Some progresses on Lipschitz equivalence of self-similar sets

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)

Zhejiang University

Chinenes University of Hong Kong – Dec 10-14, 2012

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

Part I. Lipschitz equivalence of dust-like self-similar sets

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

ヘロト 人間 とくほとく ほとう

-

Definition

Let *E*, *F* be compact sets in \mathbb{R}^d . We say that *E* and *F* are Lipschitz equivalent, and denote it by $E \sim F$, if there exists a bijection $g: E \longrightarrow F$ which is bi-Lipschitz, i.e. there exists a constant C > 0 such that for all $x, y \in E$,

$$C^{-1}|x-y|\leq |g(x)-g(y)|\leq C|x-y|.$$

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

・ロト ・ 理 ト ・ ヨ ト ・

Under what conditions, two self-similar sets are Lipschitz equivalent?

- Necessary condition: same Hausdorff dimension.
- The condition is not sufficient even for dust-like case. (The generating IFS satisfies the strong separation condition.)

Example

Let *E* be the Cantor middle-third set. Let $s = \log 2/\log 3$ and $3 \cdot r^s = 1$. Let *F* be the dust-like self-similar set generated as the following figure. Then $E \not\sim F$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Under what conditions, two self-similar sets are Lipschitz equivalent?

Necessary condition: same Hausdorff dimension.

• The condition is not sufficient even for dust-like case. (The generating IFS satisfies the strong separation condition.)

Example

Let *E* be the Cantor middle-third set. Let $s = \log 2/\log 3$ and $3 \cdot r^s = 1$. Let *F* be the dust-like self-similar set generated as the following figure. Then $E \not\sim F$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

イロン 不良 とくほう 不良 とうほ

Under what conditions, two self-similar sets are Lipschitz equivalent?

- Necessary condition: same Hausdorff dimension.
- The condition is not sufficient even for dust-like case. (The generating IFS satisfies the strong separation condition.)

Example

Let *E* be the Cantor middle-third set. Let $s = \log 2/\log 3$ and $3 \cdot r^s = 1$. Let *F* be the dust-like self-similar set generated as the following figure. Then $E \not\sim F$.

Under what conditions, two self-similar sets are Lipschitz equivalent?

- Necessary condition: same Hausdorff dimension.
- The condition is not sufficient even for dust-like case. (The generating IFS satisfies the strong separation condition.)

Example

Let *E* be the Cantor middle-third set. Let $s = \log 2 / \log 3$ and $3 \cdot r^s = 1$. Let *F* be the dust-like self-similar set generated as the following figure. Then $E \not\sim F$.

• Let *E*, *F* be dust-like self-similar sets generated by the IFS $\{\Phi_j\}_{j=1}^n, \{\Psi_j\}_{j=1}^m$ on \mathbb{R}^d , respectively.

- ρ_j (resp. τ_j) is the contraction ratio of Φ_j (resp. Ψ_j).
- $\mathbb{Q}(a_1, \ldots, a_m)$: subfield of \mathbb{R} generated by \mathbb{Q} and a_1, \ldots, a_m .
- sgp(a₁,..., a_m): subsemigroup of (ℝ⁺, ×) generated by a₁,..., a_m.

Theorem (Falconer-Marsh, 1992)

Assume that $E \sim F$. Let $s = \dim_H E = \dim_H F$. Then (1) $\mathbb{Q}(\rho_1^s, \dots, \rho_m^s) = \mathbb{Q}(\tau_1^s, \dots, \tau_n^s);$ (2) $\exists p, q \in \mathbb{Z}^+$, s.t. $\operatorname{sgp}(\rho_1^p, \dots, \rho_m^p) \subset \operatorname{sgp}(\tau_1, \dots, \tau_n)$ and $\operatorname{sgp}(\tau_1^q, \dots, \tau_n^q) \subset \operatorname{sgp}(\rho_1, \dots, \rho_m).$

• Using (2), we can show that $E \not\sim F$ in the above example.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lip

Some progresses on Lipschitz equivalence of self-similar sets

イロト 不得 とくほ とくほ とうほ

- Let *E*, *F* be dust-like self-similar sets generated by the IFS $\{\Phi_j\}_{j=1}^n, \{\Psi_j\}_{j=1}^m$ on \mathbb{R}^d , respectively.
- ρ_j (resp. τ_j) is the contraction ratio of Φ_j (resp. Ψ_j).
- $\mathbb{Q}(a_1, \ldots, a_m)$: subfield of \mathbb{R} generated by \mathbb{Q} and a_1, \ldots, a_m .
- sgp(a₁,..., a_m): subsemigroup of (ℝ⁺, ×) generated by a₁,..., a_m.

Assume that $E \sim F$. Let $s = \dim_H E = \dim_H F$. Then (1) $\mathbb{Q}(\rho_1^s, \dots, \rho_m^s) = \mathbb{Q}(\tau_1^s, \dots, \tau_n^s);$ (2) $\exists p, q \in \mathbb{Z}^+$, s.t. $\operatorname{sgp}(\rho_1^p, \dots, \rho_m^p) \subset \operatorname{sgp}(\tau_1, \dots, \tau_n)$ and $\operatorname{sgp}(\tau_1^q, \dots, \tau_n^q) \subset \operatorname{sgp}(\rho_1, \dots, \rho_m).$

• Using (2), we can show that $E \not\sim F$ in the above example.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some

Some progresses on Lipschitz equivalence of self-similar sets

イロト 不得 とくほ とくほ とうほ

- Let *E*, *F* be dust-like self-similar sets generated by the IFS $\{\Phi_j\}_{j=1}^n, \{\Psi_j\}_{j=1}^m$ on \mathbb{R}^d , respectively.
- ρ_j (resp. τ_j) is the contraction ratio of Φ_j (resp. Ψ_j).
- $\mathbb{Q}(a_1, \ldots, a_m)$: subfield of \mathbb{R} generated by \mathbb{Q} and a_1, \ldots, a_m .
- sgp(a₁,..., a_m): subsemigroup of (ℝ⁺, ×) generated by a₁,..., a_m.

