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IFSs and limit set:

• ∅ 6= X ⊂ R
d compact

• I finite or countably infinite index set

• {Si}i∈I an iterated function system (IFS) if Si : X → X are
injective contractions that satisfy the uniform contractivity
condition: ∃ 0 < ρ < 1 such that

|Si(x) − Si (y)| ≤ ρ|x − y | ∀i ∈ I and x , y ∈ X .

• Limit set:

K :=
⋃

i∈I∞

∞⋂

n=1

Si|n(X ) ⊆
∞⋂

n=1

⋃

i∈I n

Si(X ). (K is Souslin)
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• c.f. attractor or fixed point: F =
⋃

i∈I Si(F ).

• K satisfies
K =

⋃

i∈I

Si(K ),

but K is not the unique set satisfying this equality, unless K is
compact.

Problem: Compute dimH(K ).
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Motivations for studying IIFSs

Fernau (1994): IIFSs have strictly more powerful descriptive power
than FIFSs:

• In a separable metric space, every closed set is a fixed point of
an IIFS and,

• there is a closed and bounded subset of a complete metric
space that is a fixed point of an IIFS but not of any FIFS.
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Conformal IIFS

Definition
IFS of injective C 1 conformal contractions: if each Si can be
extended to a C 1 injective conformal contraction on some bounded
open connected neighborhood V of X and

0 < inf
x∈V

‖S ′
i (x)‖ ≤ sup

x∈V
‖S ′

i (x)‖ < 1 for all i ∈ I .

Define

ri := inf
x∈V

‖S ′
i (x)‖, Ri := sup

x∈V
‖S ′

i (x)‖, ∀ i ∈ I ∗ :=
∞⋃

n=0

I n.
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Bounded distortion property

Definition
Bounded distortion property (BDP): ∃ c1 > 0 such

‖S ′
i (x)‖

‖S ′
i (y)‖

≤ c1 ∀ i ∈ I ∗ and x , y ∈ V .

In particular,
ri ≤ Ri ≤ c1ri ∀ i ∈ I ∗.

A sufficient condition for BDP: ∃ constants C ≥ 1 and α > 0 s.t.
∣∣∣‖S ′

i (y)‖ − ‖S ′
i (x)‖

∣∣∣ ≤ C‖(S ′
i )

−1‖−1|y − x |α, ∀i ∈ I , x , y ∈ V .
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Open set condition

Open set condition (OSC): ∃ bounded open ∅ 6= U ⊂ X such that

Si(U) ⊆ U ∀ i and Si(U) ∩ Sj(U) = ∅ ∀ i 6= j .

Cone condition (CC) for E ⊂ R
d : ∃β, h > 0 s.t. ∀x ∈ ∂E , ∃ open

cone C (x , ux , β, h) ⊂ E ◦ with vertex x , direction vector ux , central
angle of Lebesgue measure β, and altitude h.

Topological pressure:

P̃(s) = lim
n→∞

1

n
ln
∑

i∈I n

R s
i .
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Dimension result for IIFS under BDP and OSC

Theorem
(Mauldin-Urbánski, 1996) Assume BDP, OSC and CC, and let
ξ := inf{t ≥ 0 : P̃(s) < 0}. Then

dimH(K ) = ξ.

In particular, if P̃(ξ) = 0, then dimH(K ) = ξ.
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Anomalous phenomena for IIFSs

• M. Moran (1996): Even for similitudes satisfying OSC, it is
possible to have

Hα(K ) = 0, where α = dimH(K ).

(Nevertheless, for such IIFSs, Hα(K ) < ∞. )

• Mauldin-Urbánski (1996): Under BDP and OSC, its possible
to have

dimH(K ) < dimB(K ) ≤ dimP(K ).

• Szarek-Wedrychowicz (2004): OSC 6⇒ SOSC.

• Topological pressure functions need not have a zero. In fact,
domain of various topological pressures could be empty.
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Weak separation condition for IIFSs

For 0 < b < 1, let

Ib = {i = (i1, . . . , in) : Ri ≤ b < Ri1···in−1} and Ab = {Si : i ∈ Ib}.

