Computing Singularity Dimension

Mark Pollicott

12 December 2012

Overview

In this talk I want to do three things:
(1) Recall some familiar examples (which everybody knows);
(2) Describe some classic results of Falconer and Hueter-Lalley (which everyone who knows them likes);
(3) Present a result on estimating Hausdorff Dimension (which at least I like).

General question

Assume that we given some compact set $X \subset \mathbb{R}^{2}$ in the plane.

Basic Question

What is the Hausdorff Dimension $\operatorname{dim}_{H}(X)$ of the set X ?
Even for the most regular of fractals it can be impossible to give an explicit closed form for the Hausdorff Dimension.

A More Practical Question

How do we estimate its Hausdorff Dimension $\operatorname{dim}_{H}(X)$?
How well can we approximate $\operatorname{dim}_{H}(X)$?

Self-similar sets

We call maps $T_{i}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}(i=1, \cdots, k)$ of the plane (contracting) similarities if

$$
T_{i}\binom{x}{y}=\left(\begin{array}{cc}
a_{i} \cos \theta_{i} & a_{i} \sin \theta_{i} \\
-a_{i} \sin \theta_{i} & a_{i} \cos \theta_{i}
\end{array}\right)\binom{x}{y}+\binom{b_{1}}{b_{2}}
$$

where $0 \leq \theta_{i}<2 \pi$ and $0<a_{i}<1$ and $b_{1}, b_{2} \in \mathbb{R}$, i.e.,
(1) rotate by θ_{i},
(2) scale down by a_{i}, and
(3) translate by $\binom{b_{1}}{b_{2}}$.

Definition

We call a set $X \subset \mathbb{R}^{2}$ self-similar if there are similarities $T_{1}, \cdots, T_{k}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
T_{1}(X) \cup \cdots \cup T_{k}(X)=X
$$

Self-similar sets are particularly nice to deal with (especially if they also satisfy some extra conditions, e.g., open set condition, strong separation condition, etc).

Self-similar sets

Some examples of self-similar sets have simple expressions for their dimension.
(i) Middle third Cantor set. Let $T_{1}(x, y)=\left(\frac{x}{3}, \frac{y}{3}\right)$ and $T_{2}(x, y)=\left(\frac{x}{3}+\frac{2}{3}, \frac{y}{3}\right)$.

- -	- -
-- --	-- --
..
-.. -- ...	-.. -. .-.

(ii) von Koch curve. Let $T_{1}(x, y)=\left(\frac{x}{3}, \frac{y}{3}\right), T_{2}(x, y)=\left(\frac{x}{6}-\frac{\sqrt{3} y}{6}, \frac{\sqrt{3} x}{6}+\frac{y}{6}\right)+\left(\frac{1}{3}, 0\right)$, $T_{3}(x, y)=\left(\frac{x}{6}+\frac{\sqrt{3} y}{6},-\frac{\sqrt{3} x}{6}+\frac{y}{6}\right)+\left(\frac{1}{2},+\frac{\sqrt{3}}{6}\right)$ and $T_{4}(x, y)=\left(\frac{x}{3}+\frac{2}{3}, \frac{y}{3}\right)$.

Self-affine sets

We say $T_{i}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}(i=1, \cdots, k)$ are affine if

$$
T_{i}\binom{x}{y}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\binom{x}{y}+\binom{b_{1}}{b_{2}}
$$

(which we assume to be contractions). i.e.,
(1) apply the linear transformation $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ and
(2) translate by $\binom{b_{1}}{b_{2}}$.

Definition

We call a set X self-affine if there are affine maps if $T_{1}, \cdots, T_{k}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
T_{1}(X) \cup \cdots \cup T_{k}(X)
$$

After self-similar sets, one would hope self-affine sets are the next easiest to deal with.

