Some progresses on Lipschitz equivalence of self-similar sets

Huo-Jun Ruan
(With Hui Rao, Yang Wang and Li-Feng Xi)
Zhejiang University

Chinenes University of Hong Kong - Dec 10-14, 2012

Part I. Lipschitz equivalence of dust-like self-similar sets

Definition

Let E, F be compact sets in \mathbb{R}^{d}. We say that E and F are Lipschitz equivalent, and denote it by $E \sim F$, if there exists a bijection $g: E \longrightarrow F$ which is bi-Lipschitz, i.e. there exists a constant $C>0$ such that for all $x, y \in E$,

$$
C^{-1}|x-y| \leq|g(x)-g(y)| \leq C|x-y| .
$$

Question
 Under what conditions, two self-similar sets are Lipschitz equivalent?

- Necessary condition: same Hausdorff dimension.
 - The condition is not sufficient even for dust-like case. (The generating IFS satisfies the strong separation condition.)

\qquad
Let E be the Cantor middle-third set. Let $s=\log 2 / \log 3$ and $3 \cdot r^{s}=1$. Let F be the dust-like self-similar set generated as the following figure. Then $E \nsim F$.

Question
 Under what conditions, two self-similar sets are Lipschitz equivalent?

- Necessary condition: same Hausdorff dimension.
- The condition is not sufficient even for dust-like case. (The generating IFS satisfies the strong separation condition.)

> Let E be the Cantor middle-third set. Let $s=\log 2 / \log 3$ and $3 \cdot r^{s}=1$. Let F be the dust-like self-similar set generated as the following figure. Then $E \nsim F$.

Question
 Under what conditions, two self-similar sets are Lipschitz equivalent?

- Necessary condition: same Hausdorff dimension.
- The condition is not sufficient even for dust-like case. (The generating IFS satisfies the strong separation condition.)

Question

Under what conditions, two self-similar sets are Lipschitz equivalent?

- Necessary condition: same Hausdorff dimension.
- The condition is not sufficient even for dust-like case. (The generating IFS satisfies the strong separation condition.)

Example

Let E be the Cantor middle-third set. Let $s=\log 2 / \log 3$ and $3 \cdot r^{s}=1$. Let F be the dust-like self-similar set generated as the following figure. Then $E \nsim F$.

- Let E, F be dust-like self-similar sets generated by the IFS $\left\{\Phi_{j}\right\}_{j=1}^{n},\left\{\Psi_{j}\right\}_{j=1}^{m}$ on \mathbb{R}^{d}, respectively.
- $\rho_{j}\left(\right.$ resp. $\left.\tau_{j}\right)$ is the contraction ratio of $\Phi_{j}\left(\right.$ resp. $\left.\Psi_{j}\right)$.
 a_{1}, \ldots, a_{m}.
 a_{1}, \ldots, a_{m}.

Theorem (Falconer-Marsh, 1992)

- Let E, F be dust-like self-similar sets generated by the IFS $\left\{\Phi_{j}\right\}_{j=1}^{n},\left\{\Psi_{j}\right\}_{j=1}^{m}$ on \mathbb{R}^{d}, respectively.
- $\rho_{j}\left(\right.$ resp. $\left.\tau_{j}\right)$ is the contraction ratio of $\Phi_{j}\left(\right.$ resp. $\left.\Psi_{j}\right)$.
$\mathbb{Q}\left(a_{1}, \ldots, a_{m}\right)$: subfield of \mathbb{R} generated by \mathbb{Q} and

- Let E, F be dust-like self-similar sets generated by the IFS $\left\{\Phi_{j}\right\}_{j=1}^{n},\left\{\Psi_{j}\right\}_{j=1}^{m}$ on \mathbb{R}^{d}, respectively.
- $\rho_{j}\left(\right.$ resp. $\left.\tau_{j}\right)$ is the contraction ratio of $\Phi_{j}\left(\right.$ resp. $\left.\Psi_{j}\right)$.
- $\mathbb{Q}\left(a_{1}, \ldots, a_{m}\right)$: subfield of \mathbb{R} generated by \mathbb{Q} and a_{1}, \ldots, a_{m}.

- Let E, F be dust-like self-similar sets generated by the IFS $\left\{\Phi_{j}\right\}_{j=1}^{n},\left\{\Psi_{j}\right\}_{j=1}^{m}$ on \mathbb{R}^{d}, respectively.
- ρ_{j} (resp. τ_{j}) is the contraction ratio of Φ_{j} (resp. Ψ_{j}).
- $\mathbb{Q}\left(a_{1}, \ldots, a_{m}\right)$: subfield of \mathbb{R} generated by \mathbb{Q} and a_{1}, \ldots, a_{m}.
- $\operatorname{sgp}\left(a_{1}, \ldots, a_{m}\right)$: subsemigroup of $\left(\mathbb{R}^{+}, \times\right)$generated by a_{1}, \ldots, a_{m}.

- Let E, F be dust-like self-similar sets generated by the IFS $\left\{\Phi_{j}\right\}_{j=1}^{n},\left\{\Psi_{j}\right\}_{j=1}^{m}$ on \mathbb{R}^{d}, respectively.
- $\rho_{j}\left(\right.$ resp. $\left.\tau_{j}\right)$ is the contraction ratio of $\Phi_{j}\left(\right.$ resp. $\left.\Psi_{j}\right)$.
- $\mathbb{Q}\left(a_{1}, \ldots, a_{m}\right)$: subfield of \mathbb{R} generated by \mathbb{Q} and a_{1}, \ldots, a_{m}.
- $\operatorname{sgp}\left(a_{1}, \ldots, a_{m}\right)$: subsemigroup of $\left(\mathbb{R}^{+}, \times\right)$generated by a_{1}, \ldots, a_{m}.

