Multifractal analysis: an example with two different Olsen's cutoff functions

Jacques Peyrière, Paris-Sud University and BUAA

CUHK, December 14, 2012
(1) Setting
(2) General results
(3) An example

Joint work with Fathi Ben Nasr to appear in Revista Matemática Iberoamericana

Besicovitch spaces

(\mathbb{X}, d) : a metric space having the Besicovitch property:
There exists an integer constant C_{B} such that one can extract C_{B} countable families $\left\{\left\{\mathrm{B}_{j, k}\right\}_{k}\right\}_{1 \leq j \leq C_{B}}$ from any collection \mathscr{B} of balls so that
(1) $\bigcup_{j, k} B_{j, k}$ contains the centers of the elements of \mathscr{B},
(2) for any j and $k \neq k^{\prime}, \mathrm{B}_{j, k} \cap \mathrm{~B}_{j, k^{\prime}}=\emptyset$.
$\mathrm{B}(x, r)$ stands for the open ball $\mathrm{B}(x, r)=\{y \in \mathbb{X} ; \mathrm{d}(x, y)<r\}$. The letter B with or without subscript will implicitly stand for such a ball. When dealing with a collection of balls $\left\{\mathrm{B}_{i}\right\}_{i \in I}$ the following notation will implicitly be assumed: $\mathrm{B}_{i}=\mathrm{B}\left(x_{i}, r_{i}\right)$.

Coverings and packings

δ-cover of $E \subset \mathbb{X}$: a collection of balls of radii not exceeding δ whose union contains E. A centered cover of E is a cover of E consisting in balls whose centers belong to E.
δ-packing of $E \subset \mathbb{X}$: a collection of disjoint balls of radii not exceeding δ centered in E.

Besicovitch δ-cover of $E \subset \mathbb{X}$: a centered δ-cover of E which can be decomposed into C_{B} packings.

Packing measures and dimension

$$
\begin{aligned}
\overline{\mathscr{P}}_{\delta}^{t}(E) & =\sup \left\{\sum_{j} r_{j}^{t} ;\left\{\mathrm{B}_{j}\right\} \delta \text {-packing of } E\right\}, \\
\overline{\mathscr{P}}^{t}(E) & =\lim _{\delta \searrow 0} \overline{\mathscr{P}}_{\delta}^{t}(E), \\
\mathscr{P}^{t}(E) & =\inf \left\{\sum \overline{\mathscr{P}}^{t}\left(E_{j}\right) ; E \subset \bigcup E_{j}\right\}, \\
\Delta(E) & =\inf \left\{t \in \mathbb{R} ; \overline{\mathscr{P}}^{t}(E)=0\right\}=\sup \left\{t \in \mathbb{R} ; \overline{\mathscr{P}}^{t}(E)=\infty\right\} \\
\operatorname{dim}_{P} E & =\inf \left\{t \in \mathbb{R} ; \mathscr{P}^{t}(E)=0\right\}=\sup \left\{t \in \mathbb{R} ; \mathscr{P}^{t}(E)=\infty\right\}
\end{aligned}
$$

One has $\Delta(E)=\overline{\operatorname{dim}}_{B} E$.

Centered Hausdorff measures

$$
\begin{aligned}
& \overline{\mathscr{H}}_{\delta}^{t}(E)=\inf \left\{\sum_{\mathscr{H}_{j}^{t}}^{t} ;\left\{\mathrm{B}_{j}\right\} \text { centered } \delta \text {-cover of } E\right\}, \\
& \overline{\mathscr{H}}^{t}(E)=\lim _{\delta \searrow 0} \overline{\mathscr{H}}_{\delta}^{t}(E), \\
& \mathscr{H}^{t}(E)=\sup \left\{\mathscr{\mathscr { H }}^{t}(F) ; F \subset E\right\} .
\end{aligned}
$$

$$
\operatorname{dim}_{H} E=\inf \left\{t \in \mathbb{R} ; \mathscr{H}^{t}(E)=0\right\}=\sup \left\{t \in \mathbb{R} ; \mathscr{H}^{t}(E)=\infty\right\}
$$

Lower bounds for dimensions

ν : a non-negative function defined on the set of balls of \mathbb{X}.