Example 1: Barnsley Fern

Consider the four affine maps:

$$
\begin{aligned}
& T_{1}\binom{x}{y}=\left(\begin{array}{ll}
0.00 & 0.00 \\
0.00 & 0.16
\end{array}\right)\binom{x}{y} \\
& T_{2}\binom{x}{y}=\left(\begin{array}{cc}
0.85 & 0.04 \\
-0.04 & 0.85
\end{array}\right)\binom{x}{y}+\binom{0.00}{1.60} \\
& T_{3}\binom{x}{y}=\left(\begin{array}{cc}
0.20 & -0.26 \\
0.23 & 0.22
\end{array}\right)\binom{x}{y}+\binom{0.00}{1.60} \\
& T_{4}\binom{x}{y}=\left(\begin{array}{cc}
-0.15 & 0.28 \\
0.26 & 0.24
\end{array}\right)\binom{x}{y}+\binom{0.00}{0.44}
\end{aligned}
$$

The limit set is a fern:

Example 2: Bedford-McMullen sets

This is an standard construction of a self-affine set.
Consider for simplicity a s particular special case, called the Hironaka curve, which is the limit set of

$$
\begin{aligned}
& T_{1}(x, y)=\left(\frac{x}{3}, \frac{y}{2}\right) \\
& T_{2}(x, y)=\left(\frac{x}{3}+\frac{1}{3}, \frac{y}{2}+\frac{1}{2}\right) \\
& T_{3}(x, y)=\left(\frac{x}{3}+\frac{2}{3}, \frac{y}{2}\right)
\end{aligned}
$$

In the limit one gets the "Hironaka curve"
These results were contained in the first published paper of Curt McMullen in 1984.

Aside: Bedford, McMullen and me

Tim Bedford was a PhD student of Caroline Series at Warwick, and an exact contemporary of mine. One day, in Warwick in 1984 he told me about some result in his thesis on Hausdorff Dimension.
Later that year I met Curt McMullen, then a PhD student of Dennis Sullivan, in the tea room at IHES (France) and he told me about some results he recently obtained on Hausdorff Dimension. They sounded vaguely familiar. I wrote to Bedford who didn't know about McMullen's proof of the same results (who immediately panicked since he hadn't submitted his PhD yet). Bedford wrote to McMullen (who never panics, although he hadn't submitted his PhD either). McMullen went on to win a Fields medal and has a chair at Harvard, and Bedford is now an Associate Deputy Principal at the University of Strathclyde.

Explicit and Implicit expressions

Sometimes it is possible to give explicit expressions for the Hausdorff Dimension when the limit set X is particularly simple.

- Middle third Cantor set $\left(\operatorname{dim}_{H} X=\frac{\log 2}{\log 3}\right)$
- von Koch Curve $\left(\operatorname{dim}_{H} X=\frac{\log 4}{\log 3}\right)$
- Hironaka curve $\left(\operatorname{dim}_{H} X=\log _{2}\left(1+2^{\log _{3} 2}\right)\right)$

Sometimes it is possible to give implicit expressions for the Hausdorff dimension.

- For some self-similar sets (open set condition, etc.)
- some self-conformal sets, (e.g., limit sets of Julia sets, via pressure and the dynamical viewpoint)
- some special affine sets (e.g., Bedford-McMullen sets)

Question

How can we (implicitly) describe the Hausdorff dimension of typical limit sets for self-affine maps?

Matrices and their singular values

Let $A_{1}, \cdots, A_{k} \in G L(2, \mathbb{R})$ be 2×2 matrices.

- Given $n \geq 1$ and $\underline{i}=\left(i_{1}, \cdots, i_{n}\right) \in\{1, \cdots, k\}^{n}$ we denote the product of matrices $A_{\underline{i}}=A_{i_{1}} A_{i_{2}} \cdots A_{i_{n}}$.
- We denote their singular values $\alpha_{1}\left(A_{\underline{i}}\right) \geq \alpha_{2}\left(A_{\underline{i}}\right)$.

These are the major and minor axes of the ellipse which is the image of the unit circle under $A_{\underline{i}}$. Equivalently, these are the eigenvalues of the 2×2-matrix $\sqrt{A_{\underline{i}}^{*} A_{\underline{i}}}$. (As explained in the talk of Kenneth Falconer.)