Theorem (Falconer-Marsh, 1992)
Assume that $E \sim F$. Let $s=\operatorname{dim}_{H} E=\operatorname{dim}_{H} F$. Then
(1) $\mathbb{Q}\left(\rho_{1}^{s}, \ldots, \rho_{m}^{s}\right)=\mathbb{Q}\left(\tau_{1}^{s}, \ldots, \tau_{n}^{s}\right)$;
(2) $\exists p, q \in \mathbb{Z}^{+}$, s.t. $\operatorname{sgp}\left(\rho_{1}^{p}, \ldots, \rho_{m}^{p}\right) \subset \operatorname{sgp}\left(\tau_{1}, \ldots, \tau_{n}\right)$ and $\operatorname{sgp}\left(\tau_{1}^{q}, \ldots, \tau_{n}^{q}\right) \subset \operatorname{sgp}\left(\rho_{1}, \ldots, \rho_{m}\right)$.

- Using (2), we can show that $E \nsim F$ in the above example.
- Let E, F be dust-like self-similar sets generated by the IFS $\left\{\Phi_{j}\right\}_{j=1}^{n},\left\{\Psi_{j}\right\}_{j=1}^{m}$ on \mathbb{R}^{d}, respectively.
- ρ_{j} (resp. τ_{j}) is the contraction ratio of Φ_{j} (resp. Ψ_{j}).
- $\mathbb{Q}\left(a_{1}, \ldots, a_{m}\right)$: subfield of \mathbb{R} generated by \mathbb{Q} and a_{1}, \ldots, a_{m}.
- $\operatorname{sgp}\left(a_{1}, \ldots, a_{m}\right)$: subsemigroup of $\left(\mathbb{R}^{+}, \times\right)$generated by a_{1}, \ldots, a_{m}.

Theorem (Falconer-Marsh, 1992)
Assume that $E \sim F$. Let $s=\operatorname{dim}_{H} E=\operatorname{dim}_{H} F$. Then
(1) $\mathbb{Q}\left(\rho_{1}^{s}, \ldots, \rho_{m}^{s}\right)=\mathbb{Q}\left(\tau_{1}^{s}, \ldots, \tau_{n}^{s}\right)$;
(2) $\exists p, q \in \mathbb{Z}^{+}$, s.t. $\operatorname{sgp}\left(\rho_{1}^{p}, \ldots, \rho_{m}^{p}\right) \subset \operatorname{sgp}\left(\tau_{1}, \ldots, \tau_{n}\right)$ and $\operatorname{sgp}\left(\tau_{1}^{q}, \ldots, \tau_{n}^{q}\right) \subset \operatorname{sgp}\left(\rho_{1}, \ldots, \rho_{m}\right)$.

- Using (2), we can show that $E \nsim F$ in the above example.

Question

What's the necessary and sufficient condition? How about for two branches case?

- WLOG, we may assume that $\rho_{1} \leq \rho_{2}, \tau_{1} \leq \tau_{2}$ and $\rho_{1} \leq \tau_{1}$ - Conjecture. Lipschitz equivalent iff $\left(\rho_{1}, \rho_{2}\right)=\left(\tau_{1}, \tau_{2}\right)$.

Question

What's the necessary and sufficient condition? How about for two branches case?

- WLOG, we may assume that $\rho_{1} \leq \rho_{2}, \tau_{1} \leq \tau_{2}$ and $\rho_{1} \leq \tau_{1}$.
- Conjecture. Lipschitz equivalent iff $\left(\rho_{1}, \rho_{2}\right)=\left(\tau_{1}, \tau_{2}\right)$.

Question

What's the necessary and sufficient condition? How about for two branches case?

- WLOG, we may assume that $\rho_{1} \leq \rho_{2}, \tau_{1} \leq \tau_{2}$ and $\rho_{1} \leq \tau_{1}$.
- Conjecture. Lipschitz equivalent iff $\left(\rho_{1}, \rho_{2}\right)=\left(\tau_{1}, \tau_{2}\right)$.

Some Notations

- K : self-similar set determined by the IFS $\left\{\mathbb{R}^{d} ; f_{1}, \ldots, f_{m}\right\}$.
- ρ_{j} : contraction ratio of $f_{j}, \forall j$.
- $\left(\rho_{1}, \ldots, \rho_{m}\right)$ is called a contraction vector (c.v.) of K.
- For any c.v. $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m}\right)$ with $\sum \rho_{j}^{d}<1$, we define $\mathcal{D}(\vec{\rho})$ to be all dust-like self-similar sets with c.v. $\vec{\rho}$ in \mathbb{R}^{d}.
- Throughout the talk, the dimension d will be implicit.
- Define $\operatorname{dim}_{H} \mathcal{D}(\vec{\rho})=\operatorname{dim}_{H} E$, for some (then for all) $E \in \mathcal{D}(\vec{\rho})$.
- $E \sim F$ for any $E, F \in \mathcal{D}(\vec{\rho})$.
- Define $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\vec{\rho})$ and $F \in \mathcal{D}(\vec{\tau})$.

Some Notations

- K : self-similar set determined by the IFS $\left\{\mathbb{R}^{d} ; f_{1}, \ldots, f_{m}\right\}$.
- ρ_{j} : contraction ratio of $f_{j}, \forall j$.
- $\left(\rho_{1}, \ldots, \rho_{m}\right)$ is called a contraction vector (c.v.) of K.
- For any c.v. $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m}\right)$ with $\sum \rho_{j}^{d}<1$, we define $\mathcal{D}(\vec{\rho})$ to be all dust-like self-similar sets with c.v. $\vec{\rho}$ in \mathbb{R}^{d}.
- Throughout the talk, the dimension d will be implicit.
- Define $\operatorname{dim}_{H} \mathcal{D}(\vec{\rho})=\operatorname{dim}_{H} E$, for some (then for all)
$E \in \mathcal{D}(\vec{\rho})$.
- $E \sim F$ for any $E, F \in \mathcal{D}(\vec{\rho})$.
- Define $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\vec{\rho})$ and $F \in \mathcal{D}(\vec{\tau})$.

