Mandelbrot's cascade in a Random Environment

Quansheng LIU

A joint work with Chunmao Huang (Ecole Polytechnique) and Xingang Liang (Beijing Business and Technology Univ.)

Université de Bretagne-Sud (Univ. South Brittany)

International Conference on Advances on Fractals and Related Topics December 10-14, 2012, The Chinese University of Hong Kong

Quansheng LIU Mandelbrot's cascade in a Random Environment

We present asymptotic properties for generalized Mandelbrot's cascades, formulated by consecutive products of random weights whose distributions depend on a random environment indexed by time, which is supposed to be iid.

We also present limit theorems for a closely related model, called branching random walk on \mathbb{R} with random environment in time, in which the offspring distribution of a particle of generation *n* and the distributions of the displacements of their children depend on a random environment ξ_n indexed by the time *n*.

In random environment models, the controlling distributions are realizations of a stochastic process, rather then a fixed (deterministic) distribution.

The random environment hypothesis is very natural, because in practice the distributions that we observe are usually realizations of a (measure-valued) stochastic process, rather then being constant.

This explains partially why random environment models attract much attention of many mathematicians and physicians.

2. Description of the model

Mandelbrot's cascade on a Galton-Watson tree. Let

$$(N_u, A_{u1}, A_{u2}, ...)$$

be a famille of independent and identically distributed random variables, indexed by all finite sequences *u* of positive integers, with values in $\mathbb{N} \times \mathbb{R}_+ \times \mathbb{R}_+ \times \cdots$. By convention, $N = N_{\emptyset}, A_i = A_{\emptyset i}$. We are interested in the total weights of generation *n*:

$$Y_n=\sum A_{u_1}A_{u_1u_2}\cdots A_{u_1\dots u_n}, \quad n\geq 1,$$

where the sum is taken over all particles $u = u_1...u_n$ of gen. n of the Galton-Watson tree T associated with $(N_u): \emptyset \in T$; if $u \in T$, then $ui \in T$ iff $1 \le i \le N_u$.

$$\{\frac{Y_n}{EY_n}: n \ge 1\}$$

forms a martingale, called generalized Mandelbrot's martingale.

Instead of the assumption of identical distribution, we consider the case where the distributions of

$$(N_u, A_{u1}, A_{u2}, ...)$$

depend on an environment $\xi = (\xi_n)$ indexed by the time *n*: given the environment $\xi = (\xi_n)$, the above vector is of distribution $\mu_n = \mu(\xi_n)$ if |u| = n; the random distributions ξ_n are supposed to be iid (as measure-valued random variables). Notice that if $A_u = 1$ for all *u*, then

$$Y_n = \text{ card } \{ u \in T : |u| = n \}, n \ge 1,$$

is a branching process in a random environment.

boundary of the branching tree T in RE

Let

$$\partial T = \{ u = u_1 u_2 \dots : u | n := u_1 \cdots u_n \in T \forall n \ge 0 \}$$

(with $u|0 = \emptyset$) be the boundary of the Galton-Watson tree T, equipped with the ultrametric

$$d(u,v)=e^{-|u\wedge v|},$$

 $u \wedge v$ denoting the maximal common sequence of u and v.

We consider the supercritical case where $\partial T \neq \emptyset$ with positive probability.

< 回 > < 回 > < 回 > … 回

Let (Γ, P_{ξ}) be the probability space under which the process is defined when the environment ξ is fixed. As usual, P_{ξ} is called *quenched law*.

The total probability space can be formulated as the product space $(\Theta^{\mathbb{N}} \times \Gamma, P)$, where $P = P_{\xi} \otimes \tau$ in the sense that for all measurable and positive *g*, we have

$$\int g dP = \int \int g(\xi, y) dP_{\xi}(y) d\tau(\xi),$$

where τ is the law of the environment ξ . *P* is called *annealed law*. P_{ξ} may be considered to be the conditional probability of *P* given ξ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Mandelbrot's martingale in a random environment

Without loss of generality we suppose that

$$\mathbb{E}_{\xi}\sum_{i=1}^{N}A_{i}=1$$
 a.s.

(otherwise we replace A_{ui} by A_{ui}/m_n , where $m_n = E_{\xi} \sum_{i=1}^N A_{ui}$ with |u| = n). Then

$$Y_n = \sum_{|v|=n} X_v$$
, with $X_v = A_{v_1} \cdots A_{v_1 \cdots v_n}$, if $v = v_1 \cdots v_n$

is a martingale associated with the natural filtration (both under P_{ξ} and under P), called Mandelbrot's martingale in a random environment. Hence the limit

$$Y = \lim_{n \to \infty} Y_n$$

exists a.s. with $E_{\xi}Y \leq 1$ a.s.

