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1.Introduction

We present asymptotic properties for generalized Mandelbrot’s
cascades, formulated by consecutive products of random
weights whose distributions depend on a random environment
indexed by time, which is supposed to be iid.

We also present limit theorems for a closely related model,
called branching random walk on R with random environment in
time, in which the offspring distribution of a particle of
generation n and the distributions of the displacements of their
children depend on a random environment &, indexed by the
time n.
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Why Random Environment

In random environment models, the controlling distributions are
realizations of a stochastic process, rather then a fixed
(deterministic) distribution.

The random environment hypothesis is very natural, because in
practice the distributions that we observe are usually
realizations of a (measure-valued) stochastic process, rather
then being constant.

This explains partially why random environment models attract
much attention of many mathematicians and physicians.
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2. Description of the model

Mandelbrot’s cascade on a Galton-Watson tree. Let
(NU7 AU1 9 AU27 )

be a famille of independent and identically distributed random
variables, indexed by all finite sequences u of positive integers,
with values in N x R x Ry x ---. By convention,

N = Ny, A; = Ay;. We are interested in the total weights of
generation n:

Y= ZAU1AU1U2"'AU1...U,” n>1,

where the sum is taken over all particles u = uy...u, of gen. n
of the Galton-Watson tree T associated with (N,): 0 € T; if
ueT,thenuic Tiff1<i<N,.
Yn
{EYn

forms a martingale, called generalized Mandelbrot’s martingale.
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Mandelbrot’s cascade in a Random Environment

Instead of the assumption of identical distribution, we consider
the case where the distributions of

(NU7 AU1 ) AU27 )

depend on an environment = (£,) indexed by the time n:
given the environment £ = (&,), the above vector is of
distribution i, = u(&p) if |u| = n; the random distributions &, are
supposed to be iid (as measure-valued random variables).
Notice that if A, = 1 for all u, then

Yo=card{ueT: |u=n},n>1,

is a branching process in a random environment.
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boundary of the branching tree T in RE

Let
OoT ={u=ujlp...: uln:=uy---up € TVn>0}

(with u|0 = 0) be the boundary of the Galton-Watson tree T,
equipped with the ultrametric

d(u,v) = e vVl

u A v denoting the maximal common sequence of v and v.

We consider the supercritical case where 0T # () with positive
probability.

Quansheng LIU Mandelbrot’s cascade in a Random Environment



Quenched and annealed laws

Let (I', P¢) be the probability space under which the process is
defined when the environment ¢ is fixed. As usual, P is called
quenched law.

The total probability space can be formulated as the product
space (0N x T, P), where P = P ® 7 in the sense that for all
measurable and positive g, we have

[aap= [ [ gte.)oPev)ar(o).

where 7 is the law of the environment £. P is called annealed
law. P may be considered to be the conditional probability of P
given &.
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Mandelbrot’s martingale in a random environment

Without loss of generality we suppose that
N
Ee ZA,- =1 as.
i=1

(otherwise we replace Ay by Ai/mn, where mp, = E: SN, Ay
with |u| = n). Then

Yn= Z Xy, with X, = AV1 .. 'AV1'“Vn’ ifv=wvi---v,
[v]=n

is @ martingale associated with the natural filtration (both under
P¢ and under P), called Mandelbrot’s martingale in a random
environment. Hence the limit

Y=1mY,

n—o0

exists a.s. with E.Y < 1 a.s.
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Mandelbrot’s measure in a random environment

For each finite sequence u we define Y, with the weighted tree
TY beginning with u just as we defined Y with the weighted tree
T beginning with ) (so that Yj = Y). ltis clear that for each finit
sequence u,

(Xy = 1). Therefore by Kolmogorov’s consistency theorem
there is a unique measure = p, on T such thatforallu e T,

wu([u]) = PuZy, where [ul={vedT: u<v}
with mass u(0T) = Z. Notice that when Z # 0,

plle)) _ o 2vsuvi=k Py
Z k—o0 Z‘V'Zk PV ’

describing the proportion of the weights of the descendants of
u over the total weights of all individuals (in gen. k).
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Problems that we consider

