\lambda^5, \lambda, \lambda^3, \lambda^2). \tag{1}
\]

We can check that \(D(\lambda^5, \lambda) \sim D(\lambda^3, \lambda^2)\) as following figure.
Let's study Case (1) now.

Given a c.v. $\vec{\rho} = (\rho_1, \ldots, \rho_m)$. Define

$$\langle \vec{\rho} \rangle := \{ \rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} : \alpha_1, \ldots, \alpha_m \in \mathbb{Z} \}.$$

- $\langle \vec{\rho} \rangle$ is an abelian group and has a nonempty basis.
- Define $\text{rank}(\langle \vec{\rho} \rangle)$ to be the cardinality of the basis.
- Clearly, $1 \leq \text{rank}(\langle \vec{\rho} \rangle) \leq m$.
- If $\text{rank}(\langle \vec{\rho} \rangle) = m$, we say $\vec{\rho}$ has full rank.
- By FM’ theorem, $\text{rank}(\langle \vec{\rho} \rangle) = \text{rank}(\langle \vec{\tau} \rangle)$ if $D(\vec{\rho}) \sim D(\vec{\tau})$.

Theorem (Rao-R-Wang, 2012)

Assume that both $\vec{\rho}$ and $\vec{\tau}$ have full rank m. Then $D(\vec{\rho}) \sim D(\vec{\tau})$ iff $\vec{\rho}$ is a permutation of $\vec{\tau}$.
Let’s study Case (1) now.

Given a c.v. $\vec{\rho} = (\rho_1, \ldots, \rho_m)$. Define

$$\langle \vec{\rho} \rangle := \{ \rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} : \alpha_1, \ldots, \alpha_m \in \mathbb{Z} \}.$$

$\langle \vec{\rho} \rangle$ is an abelian group and has a nonempty basis.

- Define $\text{rank}\langle \vec{\rho} \rangle$ to be the cardinality of the basis.
- Clearly, $1 \leq \text{rank}\langle \vec{\rho} \rangle \leq m$.
- If $\text{rank}\langle \vec{\rho} \rangle = m$, we say $\vec{\rho}$ has full rank.
- By FM’ theorem, $\text{rank}\langle \vec{\rho} \rangle = \text{rank}\langle \vec{\tau} \rangle$ if $D(\vec{\rho}) \sim D(\vec{\tau})$.

Theorem (Rao-R-Wang, 2012)

Assume that both $\vec{\rho}$ and $\vec{\tau}$ have full rank m. Then $D(\vec{\rho}) \sim D(\vec{\tau})$ iff $\vec{\rho}$ is a permutation of $\vec{\tau}$.
Let’s study Case (1) now.

- Given a c.v. \(\vec{\rho} = (\rho_1, \ldots, \rho_m) \). Define
 \[
 \langle \vec{\rho} \rangle := \{ \rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} : \alpha_1, \ldots, \alpha_m \in \mathbb{Z} \}.
 \]

- \(\langle \vec{\rho} \rangle \) is an abelian group and has a nonempty basis.
- Define \(\text{rank} \langle \vec{\rho} \rangle \) to be the cardinality of the basis.
- Clearly, \(1 \leq \text{rank} \langle \vec{\rho} \rangle \leq m \).
- If \(\text{rank} \langle \vec{\rho} \rangle = m \), we say \(\vec{\rho} \) has full rank.
- By FM’ theorem, \(\text{rank} \langle \vec{\rho} \rangle = \text{rank} \langle \vec{\tau} \rangle \) if \(D(\vec{\rho}) \sim D(\vec{\tau}) \).

Theorem (Rao-R-Wang, 2012)

Assume that both \(\vec{\rho} \) and \(\vec{\tau} \) have full rank \(m \). Then \(D(\vec{\rho}) \sim D(\vec{\tau}) \) iff \(\vec{\rho} \) is a permutation of \(\vec{\tau} \).
Step 3 to solve the Question

Let’s study Case (1) now.