$$
\begin{aligned}
\bar{\nu}_{\delta}(E) & =\inf \left\{\sum \nu\left(\mathrm{B}_{j}\right):\left\{\mathrm{B}_{j}\right\} \text { centered } \delta \text {-cover of } E\right\} \\
\bar{\nu}(E) & =\lim _{\delta \searrow 0} \bar{\nu}_{\delta}(E) \\
\nu^{\sharp}(E) & =\sup _{F \subset E} \bar{\nu}(F)
\end{aligned}
$$

Lemma

If $\nu^{\sharp}(E)>0$, then

$$
\begin{align*}
& \operatorname{dim}_{H} E \geq \underset{x \in E, \nu^{\sharp}}{\operatorname{ess} \sup _{r>0}} \liminf _{r>0} \frac{\log \nu(\mathrm{~B}(x, r))}{\log r}, \tag{1}\\
& \operatorname{dim}_{P} E \geq \underset{x \in E, \nu^{\sharp}}{\operatorname{ess} \sup _{r \searrow 0}} \limsup _{r \geq 0} \frac{\log \nu(\mathrm{~B}(x, r))}{\log r}, \tag{2}
\end{align*}
$$

To prove (1), take $\gamma<\operatorname{ess}_{\sup }^{x \in E, \nu^{\sharp}} \lim _{\inf _{r \searrow 0}} \frac{\log \nu(\mathrm{~B}(x, r))}{\log r}$ and consider the set $F=\left\{x \in E ; \liminf _{r \searrow 0} \frac{\log \nu(\mathrm{~B}(x, r))}{\log r}>\gamma\right\}$. We have $\nu^{\sharp}(F)>0$. For all $x \in F$, there exists $\delta>0$ such that, for all $r \leq \delta$, one has $\nu(\mathrm{B}(x, r)) \leq r^{\gamma}$. Consider the set

$$
F(n)=\left\{x \in F ; \forall r \leq 1 / n, \nu(\mathrm{~B}(x, r)) \leq r^{\gamma}\right\}
$$

We have $F=\bigcup_{n \geq 1} F(n)$. Since $\nu^{\sharp}(F)>0$, there exists n such that $\nu^{\sharp}(F(n))>0$, and therefore there is a subset G of $F(n)$ such that $\bar{\nu}(G)>0$. Then for any centered δ-cover $\left\{\mathrm{B}_{j}\right\}$ of G, with $\delta \leq 1 / n$, one has

$$
\bar{\nu}_{\delta}(G) \leq \sum \nu\left(\mathrm{B}_{j}\right) \leq \sum r_{j}^{\gamma}
$$

Therefore,

$$
\bar{\nu}_{\delta}(G) \leq \overline{\mathscr{H}}_{\delta}^{\gamma}(G)
$$

and

$$
0<\bar{\nu}(G) \leq \overline{\mathscr{H}}^{\gamma}(G) \leq \mathscr{H}^{\gamma}(G)
$$

which implies $\operatorname{dim}_{H} E \geq \operatorname{dim}_{H} G \geq \gamma$.

To prove (2), take $\gamma<\operatorname{ess} \sup _{x \in E, \nu^{\sharp}} \lim \sup _{r \searrow 0} \frac{\log \nu(\mathrm{~B}(x, r))}{\log r}$ and consider the set $F=\left\{x \in E ; \lim \sup _{r \searrow 0} \frac{\log \nu(\mathrm{~B}(x, r))}{\log r}>\gamma\right\}$. We have $\nu^{\sharp}(F)>0$, so there exists a subset F^{\prime} of F such that $\bar{\nu}\left(F^{\prime}\right)>0$. Let G be a subset of F^{\prime}. Then, for all $x \in G$, for all $\delta>0$, there exists $r \leq \delta$ such that $\nu(\mathrm{B}(x, r)) \leq r^{\gamma}$. Then for all δ, by using the Besicovitch property, there exists a collection $\left\{\left\{\mathrm{B}_{j, k}\right\}_{j}\right\}_{1 \leq k \leq C_{B}}$ of δ-packings of G which together cover G and such that $\nu\left(\mathrm{B}_{j, k}\right) \leq r_{j, k}^{\gamma}$. Then one has

$$
\bar{\nu}_{\delta}(G) \leq \sum_{j, k} \nu\left(\mathrm{~B}_{j, k}\right) \leq \sum r_{j, k}^{\gamma}
$$

