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Outline

• General iterated function systems

• Fractal interpolants defined as fixed points of
Read-Bajraktarević operators

• Bi-affine fractal interpolants

• Box dimension of bi-affine fractal interpolants
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General iterated functions systems (IFSs)

Let (X, d) be a complete metric space with metric d = dX.

Definition. Let M ∈ N. If fm : X→ X, m = 1, 2, . . . ,M, are
continuous mappings, then F = (X; f1, f2, ..., fM ) is called an iterated
function system (IFS).

Define F : 2X → 2X by F(B) :=
⋃
f∈F

f(B), ∀ B ∈ 2X.

Let H = H(X) be the hyperspace of nonempty compact subsets of X
endowed with the Hausdorff metric dH.

Since F (H) ⊂ H, we can also treat F as a mapping F : H→ H.
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Theorem.

(i) The metric space (H, dH) is complete.

(ii) If (X, dX) is compact then (H, dH) is compact.

(iii) If (X, dX) is locally compact then (H, dH) is locally compact.

(iv) If X is locally compact, or if each f ∈ F is uniformly continuous,
then F : H→ H is continuous.

(v) If f : X→ X is a contraction mapping for each f ∈ F , then
F : H→ H is a contraction mapping.
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Attractor of an IFS

Definition. A nonempty compact set A ⊂ X is said to be an
attractor of the IFS F if

(i) F(A) = A and

(ii) ∃ an open set U ⊂ X such that A ⊂ U and limk→∞ Fk(B) = A,
∀ B ∈ H(U), where the limit is taken with respect to the
Hausdorff metric.

The largest open set U such that (ii) is true is called the basin of
attraction (for the attractor A of the IFS F).

[For more details and generalizations, see M. F. Barnsley & A. Vince, The chaos game on a

general iterated function system, Ergod. Th. & Dynam. Syst. 31 (2011) 1073-1079.]
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Fractal interpolants as fixed points of operators

Let 1 < N ∈ N and let {(Xj , Yj) : j = 0, 1, ..., N} be finite set of
points in the Euclidean plane with X0 < X1 < ... < XN .

Set I := [X0, XN ].

Let `n : I → [Xn−1, Xn] be continuous bijections. (n = 1, 2, ..., N)

Let L : I → I be bounded with L(x) = `−1n (x), for x ∈ (Xn−1, Xn).

Let S : [X0, XN ]→ R be bounded and piecewise continuous where the
only possible discontinuities occur at the points in {X1, X2, ..., XN−1}.

Let s := max{|S(x)| : x ∈ [X0, XN ]}.
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For the complete metric space (C(I), d∞), define subspaces

C∗ := C∗(I) := {f ∈ C(I) : f(X0) = Y0, f(XN ) = YN},
C∗∗ := C∗∗(I) := {f ∈ C(I) : f(Xj) = Yj , for j = 0, 1, ..., N}.

Note that:

• C∗∗ ⊂ C∗ ⊂ C(I) are closed subspaces of C(I).

• f ∈ C∗∗ interpolates the data {(Xj , Yj) : j = 0, 1, . . . , N}.

Let b ∈ C∗ and h ∈ C∗∗.

Define a Read-Bajraktarević operator T : C(I)→ C(I) by

T (g) = h+ S · (g ◦ L− b ◦ L).
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Theorem. The mapping T : C(I)→ C(I) obeys

d∞(Tg, Th) ≤ s d∞(g, h),

∀g, h ∈ C(I). In particular, if s < 1 then T is a contraction and thus
possesses a unique fixed point f ∈ C∗∗.

Note that Tg = H + S · g ◦ L where H = h− S · b ◦ L.

A fractal interpolation function f is uniquely defined by these three
functions: H, S, and L.

f = lim
k→∞

T k(f0), f0 ∈ C∗.

The rate of convergence of {T kf0 : k ∈ N} is governed by∥∥f − T k(f0)
∥∥
∞ ≤ s

k ‖f − f0‖∞ .
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The metric space (I × R, dq)

The following metric is a generalization of the “taxi cab metric.”

Theorem. Let α, β > 0 and q : I → R. Define a mapping
dq : (I × R)× (I × R)→ [0,∞) by

dq((x1, y1) , (x2, y2)) = α |x1 − x2|+ β |(y1 − q(x1))− (y2 − q(x2))| ,

∀(x1, y1), (x2, y2) ∈ I × R. Then dq is a metric on I × R. If q is
continuous then (I × R, dq) is a complete metric space.
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Fractal interpolants as attractors of IFSs

Define wn : I × R→I × R by

wn(x, y) = (`n(x), h(`n(x)) + S(ln(x))(y − b(x)))

Define an IFS by W = (I × R;w1, w2, ..., wN ).