Given a c.v. $\vec{\rho} = (\rho_1, \ldots, \rho_m)$. Define

$$\langle \vec{\rho} \rangle := \{ \rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} : \alpha_1, \ldots, \alpha_m \in \mathbb{Z} \}.$$

- $\langle \vec{\rho} \rangle$ is an abelian group and has a nonempty basis.
- Define $\text{rank} \langle \vec{\rho} \rangle$ to be the cardinality of the basis.
- Clearly, $1 \leq \text{rank} \langle \vec{\rho} \rangle \leq m$.
- If $\text{rank} \langle \vec{\rho} \rangle = m$, we say $\vec{\rho}$ has full rank.
- By FM’ theorem, $\text{rank} \langle \vec{\rho} \rangle = \text{rank} \langle \vec{\tau} \rangle$ if $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$.

Theorem (Rao-R-Wang, 2012)

Assume that both $\vec{\rho}$ and $\vec{\tau}$ have full rank m. Then $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$ iff $\vec{\rho}$ is a permutation of $\vec{\tau}$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets
Let’s study Case (1) now.

Given a c.v. $\vec{\rho} = (\rho_1, \ldots, \rho_m)$. Define

$$\langle \vec{\rho} \rangle := \{ \rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} : \alpha_1, \ldots, \alpha_m \in \mathbb{Z} \}.$$

$\langle \vec{\rho} \rangle$ is an abelian group and has a nonempty basis.

Define $\text{rank} \langle \vec{\rho} \rangle$ to be the cardinality of the basis.

Clearly, $1 \leq \text{rank} \langle \vec{\rho} \rangle \leq m$.

If $\text{rank} \langle \vec{\rho} \rangle = m$, we say $\vec{\rho}$ has full rank.

By FM’ theorem, $\text{rank} \langle \vec{\rho} \rangle = \text{rank} \langle \vec{\tau} \rangle$ if $D(\vec{\rho}) \sim D(\vec{\tau})$.

Theorem (Rao-R-Wang, 2012)

Assume that both $\vec{\rho}$ and $\vec{\tau}$ have full rank m. Then $D(\vec{\rho}) \sim D(\vec{\tau})$ iff $\vec{\rho}$ is a permutation of $\vec{\tau}$.
Step 3 to solve the Question

Let’s study Case (1) now.

- Given a c.v. $\vec{\rho} = (\rho_1, \ldots, \rho_m)$. Define

 $$\langle \vec{\rho} \rangle := \{ \rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} : \alpha_1, \ldots, \alpha_m \in \mathbb{Z} \}.$$

- $\langle \vec{\rho} \rangle$ is an abelian group and has a nonempty basis.
- Define $\text{rank}(\langle \vec{\rho} \rangle)$ to be the cardinality of the basis.
- Clearly, $1 \leq \text{rank}(\langle \vec{\rho} \rangle) \leq m$.
- If $\text{rank}(\langle \vec{\rho} \rangle) = m$, we say $\vec{\rho}$ has full rank.
- By FM’ theorem, $\text{rank}(\langle \vec{\rho} \rangle) = \text{rank}(\langle \vec{\tau} \rangle)$ if $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$.

Theorem (Rao-R-Wang, 2012)

Assume that both $\vec{\rho}$ and $\vec{\tau}$ have full rank m. Then $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$ iff $\vec{\rho}$ is a permutation of $\vec{\tau}$.
Step 3 to solve the Question

Let’s study Case (1) now.

Given a c.v. \(\vec{\rho} = (\rho_1, \ldots, \rho_m) \). Define

\[
\langle \vec{\rho} \rangle := \{ \rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} : \alpha_1, \ldots, \alpha_m \in \mathbb{Z} \}.
\]

- \(\langle \vec{\rho} \rangle \) is an abelian group and has a nonempty basis.
- Define \(\text{rank} \langle \vec{\rho} \rangle \) to be the cardinality of the basis.
- Clearly, \(1 \leq \text{rank} \langle \vec{\rho} \rangle \leq m \).
- If \(\text{rank} \langle \vec{\rho} \rangle = m \), we say \(\vec{\rho} \) has full rank.
- By FM’ theorem, \(\text{rank} \langle \vec{\rho} \rangle = \text{rank} \langle \vec{\tau} \rangle \) if \(\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau}) \).

