Isodiametric Problem w.r.t. Hausdorff Measure

Jun Luo & Zuo Ling Zhou, Sun Yat-Sen University based on joint works with X-R Dai, W-H He, B Tan

"Advances on Fractals and Related Topics", CUHK 2012

December 14, 2012

► Isodiametric problem in Rⁿ asks for convex domains C ⊂ Rⁿ of diameter |C| = 1 that have maximum volume.

• (Bieberbach, 1915) proved that for any compact domain $\Omega \subset \mathbb{R}^n$

$$\operatorname{Volume}(\Omega) \leq \operatorname{Volume}(\underline{\mathsf{Ball of diameter 1}}) \left(\frac{|\Omega|}{2}\right)^n$$

and that equality holds if and only if Ω is a ball.

- Therefore, the ball B ⊂ ℝⁿ of diameter one is the <u>unique solution</u> of classical isodiametric problem in ℝⁿ.
- This is "isodiametric problem with respect to Lebesgue measure". How about replacing Lebesgue measure by Hausdorff measure restricted to a self-similar set with OSC ?

- ► For a self-similar set $E \subset \mathbb{R}^n$ with OSC, it is known that $\sup \left\{ \frac{\mathcal{H}^s(X \cap E)}{|X|^s} : |X| > 0 \right\} = 1.$
- \blacktriangleright Isodiametric Problem on E then asks for compact convex domain $\Omega \subset \mathbb{R}^n \text{ with }$

$$\frac{\mathcal{H}^s(\Omega \cap E)}{|\Omega|^s} = 1.$$

• We call such a domain Ω an *extremal set*.

<u>AIM</u> to find extremal sets Ω for specific *E* and to study structure of Ω .

1. "Shape" of Ω

- 2. "Relative location" of Ω in E
- 3. Diameter $|\Omega|$ of Ω

- When Hausdorff dimension s of E is smaller than or equal to 1, there are many examples of E for which an extremal set Ω is found.
- When Hausdorff dimension s of E is strictly greater than 1, every known example of E s.t. <u>an extremal set Ω has been found</u> satisfies the following 2 properties:

(1)
$$s \in \mathbb{Z}$$
;

- (2) $\mathcal{H}^{s}|_{E}$ and Lebesgue measure on E differ by a constant.
- We will consider concrete self-similar sets E of dimension s in (1,∞) \ Z and try to find extremal sets Ω.
- Current Talk is about a family of self-similar fractals E on R². We can determine the shape and <u>location</u> of extremal sets Ω.

- Let $F_{\lambda} = E_{\lambda} \times \mathbb{R}$ for $0 < \lambda < \frac{1}{2}$, where E_{λ} denotes the middle $(1 2\lambda)$ Cantor set.
- ▶ By Marstrand's formula the set F_{λ} has Hausdorff dimension $s = 1 - \frac{\ln 2}{\ln \lambda} \in (1, 2).$

Observations:

- 1. $\mathcal{H}^s(X \cap F_{\lambda}) \leq |X|^s$ for any compact set X.
- 2. For $0 < \lambda < \frac{1}{2}$, there is an extremal set Ω for IP on F_{λ} .

Theorem

- If λ ≤ 1/5, Ω is a copy of some extremal set Ω_λ with [0, 1] ⊂ proj₁(Ω_λ) such that M ∘ S (Ω_λ) ∩ F_λ = Disk ∩ F_λ.
- $\mathcal{H}^{s}(X \cap F_{\lambda}) = \mathcal{H}^{s}(E_{\lambda} \times [0,1])\mathcal{H}^{s-1} \times \mathcal{H}^{1}(X)$ for compact $X \subset \mathbb{R}^{2}$.

Theorem

If
$$\lambda \leq \frac{1}{5}$$
 diameter t_{λ} of Ω_{λ} $\left(>\frac{2}{\sqrt{3}}\right)$ is determined by

$$2\int_{0}^{\lambda} \frac{tdF_{\lambda}(x)}{\sqrt{t^{2} - (1 - 2x)^{2}}} = \frac{sf(\lambda, t)}{t}$$
(1)

where D_t is a disk of diameter $t \ge \frac{2}{\sqrt{3}}$ centered on the line $x = \frac{1}{2}$, $F_{\lambda}(x) = \mathcal{H}^{s-1}(E_{\lambda} \cap [0, x]), \quad \underline{f(\lambda, t)} = \mathcal{H}^{s-1} \times \mathcal{H}^1(D_t \cap F_{\lambda}) =$

$$4\int_{0}^{\lambda}\sqrt{\frac{t^{2}}{4} - \left(\frac{1}{2} - x\right)^{2}}dF_{\lambda}(x) = 2\int_{0}^{\lambda}\sqrt{t^{2} - (1 - 2x)^{2}}dF_{\lambda}(x)$$

and

$$\varphi_t(\lambda,t) = \frac{f_t(\lambda,t)}{t^s} - \frac{sf(\lambda,t)}{t^{s+1}} = t^{-s} \left[2\int_0^\lambda \frac{tdF_\lambda(x)}{\sqrt{t^2 - (1-2x)^2}} - \frac{sf(\lambda,t)}{t} \right]$$

lower bound :
$$f_L(t, \lambda, n) = \frac{4}{2^n} \sum_{x \in A_n} \sqrt{\frac{t^2}{4} - (\frac{1}{2} - x)^2}$$

upper bound : $f_U(t, \lambda, n) = \frac{4}{2^n} \sum_{x \in A_n} \sqrt{\frac{t^2}{4} - (\frac{1}{2} - x - \lambda^n)^2}$

Key fact: $|f_U - f_L| \leq 3\lambda^n$. Considering the case n = 4, we have

Value of	Upper Bound	Lower Bound	Interval containing
λ	of $arphi(\lambda,t_\lambda)$	of $arphi(\lambda,t_\lambda)$	$\mathcal{H}^s(E_\lambda \times [0,1])$
$\frac{1}{5}$	0.702626	0.701483	(1.423232, 1.425551)
$\frac{1}{6}$	0.706784	0.706297	(1.414859, 1.415835)
$\frac{1}{7}$	0.711554	0.711314	(1.405375, 1.405849)
$\frac{1}{8}$	0.716226	0.716096	(1.396207, 1.396461)
$\frac{1}{9}$	0.720599	0.720522	(1.387734, 1.387825)
$\frac{1}{10}$	0.724629	0.724581	(1.3800165, 1.38010795)

Thank you !