Assume that $E \sim F$. Let $s = \dim_H E = \dim_H F$. Then (1) $\mathbb{Q}(\rho_1^s, \dots, \rho_m^s) = \mathbb{Q}(\tau_1^s, \dots, \tau_n^s);$ (2) $\exists p, q \in \mathbb{Z}^+$, s.t. $\operatorname{sgp}(\rho_1^p, \dots, \rho_m^p) \subset \operatorname{sgp}(\tau_1, \dots, \tau_n)$ and $\operatorname{sgp}(\tau_1^q, \dots, \tau_n^q) \subset \operatorname{sgp}(\rho_1, \dots, \rho_m).$

• Using (2), we can show that $E \not\sim F$ in the above example.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some p

Some progresses on Lipschitz equivalence of self-similar sets

- Let *E*, *F* be dust-like self-similar sets generated by the IFS $\{\Phi_j\}_{j=1}^n, \{\Psi_j\}_{j=1}^m$ on \mathbb{R}^d , respectively.
- ρ_j (resp. τ_j) is the contraction ratio of Φ_j (resp. Ψ_j).
- $\mathbb{Q}(a_1, \ldots, a_m)$: subfield of \mathbb{R} generated by \mathbb{Q} and a_1, \ldots, a_m .
- sgp(a₁,..., a_m): subsemigroup of (ℝ⁺, ×) generated by a₁,..., a_m.

Assume that $E \sim F$. Let $s = \dim_H E = \dim_H F$. Then (1) $\mathbb{Q}(\rho_1^s, \dots, \rho_m^s) = \mathbb{Q}(\tau_1^s, \dots, \tau_n^s);$ (2) $\exists p, q \in \mathbb{Z}^+$, s.t. $\operatorname{sgp}(\rho_1^p, \dots, \rho_m^p) \subset \operatorname{sgp}(\tau_1, \dots, \tau_n)$ and $\operatorname{sgp}(\tau_1^q, \dots, \tau_n^q) \subset \operatorname{sgp}(\rho_1, \dots, \rho_m).$

• Using (2), we can show that $E \not\sim F$ in the above example.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Som

Some progresses on Lipschitz equivalence of self-similar sets

イロト 不得 トイヨト イヨト 二日 二

- Let *E*, *F* be dust-like self-similar sets generated by the IFS $\{\Phi_j\}_{j=1}^n, \{\Psi_j\}_{j=1}^m$ on \mathbb{R}^d , respectively.
- ρ_j (resp. τ_j) is the contraction ratio of Φ_j (resp. Ψ_j).
- $\mathbb{Q}(a_1, \ldots, a_m)$: subfield of \mathbb{R} generated by \mathbb{Q} and a_1, \ldots, a_m .
- sgp(a₁,..., a_m): subsemigroup of (ℝ⁺, ×) generated by a₁,..., a_m.

Assume that $E \sim F$. Let $s = \dim_H E = \dim_H F$. Then (1) $\mathbb{Q}(\rho_1^s, \dots, \rho_m^s) = \mathbb{Q}(\tau_1^s, \dots, \tau_n^s);$ (2) $\exists p, q \in \mathbb{Z}^+$, s.t. $\operatorname{sgp}(\rho_1^p, \dots, \rho_m^p) \subset \operatorname{sgp}(\tau_1, \dots, \tau_n)$ and $\operatorname{sgp}(\tau_1^q, \dots, \tau_n^q) \subset \operatorname{sgp}(\rho_1, \dots, \rho_m).$

• Using (2), we can show that $E \not\sim F$ in the above example.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)

Some progresses on Lipschitz equivalence of self-similar sets

- Let *E*, *F* be dust-like self-similar sets generated by the IFS $\{\Phi_j\}_{j=1}^n, \{\Psi_j\}_{j=1}^m$ on \mathbb{R}^d , respectively.
- ρ_j (resp. τ_j) is the contraction ratio of Φ_j (resp. Ψ_j).
- $\mathbb{Q}(a_1, \ldots, a_m)$: subfield of \mathbb{R} generated by \mathbb{Q} and a_1, \ldots, a_m .
- sgp(a₁,..., a_m): subsemigroup of (ℝ⁺, ×) generated by a₁,..., a_m.

Assume that $E \sim F$. Let $s = \dim_H E = \dim_H F$. Then (1) $\mathbb{Q}(\rho_1^s, \dots, \rho_m^s) = \mathbb{Q}(\tau_1^s, \dots, \tau_n^s);$ (2) $\exists p, q \in \mathbb{Z}^+$, s.t. $\operatorname{sgp}(\rho_1^p, \dots, \rho_m^p) \subset \operatorname{sgp}(\tau_1, \dots, \tau_n)$ and $\operatorname{sgp}(\tau_1^q, \dots, \tau_n^q) \subset \operatorname{sgp}(\rho_1, \dots, \rho_m).$

• Using (2), we can show that $E \not\sim F$ in the above example.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

What's the necessary and sufficient condition? How about for two branches case?

WLOG, we may assume that ρ₁ ≤ ρ₂, τ₁ ≤ τ₂ and ρ₁ ≤ τ₁.
Conjecture. Lipschitz equivalent iff (ρ₁, ρ₂) = (τ₁, τ₂).

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

What's the necessary and sufficient condition? How about for two branches case?

 $\overline{\rho_1}$ $\overline{\rho_2}$ $\overline{\tau_1}$ $\overline{\tau_2}$

WLOG, we may assume that ρ₁ ≤ ρ₂, τ₁ ≤ τ₂ and ρ₁ ≤ τ₁.
Conjecture. Lipschitz equivalent iff (ρ₁, ρ₂) = (τ₁, τ₂).

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

What's the necessary and sufficient condition? How about for two branches case?

$$\overline{\rho_1}$$
 $\overline{\rho_2}$ $\overline{\tau_1}$ $\overline{\tau_2}$

• WLOG, we may assume that $\rho_1 \leq \rho_2$, $\tau_1 \leq \tau_2$ and $\rho_1 \leq \tau_1$.

• Conjecture. Lipschitz equivalent iff $(\rho_1, \rho_2) = (\tau_1, \tau_2)$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

- *K*: self-similar set determined by the IFS { \mathbb{R}^d ; f_1, \ldots, f_m }.
- ρ_j : contraction ratio of f_j , $\forall j$.
- (ρ_1, \ldots, ρ_m) is called a contraction vector (c.v.) of *K*.
- For any c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$ with $\sum \rho_j^d < 1$, we define $\mathcal{D}(\overrightarrow{\rho})$ to be all dust-like self-similar sets with c.v. $\overrightarrow{\rho}$ in \mathbb{R}^d .
- Throughout the talk, the dimension d will be implicit.
- Define dim_{*H*} $\mathcal{D}(\overrightarrow{\rho}) = \dim_{H} E$, for some (then for all) $E \in \mathcal{D}(\overrightarrow{\rho})$.
- $E \sim F$ for any $E, F \in \mathcal{D}(\overrightarrow{\rho})$.
- Define $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\overrightarrow{\rho})$ and $F \in \mathcal{D}(\overrightarrow{\tau})$.