This implies that there exists k such that $\sum_{j} r_{j, k}^{\gamma} \geq \frac{1}{C_{B}} \bar{\nu}_{\delta}(G)$. So we have $\overline{\mathscr{P}}_{\delta}^{\gamma}(G) \geq \frac{1}{C_{B}} \bar{\nu}_{\delta}(G)$. This implies $\overline{\mathscr{P}}^{\gamma}(G) \geq \frac{1}{C_{B}} \bar{\nu}(G)$. So if $F^{\prime}=\bigcup G_{j}$, one has

$$
\sum \overline{\mathscr{P}}^{\gamma}\left(G_{j}\right) \geq \frac{1}{C_{B}} \sum \bar{\nu}\left(G_{j}\right) \geq \frac{1}{C_{B}} \bar{\nu}\left(F^{\prime}\right)>0
$$

so $\mathscr{P}^{\gamma}\left(F^{\prime}\right)>0$. Therefore, $\quad \operatorname{dim}_{P} F \geq \gamma$.

Level sets of local Hölder exponents

μ : a non-negative function of balls of \mathbb{X} such that

$$
\mu(\mathrm{B})=0 \text { and } \mathrm{B}^{\prime} \subset \mathrm{B} \Longrightarrow \mu\left(\mathrm{~B}^{\prime}\right)=0 .
$$

S_{μ}, the support of μ, is the complement of $\bigcup_{\mu(\mathrm{B})=0} \mathrm{~B}$.

$$
\begin{aligned}
\bar{X}_{\mu}(\alpha) & =\left\{x \in \mathrm{~S}_{\mu} ; \limsup _{r \searrow 0} \frac{\log \mu(\mathrm{~B}(x, r))}{\log r} \leq \alpha\right\}, \\
\underline{X}_{\mu}(\alpha) & =\left\{x \in \mathrm{~S}_{\mu} ; \liminf _{r \geq 0} \frac{\log \mu(\mathrm{~B}(x, r))}{\log r} \geq \alpha\right\}, \\
X_{\mu}(\alpha, \beta) & =\underline{X}_{\mu}(\alpha) \cap \bar{X}_{\mu}(\beta),
\end{aligned}
$$

and

$$
X_{\mu}(\alpha)=\underline{X}_{\mu}(\alpha) \cap \bar{X}_{\mu}(\alpha) .
$$

Olsen's packing measures

$$
\overline{\mathscr{P}}_{\mu, \delta}^{q, t}(E)=\sup \left\{\sum^{*} r_{j}^{t} \mu\left(\mathrm{~B}_{j}\right)^{q} ;\left\{\mathrm{B}_{j}\right\} \delta \text {-packing of } E\right\},
$$

where $*$ means that one only sums the terms for which $\mu\left(B_{j}\right) \neq 0$,

$$
\begin{aligned}
\overline{\mathscr{P}}_{\mu}^{q, t}(E) & =\lim _{\delta \searrow 0} \overline{\mathscr{P}}_{\mu, \delta}^{q, t}(E) \\
\mathscr{P}_{\mu}^{q, t}(E) & =\inf \left\{\sum \overline{\mathscr{P}}_{\mu}^{q, t}\left(E_{j}\right) ; E \subset \bigcup E_{j}\right\},
\end{aligned}
$$

$$
\begin{aligned}
\tau_{\mu}(q) & =\inf \left\{t \in \mathbb{R} ; \overline{\mathscr{P}}_{\mu}^{q, t}\left(\mathrm{~S}_{\mu}\right)=0\right\}=\sup \left\{t \in \mathbb{R} ; \overline{\mathscr{P}}_{\mu}^{q, t}\left(\mathrm{~S}_{\mu}\right)=\infty\right\} \\
B_{\mu}(q) & =\inf \left\{t \in \mathbb{R} ; \mathscr{P}_{\mu}^{q, t}\left(\mathrm{~S}_{\mu}\right)=0\right\}=\sup \left\{t \in \mathbb{R} ; \mathscr{P}_{\mu}^{q, t}\left(\mathrm{~S}_{\mu}\right)=\infty\right\}
\end{aligned}
$$

τ_{μ} and B_{μ} are convex.