Some Notations

- K : self-similar set determined by the IFS $\left\{\mathbb{R}^{d} ; f_{1}, \ldots, f_{m}\right\}$.
- ρ_{j} : contraction ratio of $f_{j}, \forall j$.
- $\left(\rho_{1}, \ldots, \rho_{m}\right)$ is called a contraction vector (c.v.) of K.
- For any c.v. $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m}\right)$ with $\sum \rho_{j}^{d}<1$, we define $\mathcal{D}(\vec{\rho})$ to be all dust-like self-similar sets with c.v. $\vec{\rho}$ in \mathbb{R}^{d}.
- Throughout the talk, the dimension d will be implicit.
- Define $\operatorname{dim}_{H} \mathcal{D}(\vec{\rho})=\operatorname{dim}_{H} E$, for some (then for all) $E \in \mathcal{D}(\vec{\rho})$.
- $E \sim F$ for any $E, F \in \mathcal{D}(\vec{p})$.
- Define $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\vec{\rho})$ and $F \in \mathcal{D}(\vec{\tau})$.

Some Notations

- K : self-similar set determined by the IFS $\left\{\mathbb{R}^{d} ; f_{1}, \ldots, f_{m}\right\}$.
- ρ_{j} : contraction ratio of $f_{j}, \forall j$.
- $\left(\rho_{1}, \ldots, \rho_{m}\right)$ is called a contraction vector (c.v.) of K.
- For any c.v. $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m}\right)$ with $\sum \rho_{j}^{d}<1$, we define $\mathcal{D}(\vec{\rho})$ to be all dust-like self-similar sets with c.v. $\vec{\rho}$ in \mathbb{R}^{d}.
- Define $\operatorname{dim}_{H} \mathcal{D}(\vec{\rho})=\operatorname{dim}_{H} E$, for some (then for all)
- $E \sim F$ for any $E, F \in \mathcal{D}(\vec{\rho})$.
- Define $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\vec{\rho})$ and $F \in \mathcal{D}(\vec{\tau})$.

Some Notations

- K : self-similar set determined by the IFS $\left\{\mathbb{R}^{d} ; f_{1}, \ldots, f_{m}\right\}$.
- ρ_{j} : contraction ratio of $f_{j}, \forall j$.
- $\left(\rho_{1}, \ldots, \rho_{m}\right)$ is called a contraction vector (c.v.) of K.
- For any c.v. $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m}\right)$ with $\sum \rho_{j}^{d}<1$, we define $\mathcal{D}(\vec{\rho})$ to be all dust-like self-similar sets with c.v. $\vec{\rho}$ in \mathbb{R}^{d}.
- Throughout the talk, the dimension d will be implicit.
- Define $\operatorname{dim}_{H} \mathcal{D}(\vec{\rho})=\operatorname{dim}_{H} E$, for some (then for all)
- $E \sim F$ for any $E, F \in \mathcal{D}(\vec{\rho})$.
- Define $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\vec{\rho})$ and $F \in \mathcal{D}(\vec{\tau})$.

Some Notations

- K : self-similar set determined by the IFS $\left\{\mathbb{R}^{d} ; f_{1}, \ldots, f_{m}\right\}$.
- ρ_{j} : contraction ratio of $f_{j}, \forall j$.
- $\left(\rho_{1}, \ldots, \rho_{m}\right)$ is called a contraction vector (c.v.) of K.
- For any c.v. $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m}\right)$ with $\sum \rho_{j}^{d}<1$, we define $\mathcal{D}(\vec{\rho})$ to be all dust-like self-similar sets with c.v. $\vec{\rho}$ in \mathbb{R}^{d}.
- Throughout the talk, the dimension d will be implicit.
- Define $\operatorname{dim}_{H} \mathcal{D}(\vec{\rho})=\operatorname{dim}_{H} E$, for some (then for all) $E \in \mathcal{D}(\vec{\rho})$.

Some Notations

- K : self-similar set determined by the IFS $\left\{\mathbb{R}^{d} ; f_{1}, \ldots, f_{m}\right\}$.
- ρ_{j} : contraction ratio of $f_{j}, \forall j$.
- $\left(\rho_{1}, \ldots, \rho_{m}\right)$ is called a contraction vector (c.v.) of K.
- For any c.v. $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m}\right)$ with $\sum \rho_{j}^{d}<1$, we define $\mathcal{D}(\vec{\rho})$ to be all dust-like self-similar sets with c.v. $\vec{\rho}$ in \mathbb{R}^{d}.
- Throughout the talk, the dimension d will be implicit.
- Define $\operatorname{dim}_{H} \mathcal{D}(\vec{\rho})=\operatorname{dim}_{H} E$, for some (then for all) $E \in \mathcal{D}(\vec{\rho})$.
- $E \sim F$ for any $E, F \in \mathcal{D}(\vec{\rho})$.

Some Notations

- K : self-similar set determined by the IFS $\left\{\mathbb{R}^{d} ; f_{1}, \ldots, f_{m}\right\}$.
- ρ_{j} : contraction ratio of $f_{j}, \forall j$.
- $\left(\rho_{1}, \ldots, \rho_{m}\right)$ is called a contraction vector (c.v.) of K.
- For any c.v. $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m}\right)$ with $\sum \rho_{j}^{d}<1$, we define $\mathcal{D}(\vec{\rho})$ to be all dust-like self-similar sets with c.v. $\vec{\rho}$ in \mathbb{R}^{d}.
- Throughout the talk, the dimension d will be implicit.
- Define $\operatorname{dim}_{H} \mathcal{D}(\vec{\rho})=\operatorname{dim}_{H} E$, for some (then for all) $E \in \mathcal{D}(\vec{\rho})$.
- $E \sim F$ for any $E, F \in \mathcal{D}(\vec{\rho})$.
- Define $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$ if $E \sim F$ for some $E \in \mathcal{D}(\vec{\rho})$ and $F \in \mathcal{D}(\vec{\tau})$.