- *K*: self-similar set determined by the IFS { \mathbb{R}^d ; f_1, \ldots, f_m }.
- ρ_j : contraction ratio of f_j , $\forall j$.
- (ρ_1, \ldots, ρ_m) is called a contraction vector (c.v.) of *K*.
- For any c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$ with $\sum \rho_j^d < 1$, we define $\mathcal{D}(\overrightarrow{\rho})$ to be all dust-like self-similar sets with c.v. $\overrightarrow{\rho}$ in \mathbb{R}^d .
- Throughout the talk, the dimension d will be implicit.
- Define dim_{*H*} $\mathcal{D}(\overrightarrow{\rho}) = \dim_{H} E$, for some (then for all) $E \in \mathcal{D}(\overrightarrow{\rho})$.
- $E \sim F$ for any $E, F \in \mathcal{D}(\overrightarrow{\rho})$.
- Define $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\overrightarrow{\rho})$ and $F \in \mathcal{D}(\overrightarrow{\tau})$.

- *K*: self-similar set determined by the IFS { \mathbb{R}^d ; f_1, \ldots, f_m }.
- ρ_j : contraction ratio of f_j , $\forall j$.
- (ρ_1, \ldots, ρ_m) is called a contraction vector (c.v.) of *K*.
- For any c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$ with $\sum \rho_j^d < 1$, we define $\mathcal{D}(\overrightarrow{\rho})$ to be all dust-like self-similar sets with c.v. $\overrightarrow{\rho}$ in \mathbb{R}^d .
- Throughout the talk, the dimension d will be implicit.
- Define dim_{*H*} $\mathcal{D}(\overrightarrow{\rho}) = \dim_{H} E$, for some (then for all) $E \in \mathcal{D}(\overrightarrow{\rho})$.
- $E \sim F$ for any $E, F \in \mathcal{D}(\overrightarrow{\rho})$.
- Define $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\overrightarrow{\rho})$ and $F \in \mathcal{D}(\overrightarrow{\tau})$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

- *K*: self-similar set determined by the IFS { \mathbb{R}^d ; f_1, \ldots, f_m }.
- ρ_j : contraction ratio of f_j , $\forall j$.
- (ρ_1, \ldots, ρ_m) is called a contraction vector (c.v.) of *K*.
- For any c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$ with $\sum \rho_j^d < 1$, we define $\mathcal{D}(\overrightarrow{\rho})$ to be all dust-like self-similar sets with c.v. $\overrightarrow{\rho}$ in \mathbb{R}^d .
- Throughout the talk, the dimension d will be implicit.
- Define dim_{*H*} $\mathcal{D}(\overrightarrow{\rho}) = \dim_{H} E$, for some (then for all) $E \in \mathcal{D}(\overrightarrow{\rho})$.
- $E \sim F$ for any $E, F \in \mathcal{D}(\overrightarrow{\rho})$.
- Define $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\overrightarrow{\rho})$ and $F \in \mathcal{D}(\overrightarrow{\tau})$.

- *K*: self-similar set determined by the IFS { \mathbb{R}^d ; f_1, \ldots, f_m }.
- ρ_j : contraction ratio of f_j , $\forall j$.
- (ρ_1, \ldots, ρ_m) is called a contraction vector (c.v.) of *K*.
- For any c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$ with $\sum \rho_j^d < 1$, we define $\mathcal{D}(\overrightarrow{\rho})$ to be all dust-like self-similar sets with c.v. $\overrightarrow{\rho}$ in \mathbb{R}^d .
- Throughout the talk, the dimension d will be implicit.
- Define dim_{*H*} $\mathcal{D}(\overrightarrow{\rho}) = \dim_H E$, for some (then for all) $E \in \mathcal{D}(\overrightarrow{\rho})$.
- $E \sim F$ for any $E, F \in \mathcal{D}(\overrightarrow{\rho})$.
- Define $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\overrightarrow{\rho})$ and $F \in \mathcal{D}(\overrightarrow{\tau})$.

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つ へ つ

- *K*: self-similar set determined by the IFS { \mathbb{R}^d ; f_1, \ldots, f_m }.
- ρ_j : contraction ratio of f_j , $\forall j$.
- (ρ_1, \ldots, ρ_m) is called a contraction vector (c.v.) of *K*.
- For any c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$ with $\sum \rho_j^d < 1$, we define $\mathcal{D}(\overrightarrow{\rho})$ to be all dust-like self-similar sets with c.v. $\overrightarrow{\rho}$ in \mathbb{R}^d .
- Throughout the talk, the dimension d will be implicit.
- Define dim_{*H*} $\mathcal{D}(\overrightarrow{\rho}) = \dim_{H} E$, for some (then for all) $E \in \mathcal{D}(\overrightarrow{\rho})$.
- $E \sim F$ for any $E, F \in \mathcal{D}(\overrightarrow{\rho})$.
- Define $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\overrightarrow{\rho})$ and $F \in \mathcal{D}(\overrightarrow{\tau})$.

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つ へ つ

- *K*: self-similar set determined by the IFS { \mathbb{R}^d ; f_1, \ldots, f_m }.
- ρ_j : contraction ratio of f_j , $\forall j$.
- (ρ_1, \ldots, ρ_m) is called a contraction vector (c.v.) of *K*.
- For any c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$ with $\sum \rho_j^d < 1$, we define $\mathcal{D}(\overrightarrow{\rho})$ to be all dust-like self-similar sets with c.v. $\overrightarrow{\rho}$ in \mathbb{R}^d .
- Throughout the talk, the dimension d will be implicit.
- Define dim_{*H*} $\mathcal{D}(\overrightarrow{\rho}) = \dim_{H} E$, for some (then for all) $E \in \mathcal{D}(\overrightarrow{\rho})$.
- $E \sim F$ for any $E, F \in \mathcal{D}(\overrightarrow{\rho})$.
- Define $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\overrightarrow{\rho})$ and $F \in \mathcal{D}(\overrightarrow{\tau})$.