Alternate definition of τ_{μ}

Fix $\lambda<1$ and define

$$
\begin{aligned}
& \widetilde{\mathscr{P}}_{\mu, \delta}^{q, t}(E)=\sup \left\{\sum^{*} r_{j}^{t} \prod_{k=1}^{m} \mu_{k}\left(\mathrm{~B}_{j}\right)^{q_{k}} ;\left\{\mathrm{B}_{j}\right\} \text { packing of } E \text { with } \lambda \delta<r_{j} \leq \delta\right\} \\
& \widetilde{\mathscr{P}}_{\mu}^{q, t}(E)=\overline{\lim }_{\delta \searrow 0} \widetilde{\mathscr{P}}_{\mu, \delta}^{q, t}(E), \\
& \text { and } \\
& \widetilde{\tau}_{\mu, E}(q)=\sup \left\{t \in \mathbb{R} ; \widetilde{\mathscr{P}}_{\mu}^{q, t}(E)=+\infty\right\} .
\end{aligned}
$$

Proposition

For any $\lambda<1$, one has $\widetilde{\tau}_{\mu, \mathrm{S}_{\mu}}=\tau_{\mu}$ and

$$
\begin{aligned}
& \tau_{\mu}(q)= \\
& \overline{\lim _{\delta \searrow 0}} \frac{-1}{\log \delta} \log \sup \left\{\sum^{*} \prod_{k=1}^{m} \mu_{k}\left(\mathrm{~B}_{j}\right)^{q_{k}} ;\left\{\mathrm{B}_{j}\right\} \text { packing of } \mathrm{S}_{\mu} \text { with } \lambda \delta<r_{j} \leq \delta\right\} .
\end{aligned}
$$

Olsen's Hausdorff measures

$$
\begin{aligned}
\overline{\mathscr{H}}_{\mu, \delta}^{q, t}(E) & =\inf \left\{\sum_{j}^{*} r_{j}^{t} \mu\left(\mathrm{~B}_{j}\right)^{q} ;\left\{\mathrm{B}_{j}\right\} \text { centered } \delta \text {-cover of } E\right\}, \\
\overline{\mathscr{H}}_{\mu}^{q, t}(E) & =\lim _{\delta<0} \mathscr{\mathscr { H }}_{\mu, \delta}^{q, t}(E), \\
\mathscr{H}_{\mu}^{q, t}(E) & =\sup \left\{\overline{\mathscr{H}}_{\mu}^{q, t}(F) ; F \subset E\right\} .
\end{aligned}
$$

$$
b_{\mu}(q)=\inf \left\{t \in \mathbb{R} ; \mathscr{H}_{\mu}^{q, t}\left(S_{\mu}\right)=0\right\}=\sup \left\{t \in \mathbb{R} ; \mathscr{H}_{\mu}^{q, t}\left(S_{\mu}\right)=\infty\right\}
$$

In general, b_{μ} is not convex. One always has

$$
b_{\mu} \leq B_{\mu} \leq \tau_{\mu}
$$

Legendre transform: $f^{*}(y)=\inf _{x \in \mathbb{R}} x y+f(x)$.

Theorem (Olsen, Ben Nasr-Bhouri-Heurteaux)
(1) $\operatorname{dim}_{H} X_{\alpha} \leq b^{*}(\alpha)$.
(2) $\operatorname{dim}_{P} X_{\alpha} \leq B^{*}(\alpha)$.
(3) If $-\alpha=B^{\prime}(q)$ exists and $\operatorname{dim}_{H} X_{\alpha}=B^{*}(q)$, then $B(q)=b(q)$.
(0. If for some $q, \mathscr{H}_{\mu}^{q, B(q)}\left(\mathrm{S}_{\mu}\right)>0$ and $-\alpha=B^{\prime}(q)$ exists, then

$$
\operatorname{dim}_{H} X(\alpha)=\inf _{r \in \mathbb{R}} B(r)+\alpha r=B(q)-q B^{\prime}(q) .
$$

