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Overview

In this talk I want to do three things:

1 Recall some familiar examples (which everybody knows);

2 Describe some classic results of Falconer and Hueter-Lalley (which everyone who
knows them likes);

3 Present a result on estimating Hausdorff Dimension (which at least I like).
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General question

Assume that we given some compact set X ⊂ R2 in the plane.

Basic Question

What is the Hausdorff Dimension dimH (X ) of the set X ?

Even for the most regular of fractals it can be impossible to give an explicit closed
form for the Hausdorff Dimension.

A More Practical Question

How do we estimate its Hausdorff Dimension dimH (X )?
How well can we approximate dimH (X )?
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Self-similar sets

We call maps Ti : R2 → R2 (i = 1, · · · , k) of the plane (contracting) similarities if

Ti

„
x
y

«
=

„
ai cos θi ai sin θi

−ai sin θi ai cos θi

«„
x
y

«
+

„
b1

b2

«
where 0 ≤ θi < 2π and 0 < ai < 1 and b1, b2 ∈ R, i.e.,

1 rotate by θi ,

2 scale down by ai , and

3 translate by

„
b1

b2

«
.

Definition

We call a set X ⊂ R2 self-similar if there are similarities T1, · · · ,Tk : R2 → R2 such
that

T1(X ) ∪ · · · ∪ Tk (X ) = X

Self-similar sets are particularly nice to deal with (especially if they also satisfy some
extra conditions, e.g., open set condition, strong separation condition, etc).
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Self-similar sets

Some examples of self-similar sets have simple expressions for their dimension.

(i) Middle third Cantor set. Let T1(x , y) = ( x
3
, y

3
) and T2(x , y) = ( x

3
+ 2

3
, y

3
).

(ii) von Koch curve. Let T1(x , y) = ( x
3
, y

3
), T2(x , y) = ( x

6
−
√

3y
6
,
√

3x
6

+ y
6

) + ( 1
3
, 0),

T3(x , y) = ( x
6

+
√

3y
6
,−
√

3x
6

+ y
6

) + ( 1
2
,+
√

3
6

) and T4(x , y) = ( x
3

+ 2
3
, y

3
).
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Self-affine sets

We say Ti : R2 → R2 (i = 1, · · · , k) are affine if

Ti

„
x
y

«
=

„
a11 a12

a21 a22

«„
x
y

«
+

„
b1

b2

«
(which we assume to be contractions). i.e.,

1 apply the linear transformation

„
a11 a12

a21 a22

«
and

2 translate by

„
b1

b2

«
.

Definition

We call a set X self-affine if there are affine maps if T1, · · · ,Tk : R2 → R2 such that

T1(X ) ∪ · · · ∪ Tk (X )

After self-similar sets, one would hope self-affine sets are the next easiest to deal with.
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Example 1: Barnsley Fern

Consider the four affine maps:

T1

„
x
y

«
=

„
0.00 0.00
0.00 0.16

«„
x
y

«
T2

„
x
y

«
=

„
0.85 0.04
−0.04 0.85

«„
x
y

«
+

„
0.00
1.60

«
T3

„
x
y

«
=

„
0.20 −0.26
0.23 0.22

«„
x
y

«
+

„
0.00
1.60

«
T4

„
x
y

«
=

„
−0.15 0.28
0.26 0.24

«„
x
y

«
+

„
0.00
0.44

«
The limit set is a fern:
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Example 2: Bedford-McMullen sets

This is an standard construction of a self-affine set.
Consider for simplicity a s particular special case, called the Hironaka curve, which is
the limit set of

T1(x , y) =
“ x

3
,

y

2

”
T2(x , y) =

„
x

3
+

1

3
,

y

2
+

1

2

«
T3(x , y) =

„
x

3
+

2

3
,

y

2

«

In the limit one gets the “Hironaka curve” .
These results were contained in the first published paper of Curt McMullen in 1984.
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Aside: Bedford, McMullen and me