Step 1 to solve the Question on two branches case

Assume that $\mathcal{D}\left(\rho_{1}, \rho_{2}\right) \sim \mathcal{D}\left(\tau_{1}, \tau_{2}\right)$. By FM' theorem, one of followings must happen:
(1). $\log \rho_{1} / \log \rho_{2} \notin \mathbb{Q}$.
(2). $\exists \lambda \in(0,1)$, and $p_{1}, q_{1}, p_{2}, q_{2} \in \mathbb{Z}^{+}$such that

Step 1 to solve the Question on two branches case

Assume that $\mathcal{D}\left(\rho_{1}, \rho_{2}\right) \sim \mathcal{D}\left(\tau_{1}, \tau_{2}\right)$. By FM' theorem, one of followings must happen:
(1). $\log \rho_{1} / \log \rho_{2} \notin \mathbb{Q}$.
(2). $\exists \lambda \in(0,1)$, and $p_{1}, q_{1}, p_{2}, q_{2} \in \mathbb{Z}^{+}$such that

$$
\rho_{1}=\lambda^{p_{1}}, \quad \rho_{2}=\lambda^{p_{2}}, \quad \tau_{1}=\lambda^{q_{1}}, \quad \tau_{2}=\lambda^{q_{2}} .
$$

Step 2 to solve the Question

Let's study case (2) first.

- From $s=\operatorname{dim}_{H} \mathcal{D}\left(\rho_{1}, \rho_{2}\right)=\operatorname{dim}_{H} \mathcal{D}\left(\tau_{1}, \tau_{2}\right)$, we have

$$
\left(\lambda^{p_{1}}\right)^{s}+\left(\lambda^{p_{2}}\right)^{s}=\left(\lambda^{q_{1}}\right)^{s}+\left(\lambda^{q_{2}}\right)=1 .
$$

- Denote $x=\lambda^{s}$, then

- That is,

have same root in $(0,1)$, where $p_{1} \geq p_{2}, q_{1} \geq q_{2}, p_{1} \geq q_{1}$
- Using Ljunggren's result on the irreducibility of trinomials $x^{n} \pm x^{m} \pm 1$, we proved that the above happens iff

- $\left(p_{1}, p_{2}, q_{1}, q_{2}\right)=\gamma(5,1,3,2)$ for some $\gamma \in \mathbb{Z}^{+}$

Step 2 to solve the Question

Let's study case (2) first.

- From $s=\operatorname{dim}_{H} \mathcal{D}\left(\rho_{1}, \rho_{2}\right)=\operatorname{dim}_{H} \mathcal{D}\left(\tau_{1}, \tau_{2}\right)$, we have

$$
\left(\lambda^{p_{1}}\right)^{s}+\left(\lambda^{p_{2}}\right)^{s}=\left(\lambda^{q_{1}}\right)^{s}+\left(\lambda^{q_{2}}\right)=1 .
$$

- Denote $x=\lambda^{s}$, then

$$
x^{p_{1}}+x^{p_{2}}=x^{q_{1}}+x^{q_{2}}=1
$$

- That is,

have same root in $(0,1)$, where $p_{1} \geq p_{2}, q_{1} \geq q_{2}, p_{1} \geq q_{1}$

- Using Ljunggren's result on the irreducibility of trinomials $x^{n} \pm x^{m} \pm 1$, we proved that the above happens iff

Step 2 to solve the Question

Let's study case (2) first.

- From $s=\operatorname{dim}_{H} \mathcal{D}\left(\rho_{1}, \rho_{2}\right)=\operatorname{dim}_{H} \mathcal{D}\left(\tau_{1}, \tau_{2}\right)$, we have

$$
\left(\lambda^{p_{1}}\right)^{s}+\left(\lambda^{p_{2}}\right)^{s}=\left(\lambda^{q_{1}}\right)^{s}+\left(\lambda^{q_{2}}\right)=1 .
$$

- Denote $x=\lambda^{s}$, then

$$
x^{p_{1}}+x^{p_{2}}=x^{q_{1}}+x^{q_{2}}=1
$$

- That is,

$$
x^{p_{1}}+x^{p_{2}}-1=0 \quad \text { and } \quad x^{q_{1}}+x^{q_{2}}-1=0
$$

have same root in $(0,1)$, where $p_{1} \geq p_{2}, q_{1} \geq q_{2}, p_{1} \geq q_{1}$.

Step 2 to solve the Question

Let's study case (2) first.

- From $s=\operatorname{dim}_{H} \mathcal{D}\left(\rho_{1}, \rho_{2}\right)=\operatorname{dim}_{H} \mathcal{D}\left(\tau_{1}, \tau_{2}\right)$, we have

$$
\left(\lambda^{p_{1}}\right)^{s}+\left(\lambda^{p_{2}}\right)^{s}=\left(\lambda^{q_{1}}\right)^{s}+\left(\lambda^{q_{2}}\right)=1 .
$$

- Denote $x=\lambda^{s}$, then

$$
x^{p_{1}}+x^{p_{2}}=x^{q_{1}}+x^{q_{2}}=1
$$

- That is,

$$
x^{p_{1}}+x^{p_{2}}-1=0 \quad \text { and } \quad x^{q_{1}}+x^{q_{2}}-1=0
$$

have same root in $(0,1)$, where $p_{1} \geq p_{2}, q_{1} \geq q_{2}, p_{1} \geq q_{1}$.

- Using Ljunggren's result on the irreducibility of trinomials $x^{n} \pm x^{m} \pm 1$, we proved that the above happens iff
- $\left(p_{1}, p_{2}\right)=\left(q_{1}, q_{2}\right)$ or
- $\left(p_{1}, p_{2}, q_{1}, q_{2}\right)=\gamma(5,1,3,2)$ for some $\gamma \in \mathbb{Z}^{+}$.

