Isodiametric Problem w.r.t. Hausdorff Measure

Jun Luo \& Zuo Ling Zhou, Sun Yat-Sen University based on joint works with X-R Dai, W-H He, B Tan

"Advances on Fractals and Related Topics", CUHK 2012

December 14, 2012

- Isodiametric problem in \mathbb{R}^{n} asks for convex domains $C \subset \mathbb{R}^{n}$ of diameter $|C|=1$ that have maximum volume.
- (Bieberbach, 1915) proved that for any compact domain $\Omega \subset \mathbb{R}^{n}$

$$
\operatorname{Volume}(\Omega) \leq \operatorname{Volume}(\text { Ball of diameter } 1)\left(\frac{|\Omega|}{2}\right)^{n}
$$ and that equality holds if and only if Ω is a ball.

- Therefore, the ball $B \subset \mathbb{R}^{n}$ of diameter one is the unique solution of classical isodiametric problem in \mathbb{R}^{n}.
- This is "isodiametric problem with respect to Lebesgue measure". How about replacing Lebesgue measure by Hausdorff measure restricted to a self-similar set with OSC ?

$$
0
$$

- For a self-similar set $E \subset \mathbb{R}^{n}$ with OSC, it is known that

$$
\sup \left\{\frac{\mathcal{H}^{s}(X \cap E)}{|X|^{s}}:|X|>0\right\}=1
$$

- Isodiametric Problem on E then asks for compact convex domain $\Omega \subset \mathbb{R}^{n}$ with

$$
\frac{\mathcal{H}^{s}(\Omega \cap E)}{|\Omega|^{s}}=1
$$

- We call such a domain Ω an extremal set.

AIM to find extremal sets Ω for specific E and to study structure of Ω.

1. "Shape" of Ω
2. "Relative location" of Ω in E
3. Diameter $|\Omega|$ of Ω

- When Hausdorff dimension s of E is smaller than or equal to 1 , there are many examples of E for which an extremal set Ω is found.
- When Hausdorff dimension s of E is strictly greater than 1 , every known example of E s.t. an extremal set Ω has been found satisfies the following 2 properties:
(1) $s \in \mathbb{Z}$;
(2) $\left.\mathcal{H}^{s}\right|_{E}$ and Lebesgue measure on E differ by a constant.
- We will consider concrete self-similar sets E of dimension s in $(1, \infty) \backslash \mathbb{Z}$ and try to find extremal sets Ω.
- Current Talk is about a family of self-similar fractals E on \mathbb{R}^{2}. We can determine the shape and location of extremal sets Ω.
- Let $F_{\lambda}=E_{\lambda} \times \mathbb{R}$ for $0<\lambda<\frac{1}{2}$, where E_{λ} denotes the middle ($1-2 \lambda$) Cantor set.
- By Marstrand's formula the set F_{λ} has Hausdorff dimension $s=1-\frac{\ln 2}{\ln \lambda} \in(1,2)$.
- Observations:

1. $\mathcal{H}^{s}\left(X \cap F_{\lambda}\right) \leq|X|^{s}$ for any compact set X.
2. For $0<\lambda<\frac{1}{2}$, there is an extremal set Ω for IP on F_{λ}.

Theorem

- If $\lambda \leq \frac{1}{5}, \Omega$ is a copy of some extremal set Ω_{λ} with $[0,1] \subset \operatorname{proj}_{1}\left(\Omega_{\lambda}\right)$ such that $\mathcal{M} \circ \mathcal{S}\left(\Omega_{\lambda}\right) \cap F_{\lambda}=\operatorname{Disk} \cap F_{\lambda}$.
- $\mathcal{H}^{s}\left(X \cap F_{\lambda}\right)=\mathcal{H}^{s}\left(E_{\lambda} \times[0,1]\right) \mathcal{H}^{s-1} \times \mathcal{H}^{1}(X)$ for compact $X \subset \mathbb{R}^{2}$.

Theorem

If $\lambda \leq \frac{1}{5}$ diameter t_{λ} of $\Omega_{\lambda}\left(>\frac{2}{\sqrt{3}}\right)$ is determined by

$$
\begin{equation*}
2 \int_{0}^{\lambda} \frac{t d F_{\lambda}(x)}{\sqrt{t^{2}-(1-2 x)^{2}}}=\frac{s f(\lambda, t)}{t} \tag{1}
\end{equation*}
$$

where D_{t} is a disk of diameter $t \geq \frac{2}{\sqrt{3}}$ centered on the line $x=\frac{1}{2}$,

$$
F_{\lambda}(x)=\mathcal{H}^{s-1}\left(E_{\lambda} \cap[0, x]\right), \quad \underline{f(\lambda, t)=\mathcal{H}^{s-1} \times \mathcal{H}^{1}\left(D_{t} \cap F_{\lambda}\right)=}
$$

$$
4 \int_{0}^{\lambda} \sqrt{\frac{t^{2}}{4}-\left(\frac{1}{2}-x\right)^{2}} d F_{\lambda}(x)=2 \int_{0}^{\lambda} \sqrt{t^{2}-(1-2 x)^{2}} d F_{\lambda}(x)
$$

and

$$
\varphi_{t}(\lambda, t)=\frac{f_{t}(\lambda, t)}{t^{s}}-\frac{s f(\lambda, t)}{t^{s+1}}=t^{-s}\left[2 \int_{0}^{\lambda} \frac{t d F_{\lambda}(x)}{\sqrt{t^{2}-(1-2 x)^{2}}}-\frac{s f(\lambda, t)}{t}\right]
$$

$$
\begin{cases}\text { lower bound: } & f_{L}(t, \lambda, n)=\frac{4}{2^{n}} \sum_{x \in A_{n}} \sqrt{\frac{t^{2}}{4}-\left(\frac{1}{2}-x\right)^{2}} \\ \text { upper bound : } & f_{U}(t, \lambda, n)=\frac{4}{2^{n}} \sum_{x \in A_{n}} \sqrt{\frac{t^{2}}{4}-\left(\frac{1}{2}-x-\lambda^{n}\right)^{2}}\end{cases}
$$

$\underline{\text { Key fact: }\left|f_{U}-f_{L}\right| \leq 3 \lambda^{n}}$. Considering the case $n=4$, we have

Value of λ	Upper Bound of $\varphi\left(\lambda, t_{\lambda}\right)$	Lower Bound of $\varphi\left(\lambda, t_{\lambda}\right)$	Interval containing $\mathcal{H}^{s}\left(E_{\lambda} \times[0,1]\right)$
$\frac{1}{5}$	0.702626	0.701483	$(1.423232,1.425551)$
$\frac{1}{6}$	0.706784	0.706297	$(1.414859,1.415835)$
$\frac{1}{7}$	0.711554	0.711314	$(1.405375,1.405849)$
$\frac{1}{8}$	0.716226	0.716096	$(1.396207,1.396461)$
$\frac{1}{9}$	0.720599	0.720522	$(1.387734,1.387825)$
$\frac{1}{10}$	0.724629	0.724581	$(1.3800165,1.38010795)$

Thank you !