Theorem (Rao-R-Wang, 2012)

Assume that both \(\vec{\rho} \) and \(\vec{\tau} \) have full rank \(m \). Then \(\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau}) \) iff \(\vec{\rho} \) is a permutation of \(\vec{\tau} \).
Theorem (Rao-R-Wang, 2012)

\[D(\rho_1, \rho_2) \sim D(\tau_1, \tau_2) \text{ iff } (\rho_1, \rho_2) = (\tau_1, \tau_2) \text{ or there exists } \lambda \in (0, 1), \text{ s.t.} \]

\[(\rho_1, \rho_2, \tau_1, \tau_2) = (\lambda^5, \lambda, \lambda^3, \lambda^2). \]
In case that $\text{rank}(\overrightarrow{\rho}) = \text{rank}(\overrightarrow{\tau}) = 1$,
- Xi and Xiong have a very nice result.
- Rao and his collaborators also have some progresses.

In case that $1 < \text{rank}(\overrightarrow{\rho}) = \text{rank}(\overrightarrow{\tau}) < m$, everything remains open!
In case that $\text{rank} \langle \vec{\rho} \rangle = \text{rank} \langle \vec{\tau} \rangle = 1$,

- Xi and Xiong have a very nice result.
- Rao and his collaborators also have some progresses.

In case that $1 < \text{rank} \langle \vec{\rho} \rangle = \text{rank} \langle \vec{\tau} \rangle < m$, everything remains open!
In case that \(\text{rank} \langle \rho \rangle = \text{rank} \langle \tau \rangle = 1 \),
- Xi and Xiong have a very nice result.
- Rao and his collaborators also have some progresses.

In case that \(1 < \text{rank} \langle \rho \rangle = \text{rank} \langle \tau \rangle < m \), everything remains open!
In case that $\operatorname{rank}\langle \rho \rangle = \operatorname{rank}\langle \tau \rangle = 1$,
- Xi and Xiong have a very nice result.
- Rao and his collaborators also have some progresses.

In case that $1 < \operatorname{rank}\langle \rho \rangle = \operatorname{rank}\langle \tau \rangle < m$, everything remains open!
Part II. Lipschitz equivalence of self-similar sets with touching structures
David and Semmes conjectured that $M \not\sim M'$.

Rao, R and Xi (2006) obtained that $M \sim M'$.

Figure: Initial construction of M and M'
David and Semmes conjectured that $M \not\sim M'$.

Rao, R and Xi (2006) obtained that $M \sim M'$.
David and Semmes conjectured that $M \not\sim M'$.
Rao, R and Xi (2006) obtained that $M \sim M'$.

Figure: Initial construction of M and M'
Generalized $\{1,3,5\}-\{1,4,5\}$ problem

\[\begin{array}{cccc}
\mathcal{Q}_1 & \mathcal{Q}_2 & \mathcal{Q}_3 \\
\mathcal{Q}_1 & \mathcal{Q}_2 & \mathcal{Q}_3 \\
\end{array}\]

Figure: Initial construction of M_ρ and M'_ρ

Xi and R (2007): $M_\rho \sim M'_\rho$ iff $\log \rho_1 / \log \rho_3 \in \mathbb{Q}$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)

Some progresses on Lipschitz equivalence of self-similar sets
Generalized \(\{1,3,5\}\)-\(\{1,4,5\}\) problem

\[Q_1 \quad Q_2 \quad Q_3 \]

\[Q_1 \quad Q_2 \quad Q_3 \]

Figure: Initial construction of \(M_\rho\) and \(M_\rho'\)

- **Xi and R (2007):** \(M_\rho \sim M_\rho'\) iff \(\log \rho_1 / \log \rho_3 \in \mathbb{Q}\).
Figure: Initial construction of D and T, where $n = 6$

- $\overrightarrow{\rho} = (\rho_1, \ldots, \rho_n)$ is a c.v. in \mathbb{R} with $n \geq 3$.
- $D \in \mathcal{D}(\overrightarrow{\rho})$.
- T: attractor of IFS $\{\psi_j(x) = \rho_j x + t_j\}_{j=1}^n$ satisfying:
 - The subintervals $\psi_1([0, 1]), \ldots, \psi_n([0, 1])$ are spaced from left to right without overlapping.
 - Left endpoint of $\psi_1([0, 1])$ is 0; right endpoint of $\psi_n([0, 1])$ is 1.
 - $\exists j \in \{1, 2, \ldots, n - 1\}$, such that the intervals $\psi_j([0, 1])$ and $\psi_{j+1}([0, 1])$ are touching, i.e. $\psi_j(1) = \psi_{j+1}(0)$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)
Some progresses on Lipschitz equivalence of self-similar sets
Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)

Some progresses on Lipschitz equivalence of self-similar sets

\[\overrightarrow{\rho} = (\rho_1, \ldots, \rho_n) \] is a c.v. in \mathbb{R} with $n \geq 3$.