Definition

(a) Weak separation condition (WSC): ∃ invariant subset
D ⊆ X with D◦ 6= ∅, called a WSC set, and a constant γ ∈ N

such that

sup
x∈X

#
{
τ ∈ Ab : x ∈ τ(D)

}
≤ γ for all b ∈ (0, 1). (2.1)

(b) If E ⊆ X is an invariant set and (2.1) holds with E replacing
D, we call E a pre-WSC set. Thus, any pre-WSC set that
has a nonempty interior is a WSC set.
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Example for WSC

Example

Let X = [0, 1], 0 < r < (2−
√
2)/2 ≈ 0.292893 . . . ,

r(2− r)/(1 − r) < t < 1− r , and

S1(x) = rx + (1− r), S2k(x) = rkx + t(1− rk−1),

S2k+1(x) = rkx + t(1− rk−1) + rk(1− r), k ≥ 1.

Then the IIFS does not satisfy OSC, but BDP holds and WSC
holds with D = X.
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Figure for the example

0 0.2 0.4 0.6 0.8 1

X=[0,1]

n=1

n=2

K

Figure: First two iterations of the set X = [0, 1] under the IIFS, with
r = 1/5 and t = 1/2. The limit set K is also shown.
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Topological pressure

Let Sn = Sn(I ) := {Si : i ∈ I n}.
Definition
Upper and lower topological pressure functions:

P(s) := lim
n→∞

1

n
ln

∑

φ∈Sn

R s
φ, P(s) := lim

n→∞

1

n
ln

∑

φ∈Sn

R s
φ.

If P(s) = P(s), we denote the common value by P(s) and call P
the topological pressure function. Define

domP = {s ∈ R : P(s) < ∞} (Domain of P).
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Topological pressure properties

• BDP ⇒ PV ,PV are independent of V .

• Assume BDP and WSC. Then [d ,∞) ⊆ domP , the limit
defining P exists, P is strictly decreasing, convex on domP
and continuous on (domP)◦.
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Dimension result for FIFS under BDP and WSC

Theorem
(Lau-X.Wang-N., 2009) Assume that a FIFS satisfies BDP and
WSC. Then

(a) α := dimH(F ) = dimP(F ) = dimB(F );

(b) 0 < Hα(F ) ≤ Pα(F ) < ∞.
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Dimension formula

Theorem
(Q. Deng-N., 2011) Assume that a FIFS satisfies BDP and WSC.
Then dimH(K ) is the unique zero of P.

This result extends those by Y.Wang-N., 2001 and Lau-N. 2007 for
similitudes satisfying FTC.
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Finite weak separation condition

Another natural extension of WSC to IIFSs. Let

F = F(I ) := {J ⊂ I : J is finite}

be the collection of all finite subsets of I .

Definition
Finite weak separation condition (FWSC): ∀ J ∈ F(I ), the FIFS
{Sj}j∈J satisfies WSC.
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FWSC is strictly weaker than WSC

IIFS satisfying FWSC but not WSC.

Example

Let X = [0, 1] and

Sk,i :=
x

2k
+

i

2k
, i = 0, 1, . . . , 2k − 1, k ∈ N.

That is, for each k, Sk,i [0, 1], i = 0, 1, . . . , 2k − 1, is the union of
all nonoverlapping dyadic intervals in [0, 1] with length 1/2k . Then
K = [0, 1] and the IIFS satisfies FWSC but not WSC.
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Topological pressure star

Definition
For each J ∈ F , let PJ be the topological pressure function for the
FIFS {Si}i∈J , i.e.,

PJ(s) = lim
n→∞

1

n
ln

∑

σ∈Sn(J)

R s
σ.