Main lemma

$$
\begin{aligned}
& \overline{\mathscr{D}}_{\mu, \nu, \delta}^{q, t}(E)=\sup \left\{\sum^{*} r_{j}^{t} \mu\left(\mathrm{~B}_{j}\right)^{q} \nu\left(\mathrm{~B}_{j}\right) ;\left\{\mathrm{B}_{j}\right\} \delta \text {-packing of } E\right\} \\
& \overline{\mathscr{Q}}_{\mu, \nu}^{q, t}(E)=\lim _{\delta \searrow 0} \overline{\mathscr{Q}}_{\mu, \nu, \delta}^{q, t}(E), \\
& \mathscr{Q}_{\mu, \nu}(E)=\inf \left\{\sum \overline{\mathscr{Q}}_{\mu, \nu}\left(E_{j}\right): E \subset \bigcup E_{j}\right\} . \\
& \bar{\varphi}_{\mu, \nu}(q)=\inf \left\{t \in \mathbb{R} ; \overline{\mathscr{Q}}_{\mu, \nu}^{q, t}\left(\mathrm{~S}_{\mu}\right)=0\right\}=\sup \left\{t \in \mathbb{R} ; \overline{\mathscr{Q}}_{\mu, \nu}^{q, t}\left(\mathrm{~S}_{\mu}\right)=\infty\right\} \\
& \varphi_{\mu, \nu}(q)=\inf \left\{t \in \mathbb{R} ; \mathscr{Q}_{\mu, \nu}^{q, t}\left(\mathrm{~S}_{\mu}\right)=0\right\}=\sup \left\{t \in \mathbb{R} ; \mathscr{Q}_{\mu, \nu}^{q, t}\left(\mathrm{~S}_{\mu}\right)=\infty\right\}
\end{aligned}
$$

Lemma

Assume that $\varphi_{\mu, \nu}(0)=0$ and $\nu^{\sharp}\left(S_{\mu}\right)>0$. Then one has

$$
\nu^{\sharp}\left({ }^{\mathrm{C}} X_{\mu}\left(-\varphi_{r}^{\prime}(0),-\varphi_{l}^{\prime}(0)\right)\right)=0,
$$

The same result holds with $\bar{\varphi}_{\mu, \nu}$.

Take $\gamma>-\varphi_{1}^{\prime}(0)$, and choose γ^{\prime} and $t>0$ such that $\gamma>\gamma^{\prime}>-\varphi_{1}^{\prime}(0)$ and $\varphi(-t)<\gamma^{\prime} t$. Then $\mathscr{P}_{(\mu, \nu)}^{(-t, 1), \gamma^{\prime} t}\left(\mathrm{~S}_{\mu}\right)=0$, so there exists a countable partition $\mathrm{S}_{\mu}=\bigcup E_{j}$ of S_{μ} such that

$$
\sum_{j} \overline{\mathscr{P}}_{(\mu, \nu)}^{(-t, 1), \gamma^{\prime} t}\left(E_{j}\right) \leq 1
$$

It results that $\overline{\mathscr{P}}_{(\mu, \nu)}^{(-t, 1), \gamma t}\left(E_{j}\right)=0$ for all j.
Consider the set

$$
E(\gamma)=\left\{x \in \mathrm{~S}_{\mu} ; \limsup _{r \searrow 0} \frac{\log \mu(\mathrm{~B}(x, r))}{\log r}>\gamma\right\} .
$$

If $x \in E(\gamma)$, for all $\delta>0$, there exists $r \leq \delta$ such that $\mu(\mathrm{B}(x, r)) \leq r^{\gamma}$. Let F be a subset of $E(\gamma)$. Set $F_{j}=F \cap E_{j}$.
For $\delta>0$, for all j, one can find a Besicovitch δ-cover $\left\{\mathrm{B}_{j, k}\right\}$ of F_{j} such that $\mu\left(B_{j, k}\right) \leq r_{j, k}^{\gamma}$.