$D \in \mathcal{D}(\overrightarrow{\rho})$.

T: attractor of IFS $\{\psi_j(x) = \rho_j x + t_j\}_{j=1}^n$ satisfying

- The subintervals $\psi_1([0, 1]), \ldots, \psi_n([0, 1])$ are spaced from left to right without overlapping.
- Left endpoint of $\psi_1([0, 1])$ is 0; right endpoint of $\psi_n([0, 1])$ is 1.
- $\exists j \in \{1, 2, \ldots, n-1\}$, such that the intervals $\psi_j([0, 1])$ and $\psi_{j+1}([0, 1])$ are touching, i.e. $\psi_j(1) = \psi_{j+1}(0)$.

Figure: Initial construction of D and T, where $n = 6$
Figure: Initial construction of D and T, where $n = 6$

- $\overrightarrow{\rho} = (\rho_1, \ldots, \rho_n)$ is a c.v. in \mathbb{R} with $n \geq 3$.
- $D \in \mathcal{D}(\overrightarrow{\rho})$.
- T: attractor of IFS $\{\psi_j(x) = \rho_j x + t_j\}_{j=1}^n$ satisfying
 - The subintervals $\psi_1([0, 1]), \ldots, \psi_n([0, 1])$ are spaced from left to right without overlapping.
 - Left endpoint of $\psi_1[0, 1]$ is 0; right endpoint of $\psi_n[0, 1]$ is 1.
 - $\exists j \in \{1, 2, \ldots, n-1\}$, such that the intervals $\psi_j([0, 1])$ and $\psi_{j+1}([0, 1])$ are touching, i.e. $\psi_j(1) = \psi_{j+1}(0)$.
Figure: Initial construction of D and T, where $n = 6$

- $\overrightarrow{\rho} = (\rho_1, \ldots, \rho_n)$ is a c.v. in \mathbb{R} with $n \geq 3$.
- $D \in \mathcal{D}(\overrightarrow{\rho})$.
- T: attractor of IFS $\{\psi_j(x) = \rho_j x + t_j\}_{j=1}^n$ satisfying
 - The subintervals $\psi_1([0, 1]), \ldots, \psi_n([0, 1])$ are spaced from left to right without overlapping.
 - $\exists j \in \{1, 2, \ldots, n-1\}$, such that the intervals $\psi_j([0, 1])$ and $\psi_{j+1}([0, 1])$ are touching, i.e. $\psi_j(1) = \psi_{j+1}(0)$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets
General Case

\[\mathcal{D}_1 \mid \mathcal{D}_2 \mid \mathcal{D}_3 \mid \mathcal{D}_4 \mid \mathcal{D}_5 \mid \mathcal{D}_6 \]

\[\mathcal{D}_1 \mid \mathcal{D}_2 \mid \mathcal{D}_3 \mid \mathcal{D}_4 \mid \mathcal{D}_5 \mid \mathcal{T} \]

Figure: Initial construction of \(D \) and \(T \), where \(n = 6 \)

- \(\overrightarrow{\rho} = (\rho_1, \ldots, \rho_n) \) is a c.v. in \(\mathbb{R} \) with \(n \geq 3 \).
- \(D \in \mathcal{D}(\overrightarrow{\rho}) \).
- \(T \): attractor of IFS \(\{ \psi_j(x) = \rho_j x + t_j \}_{j=1}^n \) satisfying
 - The subintervals \(\psi_1([0, 1]), \ldots, \psi_n([0, 1]) \) are spaced from left to right without overlapping.
 - Left endpoint of \(\psi_1[0, 1] \) is 0; right endpoint of \(\psi_n[0, 1] \) is 1.
 - \(\exists j \in \{1, 2, \ldots, n-1\} \), such that the intervals \(\psi_j([0, 1]) \) and \(\psi_{j+1}([0, 1]) \) are touching, i.e. \(\psi_j(1) = \psi_{j+1}(0) \).
Figure: Initial construction of D and T, where $n = 6$

