Bi-Affine Fractal Interpolation Functions and their Box Dimension

Peter Massopust
Institute for Biomathematics and Biometry
Helmholtz Zentrum München, Germany
and
Centre of Mathematics, Lehrstuhl M6
Technische Universität München, Germany

Joint work with Michael Barnsley (Australian National University)

Advances in Fractals and Related Topics, Dec 10-14, 2012 - Hongkong

Outline

- General iterated function systems
- Fractal interpolants defined as fixed points of Read-Bajraktarević operators
- Bi-affine fractal interpolants
- Box dimension of bi-affine fractal interpolants

General iterated functions systems (IFSs)

Let (\mathbb{X}, d) be a complete metric space with metric $d=d_{\mathbb{X}}$.
Definition. Let $M \in \mathbb{N}$. If $f_{m}: \mathbb{X} \rightarrow \mathbb{X}, m=1,2, \ldots, M$, are continuous mappings, then $\mathcal{F}=\left(\mathbb{X} ; f_{1}, f_{2}, \ldots, f_{M}\right)$ is called an iterated function system (IFS).

Define $\mathcal{F}: 2^{\mathbb{X}} \rightarrow 2^{\mathbb{X}}$ by $\mathcal{F}(B):=\bigcup_{f \in \mathcal{F}} f(B), \quad \forall B \in 2^{\mathbb{X}}$.
Let $\mathbb{H}=\mathbb{H}(\mathbb{X})$ be the hyperspace of nonempty compact subsets of \mathbb{X} endowed with the Hausdorff metric $d_{\mathbb{H}}$.

Since $\mathcal{F}(\mathbb{H}) \subset \mathbb{H}$, we can also treat \mathcal{F} as a mapping $\mathcal{F}: \mathbb{H} \rightarrow \mathbb{H}$.

Theorem.

(i) The metric space $\left(\mathbb{H}, d_{\mathbb{H}}\right)$ is complete.
(ii) If $\left(\mathbb{X}, d_{\mathbb{X}}\right)$ is compact then $\left(\mathbb{H}, d_{\mathbb{H}}\right)$ is compact.
(iii) If $\left(\mathbb{X}, d_{\mathbb{X}}\right)$ is locally compact then $\left(\mathbb{H}, d_{\mathbb{H}}\right)$ is locally compact.
(iv) If \mathbb{X} is locally compact, or if each $f \in \mathcal{F}$ is uniformly continuous, then $\mathcal{F}: \mathbb{H} \rightarrow \mathbb{H}$ is continuous.
(v) If $f: \mathbb{X} \rightarrow \mathbb{X}$ is a contraction mapping for each $f \in \mathcal{F}$, then $\mathcal{F}: \mathbb{H} \rightarrow \mathbb{H}$ is a contraction mapping.

Attractor of an IFS

Definition. A nonempty compact set $A \subset \mathbb{X}$ is said to be an attractor of the IFS \mathcal{F} if
(i) $\mathcal{F}(A)=A$ and
(ii) \exists an open set $U \subset \mathbb{X}$ such that $A \subset U$ and $\lim _{k \rightarrow \infty} \mathcal{F}^{k}(B)=A$, $\forall B \in \mathbb{H}(U)$, where the limit is taken with respect to the Hausdorff metric.

The largest open set U such that (ii) is true is called the basin of attraction (for the attractor A of the IFS \mathcal{F}).
[For more details and generalizations, see M. F. Barnsley \& A. Vince, The chaos game on a general iterated function system, Ergod. Th. \& Dynam. Syst. 31 (2011) 1073-1079.]

Fractal interpolants as fixed points of operators

Let $1<N \in \mathbb{N}$ and let $\left\{\left(X_{j}, Y_{j}\right): j=0,1, \ldots, N\right\}$ be finite set of points in the Euclidean plane with $X_{0}<X_{1}<\ldots<X_{N}$.