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つ へ つ

- *K*: self-similar set determined by the IFS { \mathbb{R}^d ; f_1, \ldots, f_m }.
- ρ_j : contraction ratio of f_j , $\forall j$.
- (ρ_1, \ldots, ρ_m) is called a contraction vector (c.v.) of *K*.
- For any c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$ with $\sum \rho_j^d < 1$, we define $\mathcal{D}(\overrightarrow{\rho})$ to be all dust-like self-similar sets with c.v. $\overrightarrow{\rho}$ in \mathbb{R}^d .
- Throughout the talk, the dimension d will be implicit.
- Define dim_{*H*} $\mathcal{D}(\overrightarrow{\rho}) = \dim_{H} E$, for some (then for all) $E \in \mathcal{D}(\overrightarrow{\rho})$.
- $E \sim F$ for any $E, F \in \mathcal{D}(\overrightarrow{\rho})$.
- Define $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\overrightarrow{\rho})$ and $F \in \mathcal{D}(\overrightarrow{\tau})$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Assume that $\mathcal{D}(\rho_1, \rho_2) \sim \mathcal{D}(\tau_1, \tau_2)$. By FM' theorem, one of followings must happen:

(1). $\log \rho_1 / \log \rho_2 \notin \mathbb{Q}$.

(2). $\exists \lambda \in (0, 1)$, and $p_1, q_1, p_2, q_2 \in \mathbb{Z}^+$ such that

$$\rho_1 = \lambda^{p_1}, \quad \rho_2 = \lambda^{p_2}, \quad \tau_1 = \lambda^{q_1}, \quad \tau_2 = \lambda^{q_2}.$$

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Assume that $\mathcal{D}(\rho_1, \rho_2) \sim \mathcal{D}(\tau_1, \tau_2)$. By FM' theorem, one of followings must happen:

(1). $\log \rho_1 / \log \rho_2 \notin \mathbb{Q}$. (2). $\exists \lambda \in (0, 1)$, and $p_1, q_1, p_2, q_2 \in \mathbb{Z}^+$ such that

$$\rho_1 = \lambda^{p_1}, \quad \rho_2 = \lambda^{p_2}, \quad \tau_1 = \lambda^{q_1}, \quad \tau_2 = \lambda^{q_2}.$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Let's study case (2) first.

• From $s = \dim_H \mathcal{D}(\rho_1, \rho_2) = \dim_H \mathcal{D}(\tau_1, \tau_2)$, we have

$$(\lambda^{p_1})^s + (\lambda^{p_2})^s = (\lambda^{q_1})^s + (\lambda^{q_2}) = 1.$$

• Denote $x = \lambda^s$, then

$$x^{p_1} + x^{p_2} = x^{q_1} + x^{q_2} = 1.$$

• That is,

$$x^{p_1} + x^{p_2} - 1 = 0$$
 and $x^{q_1} + x^{q_2} - 1 = 0$

have same root in (0, 1), where p₁ ≥ p₂, q₁ ≥ q₂, p₁ ≥ q₁.
Using Ljunggren's result on the irreducibility of trinomials xⁿ ± x^m ± 1, we proved that the above happens iff

•
$$(p_1, p_2) = (q_1, q_2)$$
 or

• $(p_1, p_2, q_1, q_2) = \gamma(5, 1, 3, 2)$ for some $\gamma \in \mathbb{Z}^+$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)

Let's study case (2) first.

• From
$$s = \dim_H \mathcal{D}(\rho_1, \rho_2) = \dim_H \mathcal{D}(\tau_1, \tau_2)$$
, we have

$$(\lambda^{p_1})^s + (\lambda^{p_2})^s = (\lambda^{q_1})^s + (\lambda^{q_2}) = 1.$$

• Denote $x = \lambda^s$, then

$$x^{p_1} + x^{p_2} = x^{q_1} + x^{q_2} = 1.$$

• That is,

$$x^{p_1} + x^{p_2} - 1 = 0$$
 and $x^{q_1} + x^{q_2} - 1 = 0$

have same root in (0, 1), where $p_1 \ge p_2, q_1 \ge q_2, p_1 \ge q_1$.

• Using Ljunggren's result on the irreducibility of trinomials $x^n \pm x^m \pm 1$, we proved that the above happens iff

•
$$(p_1, p_2) = (q_1, q_2)$$
 or

• $(p_1, p_2, q_1, q_2) = \gamma(5, 1, 3, 2)$ for some $\gamma \in \mathbb{Z}^+$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)

Let's study case (2) first.

• From
$$s = \dim_H \mathcal{D}(\rho_1, \rho_2) = \dim_H \mathcal{D}(\tau_1, \tau_2)$$
, we have

$$(\lambda^{p_1})^s + (\lambda^{p_2})^s = (\lambda^{q_1})^s + (\lambda^{q_2}) = 1.$$

• Denote $x = \lambda^s$, then

$$x^{p_1} + x^{p_2} = x^{q_1} + x^{q_2} = 1.$$

That is,

$$x^{p_1} + x^{p_2} - 1 = 0$$
 and $x^{q_1} + x^{q_2} - 1 = 0$

have same root in (0, 1), where $p_1 \ge p_2, q_1 \ge q_2, p_1 \ge q_1$.

• Using Ljunggren's result on the irreducibility of trinomials $x^n \pm x^m \pm 1$, we proved that the above happens iff

•
$$(p_1, p_2) = (q_1, q_2)$$
 or

• $(p_1, p_2, q_1, q_2) = \gamma(5, 1, 3, 2)$ for some $\gamma \in \mathbb{Z}^+$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)

Let's study case (2) first.

• From
$$s = \dim_H \mathcal{D}(\rho_1, \rho_2) = \dim_H \mathcal{D}(\tau_1, \tau_2)$$
, we have

$$(\lambda^{p_1})^s + (\lambda^{p_2})^s = (\lambda^{q_1})^s + (\lambda^{q_2}) = 1.$$

• Denote $x = \lambda^s$, then

$$x^{p_1} + x^{p_2} = x^{q_1} + x^{q_2} = 1.$$

That is,

$$x^{p_1} + x^{p_2} - 1 = 0$$
 and $x^{q_1} + x^{q_2} - 1 = 0$

have same root in (0, 1), where $p_1 \ge p_2$, $q_1 \ge q_2$, $p_1 \ge q_1$. • Using Ljunggren's result on the irreducibility of trinomials $x^n \pm x^m \pm 1$, we proved that the above happens iff

•
$$(p_1, p_2) = (q_1, q_2)$$
 or

•
$$(p_1, p_2, q_1, q_2) = \gamma(5, 1, 3, 2)$$
 for some $\gamma \in \mathbb{Z}^+$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)

Thus, Case (2) holds will imply (ρ₁, ρ₂) = (τ₁, τ₂) or there exists λ ∈ (0, 1), s.t.

$$(\rho_1, \rho_2, \tau_1, \tau_2) = (\lambda^5, \lambda, \lambda^3, \lambda^2).$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

• We can check that $\mathcal{D}(\lambda^5, \lambda) \sim \mathcal{D}(\lambda^3, \lambda^2)$ as following figure.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

Thus, Case (2) holds will imply (ρ₁, ρ₂) = (τ₁, τ₂) or there exists λ ∈ (0, 1), s.t.

$$(\rho_1, \rho_2, \tau_1, \tau_2) = (\lambda^5, \lambda, \lambda^3, \lambda^2).$$
(1)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

• We can check that $\mathcal{D}(\lambda^5, \lambda) \sim \mathcal{D}(\lambda^3, \lambda^2)$ as following figure.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

Let's study Case (1) now.