Let B ≥ 0 and let X = {(x, y) : x ∈ I, |y − f(x)| ≤ B} .

Theorem. Let s < 1 and let f ∈ C∗∗ be the fixed point of T . Let
∃λ` < 1 so that |`n(x1)− `n(x2)| ≤ λ` |x1 − x2| ∀x1, x2 ∈ I, ∀n. Let
∃λS > 0 so that |S(x1)− S(x2)| ≤ λS |x1 − x2| ∀x1, x2 ∈ I. Then the
IFS (X;w1, w2, ..., wN ) is contractive with respect to the metric df
with α = 1 and 0 < β < (1− λ`) /λSBλ`. In particular, under these
conditions, the IFS W has a unique attractor A = graph (f).

graph (T (g)) =W (graph (g)) , for all g ∈ C(I).

We have not provided a metric with respect to which W is contractive!
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Bi-affine fractal interpolation

Let

`n(x) := Xn−1 +

(
Xn −Xn−1

XN −X0

)
(x−X0),

S(x) = sn(`−1n (x)), for x ∈ [Xn−1, Xn], n = 1, . . . , N,

sn(x) = sn−1 +

(
sn − sn−1
Xn −Xn−1

)
(x−Xn−1) ,

with {sj : j = 0, 1, 2, ..., N} ⊂ (−1, 1).

Then S is continuous and |S(x)| ≤ max {|sj | : j = 0, 1, ..., N} =: s < 1.

Let

b(x) = Y0 +

(
YN − Y0
XN −X0

)
(x−X0)

and let

h(x) = Yn−1 +

(
Yn − Yn−1
Xn −Xn−1

)
(x−Xn−1).
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Bi-affine fractal interpolants

T has a unique fixed point f satisfying the set of functional equations

f(`n(x))− h(`n(x)) = [sn−1 + (sn − sn−1)x][f(x)− b(x)], x ∈ I.

f is called a bi-affine fractal interpolant.

Define an IFS W by

wn(x, y) = (`n(x), Yn−1 +

(
Yn − Yn−1
XN −X0

)
(x−X0)

+

[
sn−1 +

(
sn − sn−1
XN −X0

)
(x−X0)

] [
y − Y0 −

(
YN − Y0
XN −X0

)
(x−X0)

]
.

Note:

wn(XN , y) = (Xn, Yn+sn(y−YN )) and wn+1(X0, y) = (Xn, Yn+sn(y−Y0)).
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Example of a bilinear interpolant

The images of any (possibly degenerate) parallelogram with vertices
at (X0, Y0 ±H) and (XN , YN ±H), for H ∈ R under the IFS W fit
together neatly.

Figure : A bilinear fractal interpolant.
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Box dimension of bi-affine interpolants
Box-counting or box dimension of a bounded set M ⊂ Rn:

dimBM := lim
ε→0+

logNε(M)

log ε−1
, (∗)

where Nε(M) is the minumum number of square boxes, with sides
parallel to the axes, whose union contains M.

“dimBM = D” ⇐⇒ the limit in (*) exists and equals D.

Theorem. Let W denote the bi-affine IFS defined above, and let
Γ(f) denote its attractor. Let an = 1/N for n = 1, 2, ..., N , and let∑N
n=1

sn−1+sn
2 > 1. If Γ(f) is not a straight line segment then

dimB Γ(f) = 1 +

log

(
N∑
n=1

sn−1 + sn
2

)
logN

;

otherwise dimB Γ(f) = 1.
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Idea of Proof

Arguments based on approach in Hardin & M. (1985) and Barnley,
Elton, Hardin, M. (1989)

Denote by wσ1···σr (Γ(f)) the image of Γ(f) under the maps
wσ1···σr

:= wσ1
◦ · · · ◦ wσr

over the subinterval `σ1···σr
(I).

Then one can show there that exist constants 0 < c ≤ c such that

c λσ1 · · ·λσr N
|σ| ≤ Nσ1···σr (|σ|) ≤ c λσ1 · · ·λσr N

|σ|,

Here, Nσ1···σr
(|σ|) = minimum number of N−|σ| ×N−|σ|-squares

needed to cover wσ1···σr (Γ(f)) and λi := si−1+si
2 .

Nonlinearity (xy-term) rather tricky; delicate estimates are needed.
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