Set $I:=\left[X_{0}, X_{N}\right]$.
Let $\ell_{n}: I \rightarrow\left[X_{n-1}, X_{n}\right]$ be continuous bijections. $(n=1,2, \ldots, N)$
Let $L: I \rightarrow I$ be bounded with $L(x)=\ell_{n}^{-1}(x)$, for $x \in\left(X_{n-1}, X_{n}\right)$.
Let $S:\left[X_{0}, X_{N}\right] \rightarrow \mathbb{R}$ be bounded and piecewise continuous where the only possible discontinuities occur at the points in $\left\{X_{1}, X_{2}, \ldots, X_{N-1}\right\}$.

Let $s:=\max \left\{|S(x)|: x \in\left[X_{0}, X_{N}\right]\right\}$.

For the complete metric space $\left(C(I), d_{\infty}\right)$, define subspaces

$$
\begin{aligned}
& C^{*}:=C^{*}(I):=\left\{f \in C(I): f\left(X_{0}\right)=Y_{0}, f\left(X_{N}\right)=Y_{N}\right\}, \\
& C^{* *}:=C^{* *}(I):=\left\{f \in C(I): f\left(X_{j}\right)=Y_{j}, \text { for } j=0,1, \ldots, N\right\} .
\end{aligned}
$$

Note that:

- $C^{* *} \subset C^{*} \subset C(I)$ are closed subspaces of $C(I)$.
- $f \in C^{* *}$ interpolates the data $\left\{\left(X_{j}, Y_{j}\right): j=0,1, \ldots, N\right\}$.

Let $b \in C^{*}$ and $h \in C^{* *}$.
Define a Read-Bajraktarević operator $T: C(I) \rightarrow C(I)$ by

$$
T(g)=h+S \cdot(g \circ L-b \circ L) .
$$

Theorem. The mapping $T: C(I) \rightarrow C(I)$ obeys

$$
d_{\infty}(T g, T h) \leq s d_{\infty}(g, h)
$$

$\forall g, h \in C(I)$. In particular, if $s<1$ then T is a contraction and thus possesses a unique fixed point $f \in C^{* *}$.

Note that $T g=H+S \cdot g \circ L$ where $H=h-S \cdot b \circ L$.
A fractal interpolation function f is uniquely defined by these three functions: H, S, and L.

$$
f=\lim _{k \rightarrow \infty} T^{k}\left(f_{0}\right), \quad f_{0} \in C^{*} .
$$

The rate of convergence of $\left\{T^{k} f_{0}: k \in \mathbb{N}\right\}$ is governed by

$$
\left\|f-T^{k}\left(f_{0}\right)\right\|_{\infty} \leq s^{k}\left\|f-f_{0}\right\|_{\infty} .
$$

The metric space $\left(I \times \mathbb{R}, d_{q}\right)$

The following metric is a generalization of the "taxi cab metric."
Theorem. Let $\alpha, \beta>0$ and $q: I \rightarrow \mathbb{R}$. Define a mapping $d_{q}:(I \times \mathbb{R}) \times(I \times \mathbb{R}) \rightarrow[0, \infty)$ by

$$
d_{q}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\alpha\left|x_{1}-x_{2}\right|+\beta\left|\left(y_{1}-q\left(x_{1}\right)\right)-\left(y_{2}-q\left(x_{2}\right)\right)\right|,
$$

$\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in I \times \mathbb{R}$. Then d_{q} is a metric on $I \times \mathbb{R}$. If q is continuous then $\left(I \times \mathbb{R}, d_{q}\right)$ is a complete metric space.