- $\overrightarrow{\rho} = (\rho_1, \ldots, \rho_n)$ is a c.v. in \mathbb{R} with $n \geq 3$.
- $D \in D(\overrightarrow{\rho})$.
- T: attractor of IFS $\{\psi_j(x) = \rho_jx + t_j\}_{j=1}^n$ satisfying
 - The subintervals $\psi_1([0, 1]), \ldots, \psi_n([0, 1])$ are spaced from left to right without overlapping.
 - $\exists j \in \{1, 2, \ldots, n-1\}$, such that the intervals $\psi_j([0, 1])$ and $\psi_{j+1}([0, 1])$ are touching, i.e. $\psi_j(1) = \psi_{j+1}(0)$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets
Theorem (R-Wang-Xi, Preprint)

Assume that $D \sim T$. Then $\log \rho_1 / \log \rho_n \in \mathbb{Q}$.

- A letter $j \in \{1, \ldots, n\}$ is a (left) touching letter if $\Psi_j([0, 1])$ and $\Psi_{j+1}([0, 1])$ are touching, i.e. $\Psi_j(1) = \Psi_{j+1}(0)$.
- Σ_T: the set of all (left) touching letters.

Theorem (R-Wang-Xi, Preprint)

Let $n = 4$, $\rho_1 = \rho_4$, and $\Sigma_T = \{2\}$. Assume that $D \sim T$. Let $s = \dim_H D = \dim_H T$ and $\mu_j = \rho_j^s$ for $1 \leq j \leq 4$. Then μ_2 and μ_3 must be algebraically dependent, namely there exists a nonzero rational polynomial $P(x, y)$ such that $P(\mu_2, \mu_3) = 0$. Some progresses on Lipschitz equivalence of self-similar sets
Theorem (R-Wang-Xi, Preprint)
Assume that $D \sim T$. Then $\log \rho_1 / \log \rho_n \in \mathbb{Q}$.

- A letter $j \in \{1, \ldots, n\}$ is a (left) touching letter if $\Psi_j([0, 1])$ and $\Psi_{j+1}([0, 1])$ are touching, i.e. $\Psi_j(1) = \Psi_{j+1}(0)$.
- Σ_T: the set of all (left) touching letters.

Theorem (R-Wang-Xi, Preprint)
Let $n = 4$, $\rho_1 = \rho_4$, and $\Sigma_T = \{2\}$. Assume that $D \sim T$. Let $s = \dim_H D = \dim_H T$ and $\mu_j = \rho_j^s$ for $1 \leq j \leq 4$. Then μ_2 and μ_3 must be algebraically dependent, namely there exists a nonzero rational polynomial $P(x, y)$ such that $P(\mu_2, \mu_3) = 0$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets
Theorem (R-Wang-Xi, Preprint)

Assume that $D \sim T$. Then $\log \rho_1 / \log \rho_n \in \mathbb{Q}$.

- A letter $j \in \{1, \ldots, n\}$ is a (left) touching letter if $\Psi_j([0, 1])$ and $\Psi_{j+1}([0, 1])$ are touching, i.e. $\Psi_j(1) = \Psi_{j+1}(0)$.
- Σ_T: the set of all (left) touching letters.

Theorem (R-Wang-Xi, Preprint)

Let $n = 4$, $\rho_1 = \rho_4$, and $\Sigma_T = \{2\}$. Assume that $D \sim T$. Let $s = \dim_H D = \dim_H T$ and $\mu_j = \rho_j^s$ for $1 \leq j \leq 4$. Then μ_2 and μ_3 must be algebraically dependent, namely there exists a nonzero rational polynomial $P(x, y)$ such that $P(\mu_2, \mu_3) = 0$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)
Some progresses on Lipschitz equivalence of self-similar sets
Assume that $D \sim T$. Then $\log \rho_1 / \log \rho_n \in \mathbb{Q}$.

- A letter $j \in \{1, \ldots, n\}$ is a (left) touching letter if $\Psi_j([0, 1])$ and $\Psi_{j+1}([0, 1])$ are touching, i.e. $\Psi_j(1) = \Psi_{j+1}(0)$.
- Σ_T: the set of all (left) touching letters.

Theorem (R-Wang-Xi, Preprint)

Let $n = 4$, $\rho_1 = \rho_4$, and $\Sigma_T = \{2\}$. Assume that $D \sim T$. Let $s = \dim_H D = \dim_H T$ and $\mu_j = \rho_j^s$ for $1 \leq j \leq 4$. Then μ_2 and μ_3 must be algebraically dependent, namely there exists a nonzero rational polynomial $P(x, y)$ such that $P(\mu_2, \mu_3) = 0$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)
Theorem (R-Wang-Xi, Preprint)

Assume that $\log \rho_1 / \log \rho_n \in \mathbb{Q}$. Then, $D \sim T$ if every touching letter for T is substitutable.