Following Mandelbrot (1972), Kahane- Peyriére (1976) and
others, we consider:

1) Non degeneration of Y;

2) Existence of moments and weighted moments of Y;
3) Hausdorff dim of i and its multifractal spectrum
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3. Main results on Mandelbrot’s cascades in RE

Non-degeneration of Y. For x € R, write

Theorem 0 (Biggins - Kyprianou (2004) ; Kuhlbusch (2004))

Assume that

N
P(1):=EY AlnA
i=1

is well-defined with value in [—o0, c0). Then the following
assertions are equivalent:

(@) p)(1) <0and EYsInT Yy < oc;
(b) EY =1;
(c) P(Y =0) < 1.
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Theorem 1 (Liang and Liu (2012)

For a > 1, the following assertions are equivalent:
(@) EY} < ooand p(a) < 1;

(b) EY® < o0.

Recall:

N
Yi= Z Ai7
i:1

N
pla) =E Z Af.
i=1
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Comments on the Moments

For the deterministic case:
(a) When N is constant or bounded: Kahane and Peyriére
(1976), Durrett and Liggett (1983); direct estimation using

Y=AYs+..+AxvYN.

(b) When A; < 1: Bingham and Doney (1975), using Tauberian
theorems and the functional equation for ¢(t) = Ee~!":

N
o(t) = E] [ o(At).
i=1

(c) Inthe general case: Liu (2000), using the Peyriere
measure to transform the above distributional equation to

Z=AZ+ B inlaw,

where (A, B) is indep. of Z, P(Z € dx) = xP(Y € dx).
In the random environment case: We failed to prove the result
using these methods; new ideas are needed.
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More Comments on the Moments in RE

For branching process in a random environment:

(a) Afanasyev (2001) gave a sufficient condition (which is not
necessary) with several pages of calculation

(b) Guivarc’h and Liu (2001) gave the criterion.
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Weighted Moments of order o > 1

The preceding theorem suggests that if p(a) < 1, then Y; and
Y would have similar tail behavior. We shall ensure this by
establishing comparison theorems for weighted moments of Y;
and Y.

Let ¢: [0, 00) — [0, 00) be a measurable function slowly varying
at oo in the sense that

=1vA>0.

Theorem 2 (Liang and Liu (2012))

For o € Int{a > 1 : p(a) < 1}, the following assertions are
equivalent:

(@) EYPL(Y1) < oo;
(b) EYU(Y) < 0.
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Comments on Weighted Moments of order o > 1

In the deterministic case:

(a) For GW process: Bingham and Doney (1974): « not an
integer; additional condition needed otherwise
Alsmeyer and Rdsler (2004): « not a power of 2.

(b) For Mandelbrot’s martingale: Alsmeyer and Kuhlbusch
(2010): « not a power of 2.

Mais tool of the approach: Burkholder-Davis-Gundy inequality
(convex inequality for martingales).
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Weighted Moments of order 1

The situation for order 1 is different. Let ¢ : [0, o0) — [0, o) be
slowly varying at oo, and concave on [ag, oo) for some ag > 0.

Set 0
X .
0 if x <1.

Example: if £(x) = (Inx)2, then #(x) = (Inx)&" /(a+ 1), x > 1.

Theorem 3 (Liang and Huang (2012)

Assume that there exists some ¢ > 0 such that p(1 + §) < co. If
EY14(Y7) < oo, then EY/(Y) < occ.

The converse also holds in special cases. The argument leads
to a new proof for the non-degeneration of Y.
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Holder exponent and Hausdorff dimension of

Theorem 4 (Liang and Liu (2012))

Assume EY;(logt Y4)2 < coand p/(1) ;== EXN . A;InA; < 0.
Then for P-almost all w and p,-almost all u € 9T,

jim 129 (UInD _ gy

n— o0 n

Consequently,
dim p, = —p'(1) as.
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Two critical values t_ and ¢,

Let
N
A(t) =Elog mo(t), with mo(t) =E¢ > Al
i=1

be well defined for all t € R. Set

A(t) = tN(t) — A(2).
Then X' (t) = tA\'(t), A(t) decreases on R_, increases on R,
and attains its minimum at 0 with min; A(t) = p(0) = —A(0) < 0.