Define
P∗(s) := sup

J∈F
PJ(s).
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Auxiliary topological pressure

Definition
For any b ∈ (0, 1), define

Q(s) := lim
b→0+

1

− ln b
ln

∑

τ∈Ab

R s
τ , Q(s) := lim

b→0+

1

− ln b
ln

∑

τ∈Ab

R s
τ ,

and let Q(s) denote the common value if Q(s) = Q(s).
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“Zeros” of topological pressures

For each J ∈ F , denote the limit set of the FIFS {Si}i∈J by KJ .
Define

αJ := dimH(KJ ), α̂ := sup{αJ : J ∈ F},
ξ := inf{s ≥ 0 : P(s) < 0}, ξ∗ := inf{s ≥ 0 : P∗(s) < 0},
ζ := inf{s ≥ 0 : Q(s) < 0}, ζ := inf{s ≥ 0 : Q(s) < 0}.
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Main results

Theorem
(N-Tong) Assume BDP and WSC.

(a) If K is a pre-WSC set, then

dimH(K ) = ζ = ζ = α̂ = ξ∗ ≤ ξ.

(b) If a WSC set D satisfies CC, then D is a WSC set. In
particular, K is a pre-WSC set and thus the conclusion of part
(a) holds.
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Outline of Proof

• Combining Lau-N-X. Wang (2009) and Q. Deng-N(2011), we
have the following key lemma:

Lemma
Assume BDP and WSC hold and K is a pre-WSC set. Then for
any J ∈ F and any b ∈ (0, 1),

∑

τ∈Ab

RαJ
τ ≤ cαJ

1 γ.

• This lemma allows us to obtain the lower bound:
ζ ≤ ζ ≤ dimH(K ).

• The upper bound can be obtained more easily by using covers
provided by the definition of various topological pressures.
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Growth dimension

Growth dimension (Zerner, 1996) of a FIFS is

lim
b→0+

ln#Ab

− ln b
.

For IIFS, since #Ab = ∞, ∀b, we extend the definition to IIFSs as
follows.

Definition
For J ∈ F = F(I ), let dJ

G be the growth dimension of the finite
IFS {Sj}j∈J . Define the growth dimension of {Si}i∈I as

dG = sup
J∈F

dJ
G .
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Result concerning growth dimension

Corollary

Assume BDP holds.

(a) dG ≤ dimH(K ).

(b) If, in addition, {Si}i∈I WSC holds and K is a pre-WSC set,
then dG = dimH(K ).
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Example on computing dimension

Example

Let X = [0, 1], 0 < r < (2−
√
2)/2 ≈ 0.292893 . . . ,

r(2− r)/(1 − r) < t < 1− r .

S1(x) = rx + (1− r), S2k(x) = rkx + t(1− rk−1),

S2k+1(x) = rkx + t(1− rk−1) + rk(1− r), k ≥ 1.

Then OSC fails, but BDP and WSC hold with D = X.

dimH(K ) = ln(2 + ln 2)/(− ln r).

In particular, for r = 1/5, and t = 1/2, α = 0.762966 . . . .
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Figure: The first two iterations of the set X = [0, 1], with r = 1/5 and
t = 1/2. The limit set K is also shown.
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Example of a conformal IIFS with WSC

Example

Let X = [0, 1], r < 13/16, 23/(32(1 − r)) < t < 13/16 and define

S1(x) =
x2

8
+

x

16
+

13

16
, S2(x) =

x

2
, S3(x) =

x2

4
+

x

16
+

13

32
,

S2k(x) = rk−1S2(x) + t(1− rk−1),

S2k+1(x) = rk−1S3(x) + t(1− rk−1),

for k ≥ 2. Then OSC fails, but BDP holds and WSC holds with
D = X.
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Figure: First two iterations of the set X = [0, 1], with r = 1/13 and
t = 4/5.
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Problems for further study

1. Can the condition that K is a pre-WSC set in the main
theorem be removed?

2. Is the inequality dimH(K ) ≤ ξ in the main theorem an
equality? If not, under what conditions does equality hold?

3. How to find dimH(K )?

4. Hausdorff and packing measures of K .

5. Self-conformal measures and multifractal decomposition.
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Thank you!
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