(E) < E)</p>

Mandelbrot's measure in a random environment

For each finite sequence u we define Y_u with the weighted tree T^u beginning with u just as we defined Y with the weighted tree T beginning with \emptyset (so that $Y_{\emptyset} = Y$). It is clear that for each finit sequence u,

$$X_u Y_u = \sum_{i=1}^{N_u} X_{ui} Y_{ui}$$

 $(X_{\emptyset} = 1)$. Therefore by Kolmogorov's consistency theorem there is a unique measure $\mu = \mu_{\omega}$ on ∂T such that for all $u \in T$,

$$\mu([u]) = P_u Z_u$$
, where $[u] = \{v \in \partial T : u < v\}$

with mass $\mu(\partial T) = Z$. Notice that when $Z \neq 0$,

$$\frac{\mu([u])}{Z} = \lim_{k \to \infty} \frac{\sum_{\nu > u, |\nu| = k} P_{\nu}}{\sum_{|\nu| = k} P_{\nu}},$$

describing the proportion of the weights of the descendants of u over the total weights of all individuals (in gen. k).

Following Mandelbrot (1972), Kahane- Peyrière (1976) and others, we consider:

- 1) Non degeneration of Y;
- 2) Existence of moments and weighted moments of Y;
- 3) Hausdorff dim of μ and its multifractal spectrum

3. Main results on Mandelbrot's cascades in RE

Non-degeneration of *Y*. For $x \in \mathbb{R}$, write

$$\rho(\mathbf{x}) = \mathbb{E} \sum_{i=1}^{N} A_i^{\mathbf{x}}.$$
 (1)

Theorem 0 (Biggins - Kyprianou (2004) ; Kuhlbusch (2004))

Assume that

$$ho'(1) := \mathbb{E}\sum_{i=1}^N A_i \ln A_i$$

is well-defined with value in $[-\infty,\infty)$. Then the following assertions are equivalent:

(a)
$$\rho'(1) < 0$$
 and $\mathbb{E}Y_1 \ln^+ Y_1 < \infty$;
(b) $\mathbb{E}Y = 1$;
(c) $\mathbb{P}(Y = 0) < 1$.

Theorem 1 (Liang and Liu (2012)

For $\alpha > 1$, the following assertions are equivalent:

I

(a)
$$\mathbb{E} Y_1^{\alpha} < \infty$$
 and $\rho(\alpha) < 1$;

(b) $\mathbb{E}Y^{\alpha} < \infty$.

Recall:

$$Y_1 = \sum_{i=1}^N A_i,$$
$$p(\alpha) = \mathbb{E} \sum_{i=1}^N A_i^{\alpha}.$$

・ロト ・ 理 ト ・ ヨ ト ・

3

Comments on the Moments

For the deterministic case:

 (a) When N is constant or bounded: Kahane and Peyrière (1976), Durrett and Liggett (1983); direct estimation using

$$Y = A_1 Y_1 + \ldots + A_N Y_N.$$

(b) When $A_i \leq 1$: Bingham and Doney (1975), using Tauberian theorems and the functional equation for $\phi(t) = \mathbb{E}e^{-tY}$:

$$\phi(t) = \mathbb{E} \prod_{i=1}^{N} \phi(A_i t).$$

(c) In the general case: Liu (2000), using the Peyrière measure to transform the above distributional equation to

$$Z = AZ + B$$
 in law,

where (A, B) is indep. of Z, $\mathbb{P}(Z \in dx) = x\mathbb{P}(Y \in dx)$. In the random environment case: We failed to prove the result using these methods; new ideas are needed.

For branching process in a random environment:

- (a) Afanasyev (2001) gave a sufficient condition (which is not necessary) with several pages of calculation
- (b) Guivarc'h and Liu (2001) gave the criterion.

Weighted Moments of order $\alpha > 1$

The preceding theorem suggests that if $\rho(\alpha) < 1$, then Y_1 and Y would have similar tail behavior. We shall ensure this by establishing comparison theorems for weighted moments of Y_1 and Y.

Let $\ell:[0,\infty)\mapsto [0,\infty)$ be a measurable function slowly varying at ∞ in the sense that

$$\lim_{x\to\infty}\frac{\ell(\lambda x)}{\ell(x)}=1 \,\,\forall \lambda>0.$$

Theorem 2 (Liang and Liu (2012))

For $\alpha \in \text{Int}\{a > 1 : \rho(\alpha) < 1\}$, the following assertions are equivalent:

(a)
$$\mathbb{E} Y_1^{\alpha} \ell(Y_1) < \infty;$$

(b) $\mathbb{E} Y^{\alpha} \ell(Y) < \infty.$

In the deterministic case:

- (a) For GW process: Bingham and Doney (1974): α not an integer; additional condition needed otherwise Alsmeyer and Rösler (2004): α not a power of 2.
- (b) For Mandelbrot's martingale: Alsmeyer and Kuhlbusch (2010): α not a power of 2.

Mais tool of the approach: Burkholder-Davis-Gundy inequality (convex inequality for martingales).