We have,

$$
\begin{aligned}
\bar{\nu}_{\delta}\left(F_{j}\right) \leq \sum_{k} \nu\left(\mathrm{~B}_{j, k}\right) & = \\
& \sum_{k} \mu\left(\mathrm{~B}_{j, k}\right)^{-t} \mu\left(\mathrm{~B}_{j, k}\right)^{t} \nu\left(\mathrm{~B}_{j, k}\right) \leq \sum_{k} \mu\left(\mathrm{~B}_{j, k}\right)^{-t} r_{j, k}^{\gamma t} \nu\left(\mathrm{~B}_{j, k}\right),
\end{aligned}
$$

which, together with the Besicovitch property, implies

$$
\bar{\nu}_{\delta}\left(F_{j}\right) \leq C_{B} \overline{\mathscr{P}}_{(\mu, \nu), \delta}^{(-t, 1), \gamma t}\left(E_{j}\right) .
$$

so

$$
\bar{\nu}\left(F_{j}\right) \leq C_{B} \overline{\mathscr{P}}_{(\mu, \nu)}^{(-t, 1), \gamma t}\left(E_{j}\right)=0 .
$$

This implies $\bar{\nu}(F)=0$, and $\nu^{\sharp}(E(\gamma))=0$.
We conclude that

$$
\nu^{\sharp}\left(\left\{x \in \mathrm{~S}_{\mu} ; \limsup _{r \searrow 0} \frac{\log \mu(\mathrm{~B}(x, r))}{\log r}>-\varphi_{\prime}^{\prime}(0)\right\}\right)=0 .
$$

An example

Take $\mathbb{X}=\{0,1\}^{\mathbb{N}^{*}}$ endowed with the ultrametric which assigns diameter 2^{-n} to cylinders of order n.
We are given two numbers such that $0<p<\tilde{p} \leq 1 / 2$ and a sequence of integers $1=t_{0}<t_{1}<\cdots<t_{n}<\cdots$ such that $\lim _{n \rightarrow \infty} t_{n} / t_{n+1}=0$.
We define a probability measure μ on $\{0,1\}^{\mathbb{N}^{*}}$: the measure assigned to the cylinder $\left[\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{n}\right.$] is

$$
\mu\left(\left[\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{n}\right]\right)=\prod_{j=1}^{n} \varpi_{j}\left(\varepsilon_{j}\right)
$$

where

$$
\varpi_{j}= \begin{cases}(p, 1-p) & \text { if } t_{2 k-1} \leq j<t_{2 k} \text { for some } k, \\ (\tilde{p}, 1-\tilde{p}) & \text { if } t_{2 k} \leq j<t_{2 k+1} \text { for some } k,\end{cases}
$$

$$
\mu\left(\left[\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{n}\right]\right)=\prod_{j=1}^{n} \varpi_{j}
$$

where

$$
\varpi_{j}= \begin{cases}(p, 1-p) & \text { if } t_{2 k-1} \leq j<t_{2 k} \text { for some } k \\ (\tilde{p}, 1-\tilde{p}) & \text { if } t_{2 k} \leq j<t_{2 k+1} \text { for some } k\end{cases}
$$

$$
\left.\begin{array}{l}
\quad \sum_{j \in\{0,1\}} \mu\left(\left[\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{n-1}\right]\right)^{q}=\mu\left(\left[\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{n-1}\right]\right)^{q} \times\left\{\begin{array}{l}
\left(p^{q}+(1-p)^{q}\right) \\
\left(\tilde{p}^{q}+(1-\tilde{p})^{q}\right)
\end{array}\right. \\
\sum \mu\left(\left[\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{n}\right]\right)^{q}=\left(p^{q}+(1-p)^{q}\right)^{x_{n}}\left(\tilde{p}^{q}+(1-\tilde{p})^{q}\right)^{n-x_{n}}
\end{array}\right\} \begin{aligned}
& 0 \leq \frac{x_{n}}{n} \leq 1, \quad \lim \inf \frac{x_{n}}{n}=0, \quad \lim \sup \frac{x_{n}}{n}=1
\end{aligned}
$$

τ, b. and B

Set

$$
\begin{aligned}
\theta(q) & =\log \left(p^{q}+(1-p)^{q}\right) \\
\tilde{\theta}(q) & =\log \left(\tilde{p}^{q}+(1-\tilde{p})^{q}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
\lim \sup \frac{1}{n} \log \sum \mu\left(\left[\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{n}\right]\right)^{q} & =\max \{\theta(q), \tilde{\theta}(q)\} \\
\liminf \frac{1}{n} \log \sum \mu\left(\left[\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{n}\right]\right)^{q} & =\min \{\theta(q), \tilde{\theta}(q)\}
\end{aligned}
$$

It has been shown (Ben Nasr, Bhouri, and Heurteaux) that these are respectively $B_{\mu}(q)$ and $b_{\mu}(q)$.