• Given a c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$. Define

$$\langle \overrightarrow{\rho} \rangle := \{ \rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} : \alpha_1, \dots, \alpha_m \in \mathbb{Z} \}.$$

- $\langle \overrightarrow{\rho} \rangle$ is an abelian group and has a nonempty basis.
- Define rank $\langle \overrightarrow{\rho} \rangle$ to be the cardinality of the basis.
- Clearly, $1 \leq \operatorname{rank}\langle \overrightarrow{\rho} \rangle \leq m$.
- If rank $\langle \overrightarrow{\rho} \rangle = m$, we say $\overrightarrow{\rho}$ has full rank.
- By FM' theorem, rank $\langle \overrightarrow{\rho} \rangle = \operatorname{rank} \langle \overrightarrow{\tau} \rangle$ if $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$.

Theorem (Rao-R-Wang, 2012)

Assume that both $\overrightarrow{\rho}$ and $\overrightarrow{\tau}$ have full rank *m*. Then $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ iff $\overrightarrow{\rho}$ is a permutation of $\overrightarrow{\tau}$.

・ロト ・ 理 ト ・ ヨ ト ・

Let's study Case (1) now. • Given a c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$. Define $\langle \overrightarrow{\rho} \rangle := \{\rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} : \alpha_1, \dots, \alpha_m \in \mathbb{Z}\}.$

- $\langle \overrightarrow{\rho} \rangle$ is an abelian group and has a nonempty basis.
- Define rank $\langle \overrightarrow{\rho} \rangle$ to be the cardinality of the basis.
- Clearly, $1 \leq \operatorname{rank}\langle \overrightarrow{\rho} \rangle \leq m$.
- If rank $\langle \overrightarrow{\rho} \rangle = m$, we say $\overrightarrow{\rho}$ has full rank.
- By FM' theorem, rank $\langle \overrightarrow{\rho} \rangle = \operatorname{rank} \langle \overrightarrow{\tau} \rangle$ if $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$.

Theorem (Rao-R-Wang, 2012)

Assume that both $\overrightarrow{\rho}$ and $\overrightarrow{\tau}$ have full rank *m*. Then $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ iff $\overrightarrow{\rho}$ is a permutation of $\overrightarrow{\tau}$.

Some progresses on Lipschitz equivalence of self-similar sets

Let's study Case (1) now. • Given a c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$. Define $\langle \overrightarrow{\rho} \rangle := \{ \rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} : \alpha_1, \dots, \alpha_m \in \mathbb{Z} \}.$

- $\langle \overrightarrow{\rho} \rangle$ is an abelian group and has a nonempty basis.
- Define $\operatorname{rank}\langle \overrightarrow{\rho} \rangle$ to be the cardinality of the basis.
- Clearly, $1 \leq \operatorname{rank}\langle \overrightarrow{\rho} \rangle \leq m$.
- If rank $\langle \overrightarrow{\rho} \rangle = m$, we say $\overrightarrow{\rho}$ has full rank.
- By FM' theorem, $\operatorname{rank}\langle \overrightarrow{\rho} \rangle = \operatorname{rank}\langle \overrightarrow{\tau} \rangle$ if $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$.

Theorem (Rao-R-Wang, 2012)

Assume that both $\overrightarrow{\rho}$ and $\overrightarrow{\tau}$ have full rank *m*. Then $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ iff $\overrightarrow{\rho}$ is a permutation of $\overrightarrow{\tau}$.

Some progresses on Lipschitz equivalence of self-similar sets

Let's study Case (1) now. • Given a c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$. Define $\langle \overrightarrow{\rho} \rangle := \{ \rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} : \alpha_1, \dots, \alpha_m \in \mathbb{Z} \}.$

- $\langle \overrightarrow{\rho} \rangle$ is an abelian group and has a nonempty basis.
- Define $\operatorname{rank}\langle \overrightarrow{\rho} \rangle$ to be the cardinality of the basis.
- Clearly, $1 \leq \operatorname{rank}\langle \overrightarrow{\rho} \rangle \leq m$.
- If rank $\langle \overrightarrow{\rho} \rangle = m$, we say $\overrightarrow{\rho}$ has full rank.
- By FM' theorem, rank $\langle \overrightarrow{\rho} \rangle = \operatorname{rank} \langle \overrightarrow{\tau} \rangle$ if $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$.

Theorem (Rao-R-Wang, 2012)

Assume that both $\overrightarrow{\rho}$ and $\overrightarrow{\tau}$ have full rank *m*. Then $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ iff $\overrightarrow{\rho}$ is a permutation of $\overrightarrow{\tau}$.

Some progresses on Lipschitz equivalence of self-similar sets

Step 3 to solve the Question

Let's study Case (1) now. • Given a c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$. Define $\langle \overrightarrow{\rho} \rangle := \{ \rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} : \alpha_1, \dots, \alpha_m \in \mathbb{Z} \}.$

- $\langle \overrightarrow{\rho} \rangle$ is an abelian group and has a nonempty basis.
- Define $\operatorname{rank}\langle \overrightarrow{\rho} \rangle$ to be the cardinality of the basis.
- Clearly, $1 \leq \operatorname{rank}\langle \overrightarrow{\rho} \rangle \leq m$.
- If rank $\langle \overrightarrow{\rho} \rangle = m$, we say $\overrightarrow{\rho}$ has full rank.
- By FM' theorem, rank $\langle \overrightarrow{\rho} \rangle = \operatorname{rank} \langle \overrightarrow{\tau} \rangle$ if $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$.

Theorem (Rao-R-Wang, 2012)

Assume that both $\overrightarrow{\rho}$ and $\overrightarrow{\tau}$ have full rank *m*. Then $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ iff $\overrightarrow{\rho}$ is a permutation of $\overrightarrow{\tau}$.