Step 2 to solve the Question

- Thus, Case (2) holds will imply $\left(\rho_{1}, \rho_{2}\right)=\left(\tau_{1}, \tau_{2}\right)$ or there exists $\lambda \in(0,1)$, s.t.

$$
\begin{equation*}
\left(\rho_{1}, \rho_{2}, \tau_{1}, \tau_{2}\right)=\left(\lambda^{5}, \lambda, \lambda^{3}, \lambda^{2}\right) \tag{1}
\end{equation*}
$$

- We can check that $\mathcal{D}\left(\lambda^{5}, \lambda\right) \sim \mathcal{D}\left(\lambda^{3}, \lambda^{2}\right)$ as following figure.

Step 2 to solve the Question

- Thus, Case (2) holds will imply $\left(\rho_{1}, \rho_{2}\right)=\left(\tau_{1}, \tau_{2}\right)$ or there exists $\lambda \in(0,1)$, s.t.

$$
\begin{equation*}
\left(\rho_{1}, \rho_{2}, \tau_{1}, \tau_{2}\right)=\left(\lambda^{5}, \lambda, \lambda^{3}, \lambda^{2}\right) \tag{1}
\end{equation*}
$$

- We can check that $\mathcal{D}\left(\lambda^{5}, \lambda\right) \sim \mathcal{D}\left(\lambda^{3}, \lambda^{2}\right)$ as following figure.

Step 3 to solve the Question

Let's study Case (1) now.

- Given a c.v. $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m}\right)$. Define

$$
\langle\vec{\rho}\rangle:=\left\{\rho_{1}^{\alpha_{1}} \cdots \rho_{m}^{\alpha_{m}}: \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Z}\right\} .
$$

- $\langle\bar{\beta}\rangle$ is an abelian group and has a nonempty basis.
- Define $\operatorname{rank}\langle\vec{\rho}\rangle$ to be the cardinality of the basis.
- Clearly, $1 \leq \operatorname{rank}\langle\vec{\rho}\rangle \leq \mathrm{m}$.
- If $\operatorname{rank}\langle\vec{\beta}\rangle=\mathrm{m}$, we say \vec{p} has full rank.
- By FM' theorem, $\operatorname{rank}\langle\vec{\rho}\rangle=\operatorname{rank}\langle\vec{\tau}\rangle$ if $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$.

Theorem (Rao-R-N/ang, 2012)
 Assume that both \vec{p} and $\vec{\tau}$ have full rank m. Then
 $\mathcal{D}(\vec{\beta}) \sim \mathcal{D}(\vec{\tau})$ iff $\vec{\beta}$ is a permutation of $\vec{\tau}$

Step 3 to solve the Question

Let's study Case (1) now.

- Given a c.v. $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m}\right)$. Define

$$
\langle\vec{\rho}\rangle:=\left\{\rho_{1}^{\alpha_{1}} \cdots \rho_{m}^{\alpha_{m}}: \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Z}\right\}
$$

- $\langle\vec{\rho}\rangle$ is an abelian group and has a nonempty basis.
- Define rank $\langle\vec{\rho}\rangle$ to be the cardinality of the basis.
- Clearly, $1 \leq \operatorname{rank}\langle\vec{\rho}\rangle \leq \mathrm{m}$.
- If $\operatorname{rank}\langle\vec{\rho}\rangle=\mathrm{m}$, we say $\vec{\rho}$ has full rank.
- By FM' theorem, $\operatorname{rank}\langle\vec{\rho}\rangle=\operatorname{rank}\langle\vec{\tau}\rangle$ if $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$.

Assume that both $\vec{\rho}$ and $\vec{\tau}$ have full rank m. Then $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$ iff $\vec{\rho}$ is a permutation of $\vec{\tau}$

Step 3 to solve the Question

Let's study Case (1) now.

- Given a c.v. $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m}\right)$. Define

$$
\langle\vec{\rho}\rangle:=\left\{\rho_{1}^{\alpha_{1}} \cdots \rho_{m}^{\alpha_{m}}: \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Z}\right\}
$$

- $\langle\vec{\rho}\rangle$ is an abelian group and has a nonempty basis.
- Define $\operatorname{rank}\langle\vec{\rho}\rangle$ to be the cardinality of the basis.
- If $\operatorname{rank}\langle\vec{\rho}\rangle=\mathrm{m}$, we say $\vec{\rho}$ has full rank.
- By FM' theorem, $\operatorname{rank}\langle\vec{\rho}\rangle=\operatorname{rank}\langle\vec{\tau}\rangle$ if $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$.

Assume that both $\vec{\rho}$ and $\vec{\tau}$ have full rank m. Then $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$ iff $\vec{\rho}$ is a permutation of $\vec{\tau}$

Step 3 to solve the Question

Let's study Case (1) now.

- Given a c.v. $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m}\right)$. Define

$$
\langle\vec{\rho}\rangle:=\left\{\rho_{1}^{\alpha_{1}} \cdots \rho_{m}^{\alpha_{m}}: \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Z}\right\}
$$

- $\langle\vec{\rho}\rangle$ is an abelian group and has a nonempty basis.
- Define rank $\langle\vec{\rho}\rangle$ to be the cardinality of the basis.
- Clearly, $1 \leq \operatorname{rank}\langle\vec{\rho}\rangle \leq \mathrm{m}$.
- If $\operatorname{rank}\langle\vec{\rho}\rangle=\mathrm{m}$, we say $\vec{\rho}$ has full rank.
- By FM' theorem, $\operatorname{rank}\langle\vec{\rho}\rangle=\operatorname{rank}\langle\vec{\tau}\rangle$ if $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$.

Assume that both $\vec{\rho}$ and $\vec{\tau}$ have full rank m. Then $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$ iff $\vec{\rho}$ is a permutation of $\vec{\tau}$

Step 3 to solve the Question

Let's study Case (1) now.