Corollary

Let $M \xrightarrow{\rho}$ and $M' \xrightarrow{\rho}$ be sets defined in generalized $\{1,3,5\}$-$\{1,4,5\}$ problem. Then $M \xrightarrow{\rho} \sim M' \xrightarrow{\rho}$ iff $\log \rho_1 / \log \rho_3 \in \mathbb{Q}$.

Note: If $\log \rho_1 / \log \rho_3 \in \mathbb{Q}$, the unique touching letter $\{2\}$ is substitutable.

Theorem (R-Wang-Xi, Preprint)

Assume that $\log \rho_i / \log \rho_j \in \mathbb{Q}$ for all $i,j \in \{1,\ldots,n\}$. Then $D \sim T$.
Theorem (R-Wang-Xi, Preprint)

Assume that \(\log \rho_1 / \log \rho_n \in \mathbb{Q} \). Then, \(D \sim T \) if every touching letter for \(T \) is substitutable.

Corollary

Let \(M \xrightarrow{\rho} \) and \(M' \xrightarrow{\rho} \) be sets defined in generalized \(\{1,3,5\}-\{1,4,5\} \) problem. Then \(M \xrightarrow{\rho} \sim M' \xrightarrow{\rho} \) iff \(\log \rho_1 / \log \rho_3 \in \mathbb{Q} \).

Note: If \(\log \rho_1 / \log \rho_3 \in \mathbb{Q} \), the unique touching letter \(\{2\} \) is substitutable.

Theorem (R-Wang-Xi, Preprint)

Assume that \(\log \rho_i / \log \rho_j \in \mathbb{Q} \) for all \(i, j \in \{1, \ldots, n\} \). Then \(D \sim T \).
Theorem (R-Wang-Xi, Preprint)

Assume that $\log \rho_1 / \log \rho_n \in \mathbb{Q}$. Then, $D \sim T$ if every touching letter for T is substitutable.

Corollary

Let $M\xrightarrow{\rho} M'\xrightarrow{\rho}$ be sets defined in generalized $\{1,3,5\}$-$\{1,4,5\}$ problem. Then $M\xrightarrow{\rho} \sim M'\xrightarrow{\rho}$ iff $\log \rho_1 / \log \rho_3 \in \mathbb{Q}$.

Note: If $\log \rho_1 / \log \rho_3 \in \mathbb{Q}$, the unique touching letter $\{2\}$ is substitutable.

Theorem (R-Wang-Xi, Preprint)

Assume that $\log \rho_i / \log \rho_j \in \mathbb{Q}$ for all $i, j \in \{1, \ldots, n\}$. Then $D \sim T$.
How about in higher dimensional case?
- Xi and Xiong had a good result in a special case.
- Lau and Luo made some progress (via hyperbolic graph).
- Many questions can be discussed in future...

How about for the Lipschitz equivalence of self-affine sets? For example, McMullen sets?
Related and future works

- How about in higher dimensional case?
 - Xi and Xiong had a good result in a special case.
 - Lau and Luo made some progress (via hyperbolic graph).
 - Many questions can be discussed in future...

- How about for the Lipschitz equivalence of self-affine sets?
 For example, McMullen sets?
Related and future works

- How about in higher dimensional case?
 - Xi and Xiong had a good result in a special case.
 - Lau and Luo made some progress (via hyperbolic graph).
 - Many questions can be discussed in future...

- How about for the Lipschitz equivalence of self-affine sets? For example, McMullen sets?
Related and future works

How about in higher dimensional case?
- Xi and Xiong had a good result in a special case.
- Lau and Luo made some progress (via hyperbolic graph).
- Many questions can be discussed in future...

How about for the Lipschitz equivalence of self-affine sets?
For example, McMullen sets?
Related and future works

- How about in higher dimensional case?
 - Xi and Xiong had a good result in a special case.
 - Lau and Luo made some progress (via hyperbolic graph).
 - Many questions can be discussed in future...

- How about for the Lipschitz equivalence of self-affine sets? For example, McMullen sets?
Thank you!