Step 3 to solve the Question

Let's study Case (1) now. • Given a c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$. Define $\langle \overrightarrow{\rho} \rangle := \{ \rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} : \alpha_1, \dots, \alpha_m \in \mathbb{Z} \}.$

- $\langle \overrightarrow{\rho} \rangle$ is an abelian group and has a nonempty basis.
- Define $\operatorname{rank}\langle \overrightarrow{\rho} \rangle$ to be the cardinality of the basis.
- Clearly, $1 \leq \operatorname{rank}\langle \overrightarrow{\rho} \rangle \leq m$.
- If rank $\langle \overrightarrow{\rho} \rangle = m$, we say $\overrightarrow{\rho}$ has full rank.
- By FM' theorem, $\operatorname{rank}\langle \overrightarrow{\rho} \rangle = \operatorname{rank}\langle \overrightarrow{\tau} \rangle$ if $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$.

Theorem (Rao-R-Wang, 2012)

Assume that both $\overrightarrow{\rho}$ and $\overrightarrow{\tau}$ have full rank *m*. Then $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ iff $\overrightarrow{\rho}$ is a permutation of $\overrightarrow{\tau}$.

Step 3 to solve the Question

Let's study Case (1) now. • Given a c.v. $\overrightarrow{\rho} = (\rho_1, \dots, \rho_m)$. Define $\langle \overrightarrow{\rho} \rangle := \{ \rho_1^{\alpha_1} \cdots \rho_m^{\alpha_m} : \alpha_1, \dots, \alpha_m \in \mathbb{Z} \}.$

- $\langle \overrightarrow{\rho} \rangle$ is an abelian group and has a nonempty basis.
- Define $\operatorname{rank}\langle \overrightarrow{\rho} \rangle$ to be the cardinality of the basis.
- Clearly, $1 \leq \operatorname{rank}\langle \overrightarrow{\rho} \rangle \leq m$.
- If rank $\langle \overrightarrow{\rho} \rangle = m$, we say $\overrightarrow{\rho}$ has full rank.
- By FM' theorem, $\operatorname{rank}\langle \overrightarrow{\rho} \rangle = \operatorname{rank}\langle \overrightarrow{\tau} \rangle$ if $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$.

Theorem (Rao-R-Wang, 2012)

Assume that both $\overrightarrow{\rho}$ and $\overrightarrow{\tau}$ have full rank *m*. Then $\mathcal{D}(\overrightarrow{\rho}) \sim \mathcal{D}(\overrightarrow{\tau})$ iff $\overrightarrow{\rho}$ is a permutation of $\overrightarrow{\tau}$.

Theorem (Rao-R-Wang, 2012) $\mathcal{D}(\rho_1, \rho_2) \sim \mathcal{D}(\tau_1, \tau_2)$ iff $(\rho_1, \rho_2) = (\tau_1, \tau_2)$ or there exists $\lambda \in (0, 1)$, s.t.

$$(\rho_1, \rho_2, \tau_1, \tau_2) = (\lambda^5, \lambda, \lambda^3, \lambda^2).$$

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

• In case that $\operatorname{rank}\langle \overrightarrow{\rho} \rangle = \operatorname{rank}\langle \overrightarrow{\tau} \rangle = 1$,

- Xi and Xiong have a very nice result.
- Rao and his collaborators also have some progresses.
- In case that $1 < rank\langle \overrightarrow{\rho} \rangle = rank\langle \overrightarrow{\tau} \rangle < m$, everything remains open!

• In case that $\operatorname{rank}\langle \overrightarrow{\rho} \rangle = \operatorname{rank}\langle \overrightarrow{\tau} \rangle = 1$,

- Xi and Xiong have a very nice result.
- Rao and his collaborators also have some progresses.
- In case that $1 < rank\langle \overrightarrow{\rho} \rangle = rank\langle \overrightarrow{\tau} \rangle < m$, everything remains open!

- In case that $\operatorname{rank}\langle \overrightarrow{\rho} \rangle = \operatorname{rank}\langle \overrightarrow{\tau} \rangle = 1$,
 - Xi and Xiong have a very nice result.
 - Rao and his collaborators also have some progresses.
- In case that $1 < rank\langle \overrightarrow{\rho} \rangle = rank\langle \overrightarrow{\tau} \rangle < m$, everything remains open!

- In case that $\operatorname{rank}\langle \overrightarrow{\rho} \rangle = \operatorname{rank}\langle \overrightarrow{\tau} \rangle = 1$,
 - Xi and Xiong have a very nice result.
 - Rao and his collaborators also have some progresses.
- In case that $1 < rank\langle \overrightarrow{\rho} \rangle = rank\langle \overrightarrow{\tau} \rangle < m$, everything remains open!

Part II. Lipschitz equivalence of self-similar sets with touching structures

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

A problem posed by David and Semmes, 1997

Figure: Initial construction of M and M'

• David and Semmes conjectured that $M \not\sim M'$.

• Rao, R and Xi (2006) obtained that $M \sim M'$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

・ロト ・ 理 ト ・ ヨ ト ・

-

A problem posed by David and Semmes, 1997

Figure: Initial construction of M and M'

- David and Semmes conjectured that $M \not\sim M'$.
- Rao, R and Xi (2006) obtained that $M \sim M'$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

A problem posed by David and Semmes, 1997

Figure: Initial construction of M and M'

- David and Semmes conjectured that $M \not\sim M'$.
- Rao, R and Xi (2006) obtained that $M \sim M'$.

イロト 不得 とくほ とくほとう

-

Generalized {1,3,5}-{1,4,5} problem

Figure: Initial construction of $M_{\overrightarrow{\rho}}$ and $M'_{\overrightarrow{\sigma}}$

• Xi and R (2007): $M_{\overrightarrow{\rho}} \sim M'_{\overrightarrow{\rho}}$ iff $\log \rho_1 / \log \rho_3 \in \mathbb{Q}$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Generalized {1,3,5}-{1,4,5} problem

Figure: Initial construction of $M_{\overrightarrow{\rho}}$ and $M'_{\overrightarrow{\sigma}}$

• Xi and R (2007): $M_{\overrightarrow{\rho}} \sim M'_{\overrightarrow{\rho}}$ iff $\log \rho_1 / \log \rho_3 \in \mathbb{Q}$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

•
$$\overrightarrow{
ho} = (
ho_1, \dots,
ho_n)$$
 is a c.v. in $\mathbb R$ with $n \ge 3$.