Fractal interpolants as attractors of IFSs

Define $w_{n}: I \times \mathbb{R} \rightarrow I \times \mathbb{R}$ by

$$
w_{n}(x, y)=\left(\ell_{n}(x), h\left(\ell_{n}(x)\right)+S\left(l_{n}(x)\right)(y-b(x))\right)
$$

Define an IFS by $\mathcal{W}=\left(I \times \mathbb{R} ; w_{1}, w_{2}, \ldots, w_{N}\right)$.
Let $B \geq 0$ and let $\mathbb{X}=\{(x, y): x \in I,|y-f(x)| \leq B\}$.
Theorem. Let $s<1$ and let $f \in C^{* *}$ be the fixed point of T. Let $\exists \lambda_{\ell}<1$ so that $\left|\ell_{n}\left(x_{1}\right)-\ell_{n}\left(x_{2}\right)\right| \leq \lambda_{\ell}\left|x_{1}-x_{2}\right| \forall x_{1}, x_{2} \in I, \forall n$. Let $\exists \lambda_{S}>0$ so that $\left|S\left(x_{1}\right)-S\left(x_{2}\right)\right| \leq \lambda_{S}\left|x_{1}-x_{2}\right| \forall x_{1}, x_{2} \in I$. Then the $\operatorname{IFS}\left(\mathbb{X} ; w_{1}, w_{2}, \ldots, w_{N}\right)$ is contractive with respect to the metric d_{f} with $\alpha=1$ and $0<\beta<\left(1-\lambda_{\ell}\right) / \lambda_{S} B \lambda_{\ell}$. In particular, under these conditions, the IFS \mathcal{W} has a unique attractor $A=\operatorname{graph}(f)$.

$$
\operatorname{graph}(T(g))=\mathcal{W}(\operatorname{graph}(g)), \text { for all } g \in C(I) .
$$

We have not provided a metric with respect to which \mathcal{W} is contractive!

Bi-affine fractal interpolation

Let

$$
\begin{gathered}
\ell_{n}(x):=X_{n-1}+\left(\frac{X_{n}-X_{n-1}}{X_{N}-X_{0}}\right)\left(x-X_{0}\right) \\
S(x)=s_{n}\left(\ell_{n}^{-1}(x)\right), \quad \text { for } x \in\left[X_{n-1}, X_{n}\right], n=1, \ldots, N \\
s_{n}(x)=s_{n-1}+\left(\frac{s_{n}-s_{n-1}}{X_{n}-X_{n-1}}\right)\left(x-X_{n-1}\right),
\end{gathered}
$$

with $\left\{s_{j}: j=0,1,2, \ldots, N\right\} \subset(-1,1)$.
Then S is continuous and $|S(x)| \leq \max \left\{\left|s_{j}\right|: j=0,1, \ldots, N\right\}=: s<1$.
Let

$$
b(x)=Y_{0}+\left(\frac{Y_{N}-Y_{0}}{X_{N}-X_{0}}\right)\left(x-X_{0}\right)
$$

and let

$$
h(x)=Y_{n-1}+\left(\frac{Y_{n}-Y_{n-1}}{X_{n}-X_{n-1}}\right)\left(x-X_{n-1}\right)
$$

Bi-affine fractal interpolants

T has a unique fixed point f satisfying the set of functional equations

$$
f\left(\ell_{n}(x)\right)-h\left(\ell_{n}(x)\right)=\left[s_{n-1}+\left(s_{n}-s_{n-1}\right) x\right][f(x)-b(x)], x \in I .
$$

f is called a bi-affine fractal interpolant.
Define an IFS \mathcal{W} by

$$
\begin{aligned}
& w_{n}(x, y)=\left(\ell_{n}(x), Y_{n-1}+\left(\frac{Y_{n}-Y_{n-1}}{X_{N}-X_{0}}\right)\left(x-X_{0}\right)\right. \\
& \quad+\left[s_{n-1}+\left(\frac{s_{n}-s_{n-1}}{X_{N}-X_{0}}\right)\left(x-X_{0}\right)\right]\left[y-Y_{0}-\left(\frac{Y_{N}-Y_{0}}{X_{N}-X_{0}}\right)\left(x-X_{0}\right)\right] .
\end{aligned}
$$

Note:
$w_{n}\left(X_{N}, y\right)=\left(X_{n}, Y_{n}+s_{n}\left(y-Y_{N}\right)\right)$ and $w_{n+1}\left(X_{0}, y\right)=\left(X_{n}, Y_{n}+s_{n}\left(y-Y_{0}\right)\right)$.