- Given a c.v. $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m}\right)$. Define

$$
\langle\vec{\rho}\rangle:=\left\{\rho_{1}^{\alpha_{1}} \cdots \rho_{m}^{\alpha_{m}}: \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Z}\right\}
$$

- $\langle\vec{\rho}\rangle$ is an abelian group and has a nonempty basis.
- Define $\operatorname{rank}\langle\vec{\rho}\rangle$ to be the cardinality of the basis.
- Clearly, $1 \leq \operatorname{rank}\langle\vec{\rho}\rangle \leq \mathrm{m}$.
- If $\operatorname{rank}\langle\vec{\rho}\rangle=\mathrm{m}$, we say $\vec{\rho}$ has full rank.
- By FM' theorem, $\operatorname{rank}\langle\vec{\rho}\rangle=\operatorname{rank}\langle\vec{\tau}\rangle$ if $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$.

Assume that both $\vec{\rho}$ and $\vec{\tau}$ have full rank m. Then $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$ iff $\vec{\rho}$ is a permutation of $\vec{\tau}$

Step 3 to solve the Question

Let's study Case (1) now.

- Given a c.v. $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m}\right)$. Define

$$
\langle\vec{\rho}\rangle:=\left\{\rho_{1}^{\alpha_{1}} \cdots \rho_{m}^{\alpha_{m}}: \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Z}\right\}
$$

- $\langle\vec{\rho}\rangle$ is an abelian group and has a nonempty basis.
- Define rank $\langle\vec{\rho}\rangle$ to be the cardinality of the basis.
- Clearly, $1 \leq \operatorname{rank}\langle\vec{\rho}\rangle \leq \mathrm{m}$.
- If $\operatorname{rank}\langle\vec{\rho}\rangle=\mathrm{m}$, we say $\vec{\rho}$ has full rank.
- By FM' theorem, $\operatorname{rank}\langle\vec{\rho}\rangle=\operatorname{rank}\langle\vec{\tau}\rangle$ if $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$.

Assume that both $\vec{\rho}$ and $\vec{\tau}$ have full rank m. Then

Step 3 to solve the Question

Let's study Case (1) now.

- Given a c.v. $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{m}\right)$. Define

$$
\langle\vec{\rho}\rangle:=\left\{\rho_{1}^{\alpha_{1}} \cdots \rho_{m}^{\alpha_{m}}: \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Z}\right\} .
$$

- $\langle\vec{\rho}\rangle$ is an abelian group and has a nonempty basis.
- Define $\operatorname{rank}\langle\vec{\rho}\rangle$ to be the cardinality of the basis.
- Clearly, $1 \leq \operatorname{rank}\langle\vec{\rho}\rangle \leq \mathrm{m}$.
- If $\operatorname{rank}\langle\vec{\rho}\rangle=\mathrm{m}$, we say $\vec{\rho}$ has full rank.
- By FM' theorem, $\operatorname{rank}\langle\vec{\rho}\rangle=\operatorname{rank}\langle\vec{\tau}\rangle$ if $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$.

Theorem (Rao-R-Wang, 2012)
Assume that both $\vec{\rho}$ and $\vec{\tau}$ have full rank m. Then $\mathcal{D}(\vec{\rho}) \sim \mathcal{D}(\vec{\tau})$ iff $\vec{\rho}$ is a permutation of $\vec{\tau}$.

Theorem (Rao-R-Wang, 2012)
$\mathcal{D}\left(\rho_{1}, \rho_{2}\right) \sim \mathcal{D}\left(\tau_{1}, \tau_{2}\right)$ iff $\left(\rho_{1}, \rho_{2}\right)=\left(\tau_{1}, \tau_{2}\right)$ or there exists $\lambda \in(0,1)$, s.t.

$$
\left(\rho_{1}, \rho_{2}, \tau_{1}, \tau_{2}\right)=\left(\lambda^{5}, \lambda, \lambda^{3}, \lambda^{2}\right)
$$

Related and further Works

- In case that $\operatorname{rank}\langle\vec{\rho}\rangle=\operatorname{rank}\langle\vec{\tau}\rangle=1$,
- Xi and Xiong have a very nice result.
- Rao and his collaborators also have some progresses.
- In case that $1<\operatorname{rank}\langle\vec{\rho}\rangle=\operatorname{rank}\langle\vec{\tau}\rangle<\mathrm{m}$, everything remains open!

Related and further Works

- In case that $\operatorname{rank}\langle\vec{\rho}\rangle=\operatorname{rank}\langle\vec{\tau}\rangle=1$,
- Xi and Xiong have a very nice result.
- Rao and his collaborators also have some progresses.
- In case that $1<\operatorname{rank}\langle\vec{\rho}\rangle=\operatorname{rank}\langle\vec{\tau}\rangle<\mathrm{m}$, everything remains open!

Related and further Works

- In case that $\operatorname{rank}\langle\vec{\rho}\rangle=\operatorname{rank}\langle\vec{\tau}\rangle=1$,
- Xi and Xiong have a very nice result.
- Rao and his collaborators also have some progresses.
- In case that $1<\operatorname{rank}\langle\vec{\rho}\rangle=\operatorname{rank}\langle\vec{\tau}\rangle<\mathrm{m}$, everything remains open!

Related and further Works

- In case that $\operatorname{rank}\langle\vec{\rho}\rangle=\operatorname{rank}\langle\vec{\tau}\rangle=1$,
- Xi and Xiong have a very nice result.
- Rao and his collaborators also have some progresses.
- In case that $1<\operatorname{rank}\langle\vec{\rho}\rangle=\operatorname{rank}\langle\vec{\tau}\rangle<\mathrm{m}$, everything remains open!