Tim Bedford was a PhD student of Caroline Series at Warwick, and an exact
contemporary of mine. One day, in Warwick in 1984 he told me about some result in
his thesis on Hausdorff Dimension.
Later that year I met Curt McMullen, then a PhD student of Dennis Sullivan, in the
tea room at IHES (France) and he told me about some results he recently obtained on
Hausdorff Dimension. They sounded vaguely familiar. I wrote to Bedford who didn’t
know about McMullen’s proof of the same results (who immediately panicked since he
hadn’t submitted his PhD yet). Bedford wrote to McMullen (who never panics,
although he hadn’t submitted his PhD either). McMullen went on to win a Fields
medal and has a chair at Harvard, and Bedford is now an Associate Deputy Principal
at the University of Strathclyde.
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Explicit and Implicit expressions

Sometimes it is possible to give explicit expressions for the Hausdorff Dimension when
the limit set X is particularly simple.

Middle third Cantor set (dimH X = log 2
log 3

)

von Koch Curve (dimH X = log 4
log 3

)

Hironaka curve ( dimH X = log2(1 + 2log3 2))

Sometimes it is possible to give implicit expressions for the Hausdorff dimension.

For some self-similar sets (open set condition, etc.)

some self-conformal sets, (e.g., limit sets of Julia sets, via pressure and the
dynamical viewpoint)

some special affine sets (e.g., Bedford-McMullen sets)

Question

How can we (implicitly) describe the Hausdorff dimension of typical limit sets for
self-affine maps?
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Matrices and their singular values

Let A1, · · · ,Ak ∈ GL(2,R) be 2× 2 matrices.

Given n ≥ 1 and i = (i1, · · · , in) ∈ {1, · · · , k}n we denote the product of matrices
Ai = Ai1 Ai2 · · ·Ain .
We denote their singular values α1(Ai ) ≥ α2(Ai ).

These are the major and minor axes of the ellipse which is the image of the unit circle

under Ai . Equivalently, these are the eigenvalues of the 2× 2-matrix
q

A∗i Ai .

(As explained in the talk of Kenneth Falconer.)

Definition

We denote

φs (Ai ) =

(
α1(Ai )

s if 0 < s ≤ 1

α1(Ai )α1(Ai )
1−s if 1 ≤ s < 2.
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Singularity dimension of limit sets

Let b1, · · · , bk ∈ R2 we vectors and can consider affine maps Ti : R2 → R2 defined by
Ti (x) = Ai x + bi (i = 1, · · · , k).

Definition

The limit set Λ ⊂ R2 is the unique smallest closed set such that Λ = T1Λ ∪ · · · ∪ Tk Λ.

Finally, we have the following definition.

Definition

We define the singularity dimension of Λ by

dimS (Λ) = inf

8<:s > 0 :
∞X

n=1

X
|i|=n

φs (Ai ) < +∞

9=; .

where for i = (i1, · · · , in) ∈ {1, · · · , k}n we write |i | = n.
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Falconer’s theorem

We now recall the elegant theorem of Falconer.

Theorem (Falconer, Solomyak)

Assume that ‖A1‖, · · · , ‖Ak‖ < 1
2

. For a.e. (b1, · · · , bk ) ∈ R2k , we have
dimH (Λ) = dimS (Λ).

Figure: Three limit sets corresponding to the same affine contractions A1,A2,A3, but different
translations b1, b2, b3.

As explained in the talks of Esa Järvenpää, and Pablo Shmerkin and Jonathan Fraser.
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Kenneth Falconer and Friends

Figure: Karoly Simon, M.P. and Kenneth Falconer
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Hueter-Lalley theorem: Four assumptions

Question

How can we remove the “a.e.” hypothesis?