- $D \in \mathcal{D}(\overrightarrow{\rho}).$
- *T*: attractor of IFS $\{\Psi_j(x) = \rho_j x + t_j\}_{j=1}^n$ satisfying
 - The subintervals Ψ₁([0, 1]), ..., Ψ_n([0, 1]) are spaced from left to right without overlapping.
 - Left endpoint of $\Psi_1[0, 1]$ is 0; right endpoint of $\Psi_n[0, 1]$ is 1
 - $\exists j \in \{1, 2, ..., n-1\}$, such that the intervals $\Psi_j([0, 1])$ and $\Psi_{j,j}([0, 1])$ are touching, i.e. $\Psi_j(1) = \Psi_{j,j}(0)$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)

Some progresses on Lipschitz equivalence of self-similar sets

イロト 不得 とくほ とくほ とうほ

•
$$\overrightarrow{\rho} = (\rho_1, \dots, \rho_n)$$
 is a c.v. in \mathbb{R} with $n \ge 3$.
• $D \in \mathcal{D}(\overrightarrow{\rho})$.

• *T*: attractor of IFS $\{\Psi_j(x) = \rho_j x + t_j\}_{j=1}^n$ satisfying

- The subintervals Ψ₁([0, 1]), ..., Ψ_n([0, 1]) are spaced from left to right without overlapping.
- Left endpoint of $\Psi_1[0, 1]$ is 0; right endpoint of $\Psi_n[0, 1]$ is 1
- $\exists j \in \{1, 2, ..., n-1\}$, such that the intervals $\Psi_j([0, 1])$ and $\Psi_{j+1}([0, 1])$ are touching, i.e. $\Psi_j(1) = \Psi_{j+1}(0)$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)

Some progresses on Lipschitz equivalence of self-similar sets

イロト 不得 とくほ とくほ とうほ

•
$$\overrightarrow{\rho} = (\rho_1, \dots, \rho_n)$$
 is a c.v. in $\mathbb R$ with $n \ge 3$.

- $D \in \mathcal{D}(\overrightarrow{\rho}).$
- *T*: attractor of IFS $\{\Psi_j(x) = \rho_j x + t_j\}_{j=1}^n$ satisfying
 - The subintervals Ψ₁([0, 1]), ..., Ψ_n([0, 1]) are spaced from left to right without overlapping.
 - Left endpoint of $\Psi_1[0, 1]$ is 0; right endpoint of $\Psi_n[0, 1]$ is 1.
 - $\exists j \in \{1, 2, \dots, n-1\}$, such that the intervals $\Psi_j([0, 1])$ and $\Psi_{j+1}([0, 1])$ are touching, i.e. $\Psi_j(1) = \Psi_{j+1}(0)$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)

Some progresses on Lipschitz equivalence of self-similar sets

•
$$\overrightarrow{\rho} = (\rho_1, \dots, \rho_n)$$
 is a c.v. in $\mathbb R$ with $n \ge 3$.

- $D \in \mathcal{D}(\overrightarrow{\rho}).$
- *T*: attractor of IFS $\{\Psi_j(x) = \rho_j x + t_j\}_{j=1}^n$ satisfying
 - The subintervals Ψ₁([0, 1]), ..., Ψ_n([0, 1]) are spaced from left to right without overlapping.
 - Left endpoint of Ψ₁[0, 1] is 0; right endpoint of Ψ_n[0, 1] is 1.
 ∃ *j* ∈ {1, 2, ..., n − 1}, such that the intervals Ψ_j([0, 1]) and Ψ_{j+1}([0, 1]) are touching, i.e. Ψ_j(1) = Ψ_{j+1}(0).

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)

Some progresses on Lipschitz equivalence of self-similar sets

•
$$\overrightarrow{
ho}=(
ho_1,\ldots,
ho_n)$$
 is a c.v. in $\mathbb R$ with $n\geq 3$.

- $D \in \mathcal{D}(\overrightarrow{\rho}).$
- *T*: attractor of IFS $\{\Psi_j(x) = \rho_j x + t_j\}_{j=1}^n$ satisfying
 - The subintervals Ψ₁([0, 1]), ..., Ψ_n([0, 1]) are spaced from left to right without overlapping.
 - Left endpoint of $\Psi_1[0, 1]$ is 0; right endpoint of $\Psi_n[0, 1]$ is 1.

• $\exists j \in \{1, 2, \dots, n-1\}$, such that the intervals $\Psi_j([0, 1])$ and $\Psi_{j+1}([0, 1])$ are touching, i.e. $\Psi_j(1) = \Psi_{j+1}(0)$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi)

Some progresses on Lipschitz equivalence of self-similar sets

•
$$\overrightarrow{\rho} = (\rho_1, \dots, \rho_n)$$
 is a c.v. in $\mathbb R$ with $n \ge 3$.

- $D \in \mathcal{D}(\overrightarrow{\rho}).$
- *T*: attractor of IFS $\{\Psi_j(x) = \rho_j x + t_j\}_{j=1}^n$ satisfying
 - The subintervals Ψ₁([0, 1]), ..., Ψ_n([0, 1]) are spaced from left to right without overlapping.
 - Left endpoint of Ψ₁[0, 1] is 0; right endpoint of Ψ_n[0, 1] is 1.
 - $\exists j \in \{1, 2, \dots, n-1\}$, such that the intervals $\Psi_j([0, 1])$ and $\Psi_{j+1}([0, 1])$ are touching, i.e. $\Psi_j(1) = \Psi_{j+1}(0)$.

Assume that $D \sim T$. Then $\log \rho_1 / \log \rho_n \in \mathbb{Q}$.

- A letter $j \in \{1, ..., n\}$ is a (left) touching letter if $\Psi_j([0, 1])$ and $\Psi_{j+1}([0, 1])$ are touching, i.e. $\Psi_j(1) = \Psi_{j+1}(0)$.
- Σ_T : the set of all (left) touching letters.

Theorem (R-Wang-Xi, Preprint)

Let n = 4, $\rho_1 = \rho_4$, and $\Sigma_T = \{2\}$. Assume that $D \sim T$. Let $s = \dim_H D = \dim_H T$ and $\mu_j = \rho_j^s$ for $1 \le j \le 4$. Then μ_2 and μ_3 must be algebraically dependent, namely there exists a nonzero rational polynomial P(x, y) such that $P(\mu_2, \mu_3) = 0$.

Assume that $D \sim T$. Then $\log \rho_1 / \log \rho_n \in \mathbb{Q}$.