Part II. Lipschitz equivalence of self-similar sets with touching structures

A problem posed by David and Semmes, 1997

Figure: Initial construction of M and M^{\prime}

- David and Semmes conjectured that $M \nsim M^{\prime}$.
- Rao, R and Xi (2006) obtained that $M \sim M^{\prime}$.

A problem posed by David and Semmes, 1997

Figure: Initial construction of M and M^{\prime}

- David and Semmes conjectured that $M \nsim M^{\prime}$.
- Rao, R and Xi (2006) obtained that $M \sim M^{\prime}$.

A problem posed by David and Semmes, 1997

Figure: Initial construction of M and M^{\prime}

- David and Semmes conjectured that $M \nsim M^{\prime}$.
- Rao, R and Xi (2006) obtained that $M \sim M^{\prime}$.

Generalized $\{1,3,5\}-\{1,4,5\}$ problem

Figure: Initial construction of $M_{\vec{\rho}}$ and $M_{\vec{\rho}}^{\prime}$

Generalized $\{1,3,5\}-\{1,4,5\}$ problem

Figure: Initial construction of $M_{\vec{\rho}}$ and $M_{\vec{\rho}}^{\prime}$

- Xi and $R(2007): M_{\vec{\rho}} \sim M_{\vec{\rho}}^{\prime}$ iff $\log \rho_{1} / \log \rho_{3} \in \mathbb{Q}$.

General Case

Figure: Initial construction of D and T, where $n=6$

- $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{n}\right)$ is a c.v. in \mathbb{R} with $n \geq 3$.
- $D \in \mathcal{D}(\vec{p})$.
- T : attractor of IFS $\left\{\psi_{j}(x)=\rho_{j} x+t_{j}\right\}_{j=1}^{n}$ satisfying

General Case

Figure: Initial construction of D and T, where $n=6$

- $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{n}\right)$ is a c.v. in \mathbb{R} with $n \geq 3$.
- $D \in \mathcal{D}(\vec{\rho})$.
- T : attractor of IFS $\left\{\Psi_{j}(x)=\rho_{j} x+t_{j}\right\}_{j=1}^{n}$ satisfying

General Case

Figure: Initial construction of D and T, where $n=6$

- $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{n}\right)$ is a c.v. in \mathbb{R} with $n \geq 3$.
- $D \in \mathcal{D}(\vec{\rho})$.
- T : attractor of IFS $\left\{\Psi_{j}(x)=\rho_{j} x+t_{j}\right\}_{j=1}^{n}$ satisfying

General Case

Figure: Initial construction of D and T, where $n=6$

- $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{n}\right)$ is a c.v. in \mathbb{R} with $n \geq 3$.
- $D \in \mathcal{D}(\vec{\rho})$.
- T : attractor of IFS $\left\{\Psi_{j}(x)=\rho_{j} x+t_{j}\right\}_{j=1}^{n}$ satisfying
- The subintervals $\Psi_{1}([0,1]), \ldots, \Psi_{n}([0,1])$ are spaced from left to right without overlapping.

General Case

Figure: Initial construction of D and T, where $n=6$

- $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{n}\right)$ is a c.v. in \mathbb{R} with $n \geq 3$.
- $D \in \mathcal{D}(\vec{\rho})$.
- T : attractor of IFS $\left\{\Psi_{j}(x)=\rho_{j} x+t_{j}\right\}_{j=1}^{n}$ satisfying
- The subintervals $\Psi_{1}([0,1]), \ldots, \Psi_{n}([0,1])$ are spaced from left to right without overlapping.
- Left endpoint of $\Psi_{1}[0,1]$ is 0 ; right endpoint of $\Psi_{n}[0,1]$ is 1 .

General Case

Figure: Initial construction of D and T, where $n=6$

- $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{n}\right)$ is a c.v. in \mathbb{R} with $n \geq 3$.
- $D \in \mathcal{D}(\vec{\rho})$.
- T : attractor of IFS $\left\{\Psi_{j}(x)=\rho_{j} x+t_{j}\right\}_{j=1}^{n}$ satisfying
- The subintervals $\Psi_{1}([0,1]), \ldots, \Psi_{n}([0,1])$ are spaced from left to right without overlapping.
- Left endpoint of $\Psi_{1}[0,1]$ is 0 ; right endpoint of $\Psi_{n}[0,1]$ is 1 .
- $\exists j \in\{1,2, \ldots, n-1\}$, such that the intervals $\Psi_{j}([0,1])$ and $\Psi_{j+1}([0,1])$ are touching, i.e. $\Psi_{j}(1)=\Psi_{j+1}(0)$.

Theorem (R-Wang-Xi, Preprint)

Assume that $D \sim T$. Then $\log \rho_{1} / \log \rho_{n} \in \mathbb{Q}$.

- A letter $j \in\{1, \ldots, n\}$ is a (left) touching letter if $\Psi_{j}([0,1])$ and $\Psi_{j+1}([0,1])$ are touching, i.e. $\Psi_{j}(1)=\Psi_{j+1}(0)$.
- Σ_{T} : the set of all (left) touching letters.

Theorem (R-Wang-Xi, Preprint)
Let $n=4, \rho_{1}=\rho_{4}$, and $\Sigma_{T}=\{2\}$. Assume that $D \sim T$. Let
$s=\operatorname{dim}_{H} D=\operatorname{dim}_{H} T$ and $\mu_{j}=\rho_{j}^{s}$ for $1 \leq j \leq 4$. Then μ_{2} and μ_{3} must be algebraically dependent, namely there exists a nonzero rational polynomial $P(x, y)$ such that $P\left(\mu_{2}, \mu_{3}\right)=0$.

Theorem (R-Wang-Xi, Preprint)

Assume that $D \sim T$. Then $\log \rho_{1} / \log \rho_{n} \in \mathbb{Q}$.

- A letter $j \in\{1, \ldots, n\}$ is a (left) touching letter if $\Psi_{j}([0,1])$ and $\Psi_{j+1}([0,1])$ are touching, i.e. $\Psi_{j}(1)=\Psi_{j+1}(0)$.
- Σ_{T} : the set of all (left) touching letters.