We want to assume the following assumptions:

Additional assumptions

1 ‖Ai‖ < 1 for i = 1, · · · , k;

2 α1(Ai )
2 < α2(Ai ) for i = 1, · · · , k;

3 Let Q2 = {(x , y) : x ≤ 0, y ≥ 0} then A−1
1 Q2, · · · ,A−1

k Q2 are pairwise disjoint
subsets of int(Q2);and

4 there is a bounded open set V such that Ti V are disjoint, i = 1, · · · , k.

(1)-(3) depend on the Ai ; (4) also depends on the bi .

Theorem (Hueter-Lalley)

Under the above hypotheses we have that

0 < dimH (Λ) = dimS (Λ) < 1.

Thus at the cost of the additional hypotheses, we have avoided the “a.e.” part.
The hypotheses also automatically force that dimS (Λ) < 1.
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Hueter and Lalley

Figure: Steven Lalley and Irene Hueter

I actually know Lalley from his earlier work on closed orbits for suspension flows.
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Aside: Lalley’s eariler life

S. P. Lalley, Amer. Math. Monthly 95 (1988), no. 5, 385-398:

Presumably he no longer wrestles alligators in carnivals.
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Example of Heuter and Lalley

It is nice to know some examples do exist satisfying the assumptions:

Heuter and Lalley proposed the matrices

A1 =

„ 1
30

1
120

1
30

1
60

«
,A2 =

„ 1
30

1
40

1
30

1
30

«
,A3 =

„ 1
40

1
30

1
60

1
30

«
.

It is easy to check that for these A1,A2,A3 for (1)-(3) hold, and it is then easy to find
b1, b2, b3 such that (4) holds.

Question

How do we actually estimate the singularity dimension ?

Working from the definition itself isn’t the most efficient way.
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Statement of Main Theorem

Our main result is the following (which was suggested by Karoly Simon).

Theorem (Main Theorem)

Let us assume (1)-(4) above. Then there exists 0 < θ < 1 such that we can define a
sequence δN using the kn values {α1(Ai ) : |i | = N} so that

|dimS (Λ)− δN | = O
“
θN2
”

for N ≥ 1.

In particular, in the theorem speed of convergence of the nth approximation is super
exponential, whereas the number of values needed to compute it only grows
exponentially.

Remark

If one wanted to approximate the dimension by working from the definition we could
try to solve for tN , N ≥ 1, such thatX

|i|=N

φtN (Ai ) = 1.

This would “only” lead to exponentially fast approximations

|dimS (Λ)− tN | = O
“
θN
”

for N ≥ 1.
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Example 1

Recall that Heuter and Lalley proposed the matrices

A1 =

„ 1
30

1
120

1
30

1
60

«
,A2 =

„ 1
30

1
40

1
30

1
30

«
,A3 =

„ 1
40

1
30

1
60

1
30

«
.

N δN tN

1 0.410717582765210 0.373123313880933
2 0.375211732460593 0.375566771742160
3 0.375799107164494 0.375775898884967
4 0.375797703892749 0.375795619644123
5 0.375797704495199 0.375797504758157
6 0.375797704495199 0.375797685359066
7 0.375797704495199 0.375797702683667
8 0.375797704495199 0.375797704340403
9 0.375797704495199 0.375797704507750

10 0.375797704495199 0.375797704514025

In particular, we see that for N = 5 the theorem gives a solution
δ = 0.375797704495199 · · · which is accurate to 15 decimal places. However, even
when N = 10 the direct method is only accurate to 9 decimal places.
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Example 2

Consider the matrices

A1 =
1

26

„
3 1
2 1

«
,A2 =

1

26

„
5 3
5 6

«
and A3 =

1

26

„
4 5
2 9

«
.