$$
\begin{array}{rlr}
b(q) & =\min \{\theta(q), \tilde{\theta}(q)\} & \text { blue curve } \\
B(q) & =\max \{\theta(q), \tilde{\theta}(q)\} & \text { red curve }
\end{array}
$$

Results

Theorem

(1) For $\alpha \in\left(-\log _{2}(1-\tilde{p}),-\log _{2} \tilde{p}\right)$, we have

$$
\operatorname{dim}_{H} X_{\mu}(\alpha)=\inf _{q \in \mathbb{R}} b(q)+\alpha q
$$

(2) For $\alpha \in\left(-\log _{2}(1-\tilde{p}),-\log _{2} \tilde{p}\right) \backslash\left(\left[-B_{r}^{\prime}(0),-B_{l}^{\prime}(0)\right] \cup\left[-B_{r}^{\prime}(1),-B_{l}^{\prime}(1)\right]\right)$, we have

$$
\operatorname{dim}_{P} X_{\mu}(\alpha)=\inf _{q \in \mathbb{R}} B(q)+\alpha q .
$$

We already know the upper bounds. Indeed, it is known that, if $\alpha=-B^{\prime}(q)$, then

$$
\operatorname{dim}_{P} X_{\alpha} \leq B^{*}(\alpha)=-q B^{\prime}(q)+B(q)=\inf _{t} \alpha t+B(t)
$$

It is also known that $\operatorname{dim}_{H} X_{\alpha} \leq \inf _{t} \alpha t+b(t)$. In particular, if α can be written as $-b^{\prime}(q)$ then $\operatorname{dim}_{H} X_{\alpha} \leq-q b^{\prime}(q)+b(q)$.

Proof

Given two numbers r and \tilde{r} in the interval $(0,1)$, we perform the same construction as with p and \tilde{p}, but using the same sequence $\left(t_{j}\right)$. We get a new measure ν.
We compute $\bar{\varphi}_{\mu, \nu}$:

$$
\begin{aligned}
& \sum_{\varepsilon_{1} \ldots \varepsilon_{n}} \mu\left(\left[\varepsilon_{1} \ldots \varepsilon_{n}\right]\right)^{t} \nu\left(\left[\varepsilon_{1} \ldots \varepsilon_{n}\right]\right)= \\
& \quad\left(r p^{t}+(1-r)(1-p)^{t}\right)^{x_{n}}\left(\tilde{r} \tilde{p}^{t}+(1-\tilde{r})(1-\tilde{p})^{t}\right)^{n-x_{n}} .
\end{aligned}
$$

$$
\bar{\varphi}_{\mu, \nu}(t)=\log _{2} \max \left\{r p^{t}+(1-r)(1-p)^{t}, \tilde{p}^{t}+(1-\tilde{r})(1-\tilde{p})^{t}\right\}
$$

If $r \log p+(1-r) \log (1-p)=\tilde{r} \log \tilde{p}+(1-\tilde{r}) \log (1-\tilde{p})$, then $\bar{\varphi}_{\mu, \nu}^{\prime}(0)$ exists.

$$
\alpha=-\varphi_{\mu, \nu}^{\prime}(0)=r \log _{2} p+(1-r) \log _{2}(1-p)=\tilde{r} \log _{2} \tilde{p}+(1-\tilde{r}) \log _{2}(1-\tilde{p})
$$

$r \log p+(1-r) \log (1-p)=\tilde{r} \log \tilde{p}+(1-\tilde{r}) \log (1-\tilde{p})$ plus constraints $0<r, \tilde{r}<1$ imply that α can assume any value between $-\log _{2}(1-\tilde{p})$ and $-\log _{2} \tilde{p}$.
One has

$$
-\frac{1}{n} \log _{2} \nu\left(\left[\varepsilon_{1} \ldots \varepsilon_{n}\right]\right)=\frac{1}{n} \sum_{j=1}^{n} \log _{2} \varpi_{j}^{\prime}\left(\varepsilon_{j}\right)
$$

so, due to the strong law of large numbers, for n-almost t,

$$
\begin{aligned}
\liminf -\frac{1}{n} \log _{2} \nu\left(C_{n}(t)\right) & =\min \{\mathrm{h}(r), \mathrm{h}(\tilde{r})\} \\
\limsup -\frac{1}{n} \log _{2} \nu\left(C_{n}(t)\right) & =\max \{\mathrm{h}(r), \mathrm{h}(\tilde{r})\}
\end{aligned}
$$