Definition

We denote

$$
\phi^{s}\left(A_{\underline{i}}\right)= \begin{cases}\alpha_{1}\left(A_{\underline{i}}\right)^{s} & \text { if } 0<s \leq 1 \\ \alpha_{1}\left(\tilde{A}_{\underline{i}}\right) \alpha_{1}\left(A_{\underline{i}}\right)^{1-s} & \text { if } 1 \leq s<2\end{cases}
$$

Singularity dimension of limit sets

Let $b_{1}, \cdots, b_{k} \in \mathbb{R}^{2}$ we vectors and can consider affine maps $T_{i}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T_{i}(x)=A_{i} x+b_{i}(i=1, \cdots, k)$.

Definition

The limit set $\Lambda \subset \mathbb{R}^{2}$ is the unique smallest closed set such that $\Lambda=T_{1} \wedge \cup \cdots \cup T_{k} \wedge$.
Finally, we have the following definition.

Definition

We define the singularity dimension of Λ by

$$
\operatorname{dim}_{S}(\Lambda)=\inf \left\{s>0: \sum_{n=1}^{\infty} \sum_{|\underline{i}|=n} \phi^{s}\left(A_{\underline{i}}\right)<+\infty\right\}
$$

where for $\underline{i}=\left(i_{1}, \cdots, i_{n}\right) \in\{1, \cdots, k\}^{n}$ we write $|\underline{i}|=n$.

Falconer's theorem

We now recall the elegant theorem of Falconer.

Theorem (Falconer, Solomyak)

Assume that $\left\|A_{1}\right\|, \cdots,\left\|A_{k}\right\|<\frac{1}{2}$. For a.e. $\left(b_{1}, \cdots, b_{k}\right) \in \mathbb{R}^{2 k}$, we have $\operatorname{dim}_{H}(\Lambda)=\operatorname{dim}_{S}(\Lambda)$.

Figure: Three limit sets corresponding to the same affine contractions A_{1}, A_{2}, A_{3}, but different translations b_{1}, b_{2}, b_{3}.

As explained in the talks of Esa Järvenpää, and Pablo Shmerkin and Jonathan Fraser.

Kenneth Falconer and Friends

Figure: Karoly Simon, M.P. and Kenneth Falconer

Hueter-Lalley theorem: Four assumptions

Question

How can we remove the "a.e." hypothesis?
We want to assume the following assumptions:

Additional assumptions

(1) $\left\|A_{i}\right\|<1$ for $i=1, \cdots, k$;
(2) $\alpha_{1}\left(A_{i}\right)^{2}<\alpha_{2}\left(A_{i}\right)$ for $i=1, \cdots, k$;
(3) Let $Q_{2}=\{(x, y): x \leq 0, y \geq 0\}$ then $A_{1}^{-1} Q_{2}, \cdots, A_{k}^{-1} Q_{2}$ are pairwise disjoint subsets of $\operatorname{int}\left(Q_{2}\right)$;and
(9) there is a bounded open set V such that $\overline{T_{i} V}$ are disjoint, $i=1, \cdots, k$.
(1)-(3) depend on the A_{i}; (4) also depends on the b_{i}.

Theorem (Hueter-Lalley)

Under the above hypotheses we have that

$$
0<\operatorname{dim}_{H}(\Lambda)=\operatorname{dim}_{S}(\Lambda)<1 .
$$

- Thus at the cost of the additional hypotheses, we have avoided the "a.e." part.
- The hypotheses also automatically force that $\operatorname{dim}_{S}(\Lambda)<1$.

Hueter and Lalley

Figure: Steven Lalley and Irene Hueter

I actually know Lalley from his earlier work on closed orbits for suspension flows.