- A letter *j* ∈ {1,..., *n*} is a (left) touching letter if Ψ_j([0, 1]) and Ψ_{j+1}([0, 1]) are touching, i.e. Ψ_j(1) = Ψ_{j+1}(0).
- Σ_T : the set of all (left) touching letters.

Theorem (R-Wang-Xi, Preprint)

Let n = 4, $\rho_1 = \rho_4$, and $\Sigma_T = \{2\}$. Assume that $D \sim T$. Let $s = \dim_H D = \dim_H T$ and $\mu_j = \rho_j^s$ for $1 \le j \le 4$. Then μ_2 and μ_3 must be algebraically dependent, namely there exists a nonzero rational polynomial P(x, y) such that $P(\mu_2, \mu_3) = 0$.

Assume that $D \sim T$. Then $\log \rho_1 / \log \rho_n \in \mathbb{Q}$.

- A letter *j* ∈ {1,..., *n*} is a (left) touching letter if Ψ_j([0, 1]) and Ψ_{j+1}([0, 1]) are touching, i.e. Ψ_j(1) = Ψ_{j+1}(0).
- Σ_T: the set of all (left) touching letters.

Theorem (R-Wang-Xi, Preprint)

Let n = 4, $\rho_1 = \rho_4$, and $\Sigma_T = \{2\}$. Assume that $D \sim T$. Let $s = \dim_H D = \dim_H T$ and $\mu_j = \rho_j^s$ for $1 \le j \le 4$. Then μ_2 and μ_3 must be algebraically dependent, namely there exists a nonzero rational polynomial P(x, y) such that $P(\mu_2, \mu_3) = 0$.

Assume that $D \sim T$. Then $\log \rho_1 / \log \rho_n \in \mathbb{Q}$.

- A letter *j* ∈ {1,..., *n*} is a (left) touching letter if Ψ_j([0, 1]) and Ψ_{j+1}([0, 1]) are touching, i.e. Ψ_j(1) = Ψ_{j+1}(0).
- Σ_T: the set of all (left) touching letters.

Theorem (R-Wang-Xi, Preprint)

Let n = 4, $\rho_1 = \rho_4$, and $\Sigma_T = \{2\}$. Assume that $D \sim T$. Let $s = \dim_H D = \dim_H T$ and $\mu_j = \rho_j^s$ for $1 \le j \le 4$. Then μ_2 and μ_3 must be algebraically dependent, namely there exists a nonzero rational polynomial P(x, y) such that $P(\mu_2, \mu_3) = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Assume that $\log \rho_1 / \log \rho_n \in \mathbb{Q}$. Then, $D \sim T$ if every touching letter for T is substitutable.

Corollary

Let $M_{\overrightarrow{\rho}}$ and $M'_{\overrightarrow{\rho}}$ be sets defined in generalized {1,3,5}-{1,4,5} problem. Then $M_{\overrightarrow{\rho}} \sim M'_{\overrightarrow{\rho}}$ iff $\log \rho_1 / \log \rho_3 \in \mathbb{Q}$.

Note: If $\log \rho_1 / \log \rho_3 \in \mathbb{Q}$, the unique touching letter {2} is substitutable.

Theorem (R-Wang-Xi, Preprint)

Assume that $\log \rho_i / \log \rho_j \in \mathbb{Q}$ for all $i, j \in \{1, ..., n\}$. Then $D \sim T$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

Assume that $\log \rho_1 / \log \rho_n \in \mathbb{Q}$. Then, $D \sim T$ if every touching letter for T is substitutable.

Corollary

Let $M_{\overrightarrow{\rho}}$ and $M'_{\overrightarrow{\rho}}$ be sets defined in generalized {1,3,5}-{1,4,5} problem. Then $M_{\overrightarrow{\rho}} \sim M'_{\overrightarrow{\rho}}$ iff $\log \rho_1 / \log \rho_3 \in \mathbb{Q}$.

Note: If $\log \rho_1 / \log \rho_3 \in \mathbb{Q}$, the unique touching letter {2} is substitutable.

Theorem (R-Wang-Xi, Preprint)

Assume that $\log \rho_i / \log \rho_j \in \mathbb{Q}$ for all $i, j \in \{1, ..., n\}$. Then $D \sim T$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Assume that $\log \rho_1 / \log \rho_n \in \mathbb{Q}$. Then, $D \sim T$ if every touching letter for T is substitutable.

Corollary

Let $M_{\overrightarrow{\rho}}$ and $M'_{\overrightarrow{\rho}}$ be sets defined in generalized {1,3,5}-{1,4,5} problem. Then $M_{\overrightarrow{\rho}} \sim M'_{\overrightarrow{\rho}}$ iff $\log \rho_1 / \log \rho_3 \in \mathbb{Q}$.

Note: If $\log \rho_1 / \log \rho_3 \in \mathbb{Q}$, the unique touching letter {2} is substitutable.

Theorem (R-Wang-Xi, Preprint)

Assume that $\log \rho_i / \log \rho_j \in \mathbb{Q}$ for all $i, j \in \{1, ..., n\}$. Then $D \sim T$.

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

- Xi and Xiong had a good result in a special case.
- Lau and Luo made some progress (via hyperbolic graph).
- Many questions can be discussed in future...
- How about for the Lipschitz equivalence of self-affine sets? For example, McMullen sets?

- Xi and Xiong had a good result in a special case.
- Lau and Luo made some progress (via hyperbolic graph).
- Many questions can be discussed in future...
- How about for the Lipschitz equivalence of self-affine sets? For example, McMullen sets?

- Xi and Xiong had a good result in a special case.
- Lau and Luo made some progress (via hyperbolic graph).
- Many questions can be discussed in future...
- How about for the Lipschitz equivalence of self-affine sets? For example, McMullen sets?

- Xi and Xiong had a good result in a special case.
- Lau and Luo made some progress (via hyperbolic graph).
- Many questions can be discussed in future...
- How about for the Lipschitz equivalence of self-affine sets? For example, McMullen sets?

イロト 不得 とくほ とくほ とうほ

- Xi and Xiong had a good result in a special case.
- Lau and Luo made some progress (via hyperbolic graph).
- Many questions can be discussed in future...
- How about for the Lipschitz equivalence of self-affine sets? For example, McMullen sets?

イロン 不良 とくほう イロン 二日

Thank you!

Huo-Jun Ruan (With Hui Rao, Yang Wang and Li-Feng Xi) Some progresses on Lipschitz equivalence of self-similar sets

イロン 不同 とくほ とくほ とう

-