where $C_{n}(t)$ stands for the n-cylinder which contains t and $\mathrm{h}(r)=-\log _{2} r-\log _{2}(1-r)$.
it results from the preceding lemmas that

$$
\operatorname{dim}_{H} X_{\mu}(\alpha) \geq \min \{\mathrm{h}(r), \mathrm{h}(\tilde{r})\}
$$

and

$$
\operatorname{dim}_{P} X_{\mu}(\alpha) \geq \max \{\mathrm{h}(r), \mathrm{h}(\tilde{r})\}
$$

where r, \tilde{r}, and α are linked by relations
$\alpha=r \log _{2} p+(1-r) \log _{2}(1-p)=\tilde{r} \log _{2} \tilde{p}+(1-\tilde{r}) \log _{2}(1-\tilde{p})$.
We have

$$
\alpha=-\theta^{\prime}(q) \quad \text { if } \quad q=\frac{\log \frac{1-r}{r}}{\log \frac{1-p}{p}} \quad \text { i.e, } \quad r=\frac{p^{q}}{p^{q}+(1-p)^{q}}
$$

and

$$
\alpha=-\tilde{\theta}^{\prime}(\tilde{q}) \quad \text { if } \quad \tilde{q}=\frac{\log \frac{1-\tilde{r}}{\tilde{r}}}{\log \frac{1-\tilde{p}}{\tilde{p}}}, \quad \text { i.e, } \quad \tilde{r}=\frac{\tilde{p}^{\tilde{q}}}{\tilde{p} \tilde{q}+(1-\tilde{p})^{\tilde{q}}}
$$

Now, fix q and \tilde{q} as above. One can check that, for these values of q and \tilde{q}, one has

$$
\theta(q)-q \theta^{\prime}(q)=\mathrm{h}(r) \quad \text { and } \quad \tilde{\theta}(\tilde{q})-\tilde{q} \tilde{\theta}^{\prime}(\tilde{q})=\mathrm{h}(\tilde{r}) .
$$

In order to have $\theta(q)=b(q)$, we must have $0<q<1$, which means

$$
\begin{equation*}
\log _{2} \frac{1}{p^{p}(1-p)^{1-p}}<\alpha<\log _{2} \frac{1}{\sqrt{p(1-p)}} . \tag{3}
\end{equation*}
$$

In order to have $\tilde{\theta}(\tilde{q})=b(\tilde{q})$, we must have $\tilde{q}<0$ or $\tilde{q}>1$, which means

$$
\begin{equation*}
\alpha>\log _{2} \frac{1}{\sqrt{\tilde{p}(1-\tilde{p})}} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha<\log _{2} \frac{1}{\tilde{p} \tilde{p}(1-\tilde{p})^{1-\tilde{p}}} . \tag{5}
\end{equation*}
$$

One can check that at least one of the conditions (3), (4) and (5) is fulfilled. But for any q such that $b^{\prime}(q)$ exists, we have

$$
\begin{equation*}
\operatorname{dim}_{H} X_{\mu}\left(-b^{\prime}(q)\right) \leq b(q)-q b^{\prime}(q) . \tag{6}
\end{equation*}
$$

The Gray code

```
w : 0 1
\varphi(w):01
w : 00 01 10 11
\varphi(w):00 01 11 10
w : 000 001010011100 101 110 111
\varphi(w):000001011010110111101100
w : 0000 00010010 00110100 010101100111 1000 1001 1010 1011 ...
\varphi(w):0000 00010011001001100111010101001100110111111110\cdots
```

Let ν be the image of the measure $[w] \longmapsto \mu[\varphi(w)]$ under the map $x_{1} x_{2} \cdots x_{n} \cdots \in\{0,1\}^{\mathbb{N}} \longmapsto \sum_{n \geq 1} x_{n} 2^{-n}$.
This is the measure considered by Ben Nasr, Bhouri, and Heurteaux. It is doubling and exhibits the same phenomenon as μ concerning b and B.

Recently, Shen Shuang proved that one gets the same result without composing with the Gray code.

Thank you!