Aside: Lalley's eariler life

S. P. Lalley, Amer. Math. Monthly 95 (1988), no. 5, 385-398:
be "Prime Number Theorem" for the Periodic Orbits of a
Bernoullif Flow
Splatirn

oduction. In 1969 G . Margalis $8 \mid$ pablishod the satenent of a remarkable

 cerring the dstribution of dowod godesics ma a compact Riemann nurficelure $-1:$ if $N(x)$ is the sumber of chaed geedevics with lenglta not x, then $\quad N(x)-e^{\prime} / x$

- Margats' proot, unfortunately, has never been putbiathed in Engath. In thal [6] ave a proof of Margulis' theoten based on the Selbers trace Margulit' annouscement statistioal requlanities in the distributions of

1. (2) proved that the number of periode ofbits with mirimal period mot
x is asymptaic oo
$1 / h x$ as $x \rightarrow \infty$, where h is the topological entropy

 results dosely resmble the prime number theomem. This is mo accide in $[6],[10]$, and $[11]$ all we suitable zeta functicns together with some of
ard machinery of analyie number theny. In a rsent paper Parry [9| has lard machinery, of anayyie number theory, In a meeni paper Parry $|9|$ has
5 approach coe suep further and pooduced an analogue of the Drichiet teorem for pariode orbits of Atiom A flows
artide I shall present a similar resth for a very imple flow, the secalled
flow. I thall use only elementary techuques of asymptac
 e that it leads to some inkersting eesuls concerning the distributoos of periodic orbits, resalts whict have mo analogus in analytic number
arother paper $[7]$ I hawe shown that this elenenary metiod can be
 10 the general Axism A flcu, gving simhar nesuly
oneledge of goonery or dyannial systeas in neoc
abole flows and Bernoulli flows Consider the map o: $[0,1] \rightarrow[0,1]$ given $\langle\langle 2 x\rangle\rangle$, where $\langle\langle y\rangle\rangle$ denotes the fractional part of $\gamma(i e,\langle\langle \rangle\rangle\rangle=y-$ ree Uyl) is the greatest integer in y) The map a is caled the styjf heccasse
it does to the binary expansion of x if $x=x_{1} J_{2} x_{1} \ldots$, then $a x=$ [0. 1] $\rightarrow(0, \infty)$ be a continuously differatiable fanction. (More geecrally. take f os be piecenise C^{d} with disconinuties at dyadic rationak) The Tow undof (bomentimes caled the fnuepmasion or the special flow anderf)

385

After a brief career wrestling alligators in carnivals, Lalley took up the study of probability statistics. He wrote his Ph.D. dissertation on sequential testing at Stanford University under the tute of David Siegmund. He was a member of the statistics faculty at Columbia University from 1980 1986, and is now at Purdue University.

Presumably he no longer wrestles alligators in carnivals.

Example of Heuter and Lalley

It is nice to know some examples do exist satisfying the assumptions:
Heuter and Lalley proposed the matrices

$$
A_{1}=\left(\begin{array}{cc}
\frac{1}{30} & \frac{1}{120} \\
\frac{1}{30} & \frac{1}{60}
\end{array}\right), A_{2}=\left(\begin{array}{cc}
\frac{1}{30} & \frac{1}{40} \\
\frac{1}{30} & \frac{1}{30}
\end{array}\right), A_{3}=\left(\begin{array}{cc}
\frac{1}{40} & \frac{1}{30} \\
\frac{1}{60} & \frac{1}{30}
\end{array}\right) .
$$

It is easy to check that for these A_{1}, A_{2}, A_{3} for (1)-(3) hold, and it is then easy to find b_{1}, b_{2}, b_{3} such that (4) holds.

Question

How do we actually estimate the singularity dimension ?
Working from the definition itself isn't the most efficient way.

Statement of Main Theorem

Our main result is the following (which was suggested by Karoly Simon).

Theorem (Main Theorem)

Let us assume (1)-(4) above. Then there exists $0<\theta<1$ such that we can define a sequence δ_{N} using the k^{n} values $\left\{\alpha_{1}\left(A_{\underline{i}}\right):|\underline{i}|=N\right\}$ so that

$$
\left|\operatorname{dim}_{S}(\Lambda)-\delta_{N}\right|=O\left(\theta^{N^{2}}\right) \text { for } N \geq 1
$$

In particular, in the theorem speed of convergence of the nth approximation is super exponential, whereas the number of values needed to compute it only grows exponentially.