Example of a bilinear interpolant

The images of any (possibly degenerate) parallelogram with vertices at $\left(X_{0}, Y_{0} \pm H\right)$ and $\left(X_{N}, Y_{N} \pm H\right)$, for $H \in \mathbb{R}$ under the IFS \mathcal{W} fit together neatly.

Figure: A bilinear fractal interpolant.

Box dimension of bi-affine interpolants

Box-counting or box dimension of a bounded set $M \subset \mathbb{R}^{n}$:

$$
\begin{equation*}
\operatorname{dim}_{B} M:=\lim _{\varepsilon \rightarrow 0+} \frac{\log \mathcal{N}_{\varepsilon}(M)}{\log \varepsilon^{-1}} \tag{*}
\end{equation*}
$$

where $\mathcal{N}_{\varepsilon}(M)$ is the minumum number of square boxes, with sides parallel to the axes, whose union contains M.
$" \operatorname{dim}_{B} M=D " \Longleftrightarrow$ the limit in $\left(^{*}\right)$ exists and equals D.
Theorem. Let \mathcal{W} denote the bi-affine IFS defined above, and let $\Gamma(f)$ denote its attractor. Let $a_{n}=1 / N$ for $n=1,2, \ldots, N$, and let $\sum_{n=1}^{N} \frac{s_{n-1}+s_{n}}{2}>1$. If $\Gamma(f)$ is not a straight line segment then

$$
\operatorname{dim}_{B} \Gamma(f)=1+\frac{\log \left(\sum_{n=1}^{N} \frac{s_{n-1}+s_{n}}{2}\right)}{\log N}
$$

otherwise $\operatorname{dim}_{B} \Gamma(f)=1$.

Idea of Proof

Arguments based on approach in Hardin \& M. (1985) and Barnley, Elton, Hardin, M. (1989)

Denote by $w_{\sigma_{1} \cdots \sigma_{r}}(\Gamma(f))$ the image of $\Gamma(f)$ under the maps $w_{\sigma_{1} \cdots \sigma_{r}}:=w_{\sigma_{1}} \circ \cdots \circ w_{\sigma_{r}}$ over the subinterval $\ell_{\sigma_{1} \cdots \sigma_{r}}(I)$.

Then one can show there that exist constants $0<\underline{c} \leq \bar{c}$ such that

$$
\underline{c} \lambda_{\sigma_{1}} \cdots \lambda_{\sigma_{r}} N^{|\sigma|} \leq \mathcal{N}_{\sigma_{1} \cdots \sigma_{r}}(|\sigma|) \leq \bar{c} \lambda_{\sigma_{1}} \cdots \lambda_{\sigma_{r}} N^{|\sigma|}
$$

Here, $\mathcal{N}_{\sigma_{1} \cdots \sigma_{r}}(|\sigma|)=$ minimum number of $N^{-|\sigma|} \times N^{-|\sigma|}$-squares needed to cover $w_{\sigma_{1} \cdots \sigma_{r}}(\Gamma(f))$ and $\lambda_{i}:=\frac{s_{i-1}+s_{i}}{2}$.

Nonlinearity ($x y$-term) rather tricky; delicate estimates are needed.

References

- M. F. Barnsely, Fractal functions and interpolation, Constr. Approx. 2 (1986) 303-329.
- M. F. Barnsley, J. Elton, D. P. Hardin and P. R. Massopust, Hidden variable fractal interpolation functions, SIAM J. Math. Anal., 20(5) (1989), 1218-1248.
- M. F. Barnsley and P. R. Massopust, Bilinear Fractal Interpolation and Box Dimension, submitted to Constructive Approximation. (http://arxiv.org/abs/1209.3139)
- D. P. Hardin and P. R. Massopust, The capacity for a class of fractal functions, Commun. Math. Phys. 105 (1986), 455-460.
- P. R. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, 1994.
- P. R. Massopust, Interpolation and Approximation with Splines and Fractals, Oxford University Press, 2010