Theorem (R-Wang-Xi, Preprint)

Assume that $D \sim T$. Then $\log \rho_{1} / \log \rho_{n} \in \mathbb{Q}$.

- A letter $j \in\{1, \ldots, n\}$ is a (left) touching letter if $\Psi_{j}([0,1])$ and $\Psi_{j+1}([0,1])$ are touching, i.e. $\Psi_{j}(1)=\Psi_{j+1}(0)$.
- Σ_{T} : the set of all (left) touching letters.
> μ_{3} must be algebraically dependent, namely there exists a nonzero rational polynomial $P(x, y)$ such that $P\left(\mu_{2}, \mu_{3}\right)=0$.

Theorem (R-Wang-Xi, Preprint)
 Assume that $D \sim T$. Then $\log \rho_{1} / \log \rho_{n} \in \mathbb{Q}$.

- A letter $j \in\{1, \ldots, n\}$ is a (left) touching letter if $\Psi_{j}([0,1])$ and $\Psi_{j+1}([0,1])$ are touching, i.e. $\Psi_{j}(1)=\Psi_{j+1}(0)$.
- Σ_{T} : the set of all (left) touching letters.

Theorem (R-Wang-Xi, Preprint)

Let $n=4, \rho_{1}=\rho_{4}$, and $\Sigma_{T}=\{2\}$. Assume that $D \sim T$. Let $s=\operatorname{dim}_{H} D=\operatorname{dim}_{H} T$ and $\mu_{j}=\rho_{j}^{s}$ for $1 \leq j \leq 4$. Then μ_{2} and μ_{3} must be algebraically dependent, namely there exists a nonzero rational polynomial $P(x, y)$ such that $P\left(\mu_{2}, \mu_{3}\right)=0$.

Theorem (R-Wang-Xi, Preprint)
 Assume that $\log \rho_{1} / \log \rho_{n} \in \mathbb{Q}$. Then, $D \sim T$ if every touching letter for T is substitutable.

Corollary
Let $M_{\vec{p}}$ and $M_{\vec{p}}^{\prime}$ be sets defined in generalized $\{1,3,5\}-\{1,4,5\}$ problem. Then $M_{\vec{p}} \sim M_{\vec{p}}^{\prime}$ iff $\log \rho_{1} / \log \rho_{3} \in \mathbb{Q}$.

Note: If $\log \rho_{1} / \log \rho_{3} \in \mathbb{Q}$, the unique touching letter $\{2\}$ is substitutable.

Theorem (R-Wang-Xi, Preprint)
Assume that $\log \rho_{i} / \log \rho_{j} \in \mathbb{Q}$ for all $i, j \in\{1, \ldots, n\}$. Then
$D \sim T$.

Theorem (R-Wang-Xi, Preprint)

Assume that $\log \rho_{1} / \log \rho_{n} \in \mathbb{Q}$. Then, $D \sim T$ if every touching letter for T is substitutable.

Corollary

Let $M_{\vec{\rho}}$ and $M_{\vec{\rho}}^{\prime}$ be sets defined in generalized $\{1,3,5\}-\{1,4,5\}$ problem. Then $M_{\vec{\rho}} \sim M_{\vec{p}}^{\prime}$ iff $\log \rho_{1} / \log \rho_{3} \in \mathbb{Q}$.

Note: If $\log \rho_{1} / \log \rho_{3} \in \mathbb{Q}$, the unique touching letter $\{2\}$ is substitutable.

Theorem (R-Wang-Xi, Preprint)

Assume that $\log \rho_{1} / \log \rho_{n} \in \mathbb{Q}$. Then, $D \sim T$ if every touching letter for T is substitutable.

Corollary

Let $M_{\vec{\rho}}$ and $M_{\vec{\rho}}^{\prime}$ be sets defined in generalized $\{1,3,5\}-\{1,4,5\}$ problem. Then $M_{\vec{\rho}} \sim M_{\vec{\rho}}^{\prime}$ iff $\log \rho_{1} / \log \rho_{3} \in \mathbb{Q}$.

Note: If $\log \rho_{1} / \log \rho_{3} \in \mathbb{Q}$, the unique touching letter $\{2\}$ is substitutable.

Theorem (R-Wang-Xi, Preprint)
Assume that $\log \rho_{i} / \log \rho_{j} \in \mathbb{Q}$ for all $i, j \in\{1, \ldots, n\}$. Then $D \sim T$.

Related and future works

- How about in higher dimensional case?
- Xi and Xiong had a good result in a special case.
- Lau and Luo made some progress (via hyperbolic graph).
- Many questions can be discussed in future...
- How about for the Lipschitz equivalence of self-affine sets? For example, McMullen sets?

Related and future works

- How about in higher dimensional case?
- Xi and Xiong had a good result in a special case.
- Lau and Luo made some progress (via hyperbolic graph).
- Many questions can be discussed in future...
- How about for the Lipschitz equivalence of self-affine sets? For example, McMullen sets?

Related and future works

- How about in higher dimensional case?
- Xi and Xiong had a good result in a special case.
- Lau and Luo made some progress (via hyperbolic graph).
- Many questions can be discussed in future...
- How about for the Lipschitz equivalence of self-affine sets? For example, McMullen sets?

Related and future works

- How about in higher dimensional case?
- Xi and Xiong had a good result in a special case.
- Lau and Luo made some progress (via hyperbolic graph).
- Many questions can be discussed in future...
- How about for the Lipschitz equivalence of self-affine sets? For example, McMullen sets?

Related and future works

- How about in higher dimensional case?
- Xi and Xiong had a good result in a special case.
- Lau and Luo made some progress (via hyperbolic graph).
- Many questions can be discussed in future...
- How about for the Lipschitz equivalence of self-affine sets? For example, McMullen sets?

Thank you!