Remark

If one wanted to approximate the dimension by working from the definition we could try to solve for $t_{N}, N \geq 1$, such that

$$
\sum_{|\underline{i}|=N} \phi^{t_{N}}\left(A_{\underline{i}}\right)=1 .
$$

This would "only" lead to exponentially fast approximations

$$
\left|\operatorname{dim}_{S}(\Lambda)-t_{N}\right|=O\left(\theta^{N}\right) \text { for } N \geq 1
$$

Example 1

Recall that Heuter and Lalley proposed the matrices

$$
A_{1}=\left(\begin{array}{cc}
\frac{1}{30} & \frac{1}{120} \\
\frac{1}{30} & \frac{1}{60}
\end{array}\right), A_{2}=\left(\begin{array}{cc}
\frac{1}{30} & \frac{1}{40} \\
\frac{1}{30} & \frac{1}{30}
\end{array}\right), A_{3}=\left(\begin{array}{cc}
\frac{1}{40} & \frac{1}{30} \\
\frac{1}{60} & \frac{1}{30}
\end{array}\right) .
$$

N	δ_{N}	t_{N}
1	0.410717582765210	0.373123313880933
2	0.375211732460593	0.37556771742160
3	0.375799107164494	0.375775898884967
4	0.375797703892749	0.375795619644123
5	0.375797704495199	0.375797504758157
6	0.375797704495199	0.375797685359066
7	0.375797704495199	0.375797702683667
8	0.375797704495199	0.375797704340403
9	0.375797704495199	0.375797704507750
10	0.375797704495199	0.375797704514025

In particular, we see that for $N=5$ the theorem gives a solution
$\delta=0.375797704495199 \cdots$ which is accurate to 15 decimal places. However, even when $N=10$ the direct method is only accurate to 9 decimal places.

Example 2

Consider the matrices

$$
A_{1}=\frac{1}{2^{6}}\left(\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right), A_{2}=\frac{1}{2^{6}}\left(\begin{array}{ll}
5 & 3 \\
5 & 6
\end{array}\right) \text { and } A_{3}=\frac{1}{2^{6}}\left(\begin{array}{ll}
4 & 5 \\
2 & 9
\end{array}\right) .
$$

N	δ_{N}	t_{N}
1	0.609325221387553	0.514374159566069
2	0.502335263611167	0.508602279690240
3	0.507406976235507	0.507597431583781
4	0.507371544351918	0.507413527612153
5	0.507371616545424	0.507379412950468
6	0.507371616478486	0.507373067887602
7	0.507371616478486	0.507371886819237
8	0.507371616478486	0.507371666879226
9	0.507371616478486	0.507371625895939
10	0.507371616478486	0.507371618256548

In particular, we see that for $N=6$ the determinant method gives a solution $\delta=0.507371616478486 \cdots$ which is accurate to 15 decimal places. However, even when $N=10$ the Matrix method is only accurate to 8 decimal places.

The hypotheses are rather strong

The hypotheses are rather strong. Moreover, those examples which do exist typically have singularities α_{1}, α_{2} which are quite small.

Figure: For each $\alpha>0$ we consider the number of triples $\left(A_{1}, A_{2}, A_{3}\right)$ of 360,000 systematically chosen matrices with $\alpha<\alpha_{1}, \alpha_{2}<1$ satisfying the hypotheses

As α increases the number of triples satisfying the hypotheses decreases rapidly.

Computational algorithm: Step 1

It remains to explain how the δ_{n} are defined. Consider matrices $A_{i}, i=1, \ldots, k$ satisfying the hypotheses (1)-(3)

Step 1. For each $n \geq 1$ we can consider one of the k^{n} strings $\underline{i}=\left(i_{0}, \cdots, i_{n-1}\right)$ and associate the product matrix

$$
A_{\underline{i}}=A_{i_{0}} A_{i_{1}} \cdots A_{i_{n-1}}=\left(\begin{array}{cc}
a_{\underline{i}} & b_{\underline{i}} \\
c_{\underline{i}} & d_{\underline{i}}
\end{array}\right), \text { say }
$$

and the corresponding linear fractional maps $\bar{A}_{\underline{i}}:[0,1] \rightarrow[0,1]$ given by

$$
\bar{A}_{\underline{i}}(x)=\frac{\left(a_{\underline{i}}-b_{\underline{i}}\right) x+b_{\underline{i}}}{\left(a_{\underline{i}}+c_{\underline{i}}-b_{\underline{i}}-d_{\underline{i}}\right) x+\left(b_{\underline{i}}+d_{\underline{i}}\right)} .
$$