Let
t=inf{teR: A(t) <0},

t =sup{t e R: A(t) <O0}.
Then —co <t. <0<t} <oo,andfort eR,
=0 if t=t_ orty,
A <0 if L <t<ty,

>0 if t<t ort>ty
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Legendre transform of A

Let
N*(x) = sup{xt — A(t)}
teR
be the Legendre transform of A. Then

A*(x) = A(t) if x=N(t)forsometecR,
T 4o i x < N(—o0)or x > N(+o),

and

min A*(x) = A*(N'(0)) = —A(0) = —Ellog mp(0) < 0.
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Multifractal spectrum of /.,

For x € R, define

E(x)={uedT: lim log pr(luln) _

— 00 n

Theorem 5 (Liang and Liu (2012))

Under simple moment conditions, we have a.s.

(@) If x < N(t-) or x > N(ty), then E(x) = 0;

(b) If x =AN(t)forsomete Rt <t<t,,then E(x) # 0, and

dim E(x) = —A*(x) = —A(t).

For deterministic case: Holley and Waymire (1992), Molchan
(1996), Barral (1997,2000).
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4. Branching Random Walk in a Random Env.

The Mandelbrot cascade in a random environment is closely
related to the Branching Random Walk with a random
environment in time defined as follows:

S@ - O, SU1...Un - |Og lqu1 + cee |Og AU1~~Un7

where S, denotes the position of u € T (the i-th child ui of u
has displacement log A,;). Let

Zn = Z os,

lul=n

be the counting measure of particles of gen. n, so that for
ACR,

Zn(A) = number of particles of gen. n located inA.
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Convergence of the free energy

The laplace transform of Z, is
Z,(t) = / e¥dZy(x) = ) e
lul=n

It is also called the partition function. Notice that
{Zn(t)/E:Zn(1)} is a Mandelbrot martingale in random
environment.

Theorem 6 (Huang and Liu (2012)

We have a.s.

- ) ANt)  if te(t,ty)
im 292000 _ Ry = d ey i et
e N tN(t) if t<t

Deterministic case: B. Chauvin and A. Rouault (1997), J.
Franchi (1993).
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Large Deviation Principle

Let A*(x) = sup,{tx — A(t)} be the Legendre transform of A. By
the preceding theorem and Gartner- Ellis’ theorem, we obtain:

Theorem 7 (Huang and Liu 2012)

A.s. the sequence of finite measures A — Z,(nA) satisfies a
large deviation principle with rate function A*: for each
measurable subset A of R,

—inf A*(x) < Iiminflloan(nA)
XeA°

< lim sup— log Z(nA) < — inf A*(x),

n—oo XxeA

where A° denotes the interior of A, and A its closure.

For deterministic branching random walk: see Biggins (1977).
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Leftmost and rightmost particles

The two critical values t_ and t, are related to the positions of
leftmost and rightmost particles defined by

L,= min S;, R, = max S,.
lul=n lul=n

Theorem 8 (Huang and Liu 2012)

It is a.s. that

For deterministic branching random walk: see Biggins (1977).

Quansheng LIU Mandelbrot’s cascade in a Random Environment



Multifractal spectrum for the BRW

For x € R, define

T
E(x)={uedT: IlrrpT:x}

Theorem 9 (Liang and Liu (2012))

Under simple moment conditions, we have a.s.

(@) Ifx < N(t-)orx > N(t}), then E(x) = 0;

(b) If x =AN(t)forsomete Rt <t<t,,then E(x)#(, and

dim E(x) = —A*(x) = —A(1).

For deterministic environment case and in R9: Attia and Barral
(2012).
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Thank you !

Quansheng.Liu@univ-ubs.fr

Quansheng LIU Mandelbrot’s cascade in a Random Environment