N δN tN

1 0.609325221387553 0.514374159566069
2 0.502335263611167 0.508602279690240
3 0.507406976235507 0.507597431583781
4 0.507371544351918 0.507413527612153
5 0.507371616545424 0.507379412950468
6 0.507371616478486 0.507373067887602
7 0.507371616478486 0.507371886819237
8 0.507371616478486 0.507371666879226
9 0.507371616478486 0.507371625895939

10 0.507371616478486 0.507371618256548

In particular, we see that for N = 6 the determinant method gives a solution
δ = 0.507371616478486 · · · which is accurate to 15 decimal places. However, even
when N = 10 the Matrix method is only accurate to 8 decimal places.
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The hypotheses are rather strong

The hypotheses are rather strong. Moreover, those examples which do exist typically
have singularities α1, α2 which are quite small.
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Figure: For each α > 0 we consider the number of triples (A1,A2,A3) of 360, 000 systematically
chosen matrices with α < α1, α2 < 1 satisfying the hypotheses

As α increases the number of triples satisfying the hypotheses decreases rapidly.
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Computational algorithm: Step 1

It remains to explain how the δn are defined. Consider matrices Ai , i = 1, . . . , k
satisfying the hypotheses (1)-(3)

Step 1. For each n ≥ 1 we can consider one of the kn strings i = (i0, · · · , in−1) and
associate the product matrix

Ai = Ai0 Ai1 · · ·Ain−1
=

„
ai bi

ci di

«
, say,

and the corresponding linear fractional maps Ai : [0, 1]→ [0, 1] given by

Ai (x) =
(ai − bi )x + bi

(ai + ci − bi − di )x + (bi + di )
.

We can then associate to each string i = (i0, · · · , in−1):

1 the (unique) fixed point Ai (xi ) = xi ;

2 the derivative DAi (xi ) of the map at the fixed point;add

3 for each t > 0 the weight

Φn(i , t) =

 
det(Ai )

DAi (xi )

!t/2
1

1− DAi (xi )
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Computational algorithm: Step 2

Step 2. Fix N ≥ 1. We can introduce a formal expression in z:

DN (z, t) := exp

0@− NX
n=1

zn

n

X
|i|=n

Φn(i , t)

1A .

Expanding the exponential as exp(y) = 1 + y + y2/2 + · · ·+ yN/N! + O(yN+1) (first
year calculus) we can rewrite this as

DN (z, t) = 1 +
NX

n=1

an(t)zn + O(zN+1).

Step 3. Setting z = 1 we can define

ηN (t) := DN (1, t) = 1 +
NX

k=1

ak (t).

Let δN > 0 be the largest zero for ηN (t) (i.e., ηN (δN ) = 0) then

δN = dimH (Λ) + O
“
θN2
”
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Idea of the proof

Let us denote

η∞(t) := 1 +
∞X

n=1

an(t) =
NX

n=1

an(t)| {z }
ηN (t)

+
∞X

n=N+1

an(t).

It suffices to show that:

If δ∞ > 0 is the largest zero for η∞(t) then δ∞ = dimH (Λ) (Easy)

If δN > 0 is the smallest solution to ηN (δN ) = 0 then δN = dimH (Λ) + O(θN2
).

To achieve this:

If we know that η∞(t) = det(I − Lt ) for some suitable trace class operator then
there exists 0 < θ < 1 with

∞X
n=N+1

an(t) = O
“
θN2
”
,

by a result of A. Grothendieck, “Produits tensoriels topologiques et espaces
nuclaires” Mem. Amer. Math. Soc. (1955), no. 16.

But the the appropriate trace class “Ruelle-Perron-Frobenius transfer” operator
appears in the work of D. Ruelle, “Zeta-Functions for Expanding Maps and
Anosov Flows” Invent. math, 34, 231-242 (1976).
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Grothendeick and Ruelle

Grothendieck made major contributions to the modern theory of Algebraic Geometry
but his earlier work was in Functional Analysis.

Ruelle is a theoretical physicist who has made major contributions to Dynamical
Systems.

Ruelle and Grothendieck were both permanent professors together at IHES
(Bures-sur-Yvette) in the 1960s.
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Final silde

Thank you for your time.

Figure: Mathematics Department, Warwick University
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