We can then associate to each string $\underline{i}=\left(i_{0}, \cdots, i_{n-1}\right)$:
(1) the (unique) fixed point $\overline{A_{i}}\left(x_{i}\right)=x_{i}$;
(2) the derivative $D \overline{A_{\underline{i}}}\left(x_{\underline{i}}\right)$ of the map at the fixed point;add
(3) for each $t>0$ the weight

$$
\Phi_{n}(\underline{i}, t)=\left(\frac{\operatorname{det}\left(A_{\underline{i}}\right)}{D \overline{A_{\underline{i}}}\left(x_{\underline{i}}\right)}\right)^{t / 2} \frac{1}{1-D \overline{A_{\underline{i}}}\left(x_{\underline{i}}\right)}
$$

Computational algorithm: Step 2

Step 2. Fix $N \geq 1$. We can introduce a formal expression in z :

$$
D_{N}(z, t):=\exp \left(-\sum_{n=1}^{N} \frac{z^{n}}{n} \sum_{|\underline{i}|=n} \Phi_{n}(\underline{i}, t)\right) .
$$

Expanding the exponential as $\exp (y)=1+y+y^{2} / 2+\cdots+y^{N} / N!+O\left(y^{N+1}\right)$ (first year calculus) we can rewrite this as

$$
D_{N}(z, t)=1+\sum_{n=1}^{N} a_{n}(t) z^{n}+O\left(z^{N+1}\right)
$$

Step 3. Setting $z=1$ we can define

$$
\eta_{N}(t):=D_{N}(1, t)=1+\sum_{k=1}^{N} a_{k}(t)
$$

Let $\delta_{N}>0$ be the largest zero for $\eta_{N}(t)$ (i.e., $\eta_{N}\left(\delta_{N}\right)=0$) then

$$
\delta_{N}=\operatorname{dim}_{H}(\Lambda)+O\left(\theta^{N^{2}}\right)
$$

Idea of the proof

Let us denote

$$
\eta_{\infty}(t):=1+\sum_{n=1}^{\infty} a_{n}(t)=\underbrace{\sum_{n=1}^{N} a_{n}(t)}_{\eta_{N}(t)}+\sum_{n=N+1}^{\infty} a_{n}(t)
$$

It suffices to show that:

- If $\delta_{\infty}>0$ is the largest zero for $\eta_{\infty}(t)$ then $\delta_{\infty}=\operatorname{dim}_{H}(\Lambda)$ (Easy)
- If $\delta_{N}>0$ is the smallest solution to $\eta_{N}\left(\delta_{N}\right)=0$ then $\delta_{N}=\operatorname{dim}_{H}(\Lambda)+O\left(\theta^{N^{2}}\right)$.

To achieve this:

- If we know that $\eta_{\infty}(t)=\operatorname{det}\left(I-L_{t}\right)$ for some suitable trace class operator then there exists $0<\theta<1$ with

$$
\sum_{n=N+1}^{\infty} a_{n}(t)=O\left(\theta^{N^{2}}\right)
$$

by a result of A. Grothendieck, "Produits tensoriels topologiques et espaces nuclaires" Mem. Amer. Math. Soc. (1955), no. 16.

- But the the appropriate trace class "Ruelle-Perron-Frobenius transfer" operator appears in the work of D. Ruelle, "Zeta-Functions for Expanding Maps and Anosov Flows" Invent. math, 34, 231-242 (1976).

Grothendeick and Ruelle

Grothendieck made major contributions to the modern theory of Algebraic Geometry but his earlier work was in Functional Analysis.

Ruelle is a theoretical physicist who has made major contributions to Dynamical Systems.

Ruelle and Grothendieck were both permanent professors together at IHES (Bures-sur-Yvette) in the 1960s.

Final silde

Thank you for your time.

Figure: Mathematics Department, Warwick University