A 3 1 A 3 1

The situation for order 1 is different. Let $\ell : [0, \infty) \mapsto [0, \infty)$ be slowly varying at ∞ , and concave on $[a_0, \infty)$ for some $a_0 \ge 0$. Set

$$\hat{\ell}(x) = \begin{cases} \int_1^x \frac{\ell(t)}{t} dt & \text{if } x > 1; \\ 0 & \text{if } x \le 1. \end{cases}$$

Example: if $\ell(x) = (\ln x)^a$, then $\hat{\ell}(x) = (\ln x)^{a+1}/(a+1), x > 1$.

Theorem 3 (Liang and Huang (2012)

Assume that there exists some $\delta > 0$ such that $\rho(1 + \delta) < \infty$. If $\mathbb{E} Y_1 \hat{\ell}(Y_1) < \infty$, then $\mathbb{E} Y \ell(Y) < \infty$.

The converse also holds in special cases. The argument leads to a new proof for the non-degeneration of Y.

ヘロン ヘアン ヘビン ヘビン

Theorem 4 (Liang and Liu (2012))

Assume $EY_1(\log^+ Y_1)^2 < \infty$ and $\rho'(1) := \mathbb{E} \sum_{i=1}^N A_i \ln A_i < 0$. Then for \mathbb{P} -almost all ω and μ_{ω} -almost all $u \in \partial T$,

$$\lim_{n\to\infty}\frac{\log\mu_\omega([u|n])}{n}=\rho'(1).$$

Consequently,

dim
$$\mu_{\omega} = -\rho'(1)$$
 a.s.

Two critical values t_{-} and t_{+}

Let

$$\Lambda(t) = \mathbb{E} \log m_0(t), \text{ with } m_0(t) = \mathbb{E}_{\xi} \sum_{i=1}^N A_i^t,$$

be well defined for all $t \in \mathbb{R}$. Set

$$\lambda(t) = t\Lambda'(t) - \Lambda(t).$$

Then $\lambda'(t) = t\Lambda''(t)$, $\lambda(t)$ decreases on \mathbb{R}_- , increases on \mathbb{R}_+ , and attains its minimum at 0 with $\min_t \lambda(t) = \rho(0) = -\Lambda(0) < 0$. Let

$$t_{-} = \inf\{t \in \mathbb{R} : \lambda(t) \le 0\},\$$

$$t_{+} = \sup\{t \in \mathbb{R} : \lambda(t) \le 0\}.$$

Then $-\infty \leq t_{-} < 0 < t_{+} \leq \infty$, and for $t \in \mathbb{R}$,

$$\lambda(t) \begin{cases} = 0 & \text{if} \quad t = t_{-} \text{ or } t_{+}, \\ < 0 & \text{if} \quad t_{-} < t < t_{+}, \\ > 0 & \text{if} \quad t < t_{-} \text{ or } t > t_{-} \end{cases}$$

Legendre transform of ∧

Let

$$\Lambda^*(x) = \sup_{t\in\mathbb{R}} \{xt - \Lambda(t)\}$$

be the Legendre transform of Λ . Then

$$\Lambda^*(x) = \begin{cases} \lambda(t) & \text{if } x = \Lambda'(t) \text{ for some } t \in \mathbb{R}, \\ +\infty & \text{if } x < \Lambda'(-\infty) \text{ or } x > \Lambda'(+\infty), \end{cases}$$

and

$$\min_{x}\Lambda^*(x)=\Lambda^*(\Lambda'(0))=-\Lambda(0)=-E\log m_0(0)<0.$$

(문)(문)

ъ

< 🗇 🕨

Multifractal spectrum of μ_{ω}

For $x \in \mathbb{R}$, define

$$E(x) = \{ u \in \partial T : \lim_{n \to \infty} \frac{\log \mu_{\omega}([u|n])}{n} = x \}$$

Theorem 5 (Liang and Liu (2012))

Under simple moment conditions, we have a.s. (a) If $x < \Lambda'(t_{-})$ or $x > \Lambda'(t_{+})$, then $E(x) = \emptyset$; (b) If $x = \Lambda'(t)$ for some $t \in \mathbb{R}$, $t_{-} \le t \le t_{+}$, then $E(x) \ne \emptyset$, and

dim
$$E(x) = -\Lambda^*(x) = -\lambda(t)$$
.

For deterministic case: Holley and Waymire (1992), Molchan (1996), Barral (1997,2000).

・ 同 ト ・ ヨ ト ・ ヨ ト ・

4. Branching Random Walk in a Random Env.

The Mandelbrot cascade in a random environment is closely related to the Branching Random Walk with a random environment in time defined as follows:

$$S_{\emptyset} = 0, \ S_{u_1 \dots u_n} = \log A_{u_1} + \dots + \log A_{u_1 \dots u_n},$$

where S_u denotes the position of $u \in T$ (the *i*-th child *ui* of *u* has displacement log A_{ui}). Let

$$Z_n = \sum_{|u|=n} \delta_{\mathcal{S}_u}$$

be the counting measure of particles of gen. *n*, so that for $A \subset \mathbb{R}$,

 $Z_n(A)$ = number of particles of gen. n located in A.

・ 同 ト ・ ヨ ト ・ ヨ ト

Convergence of the free energy

The laplace transform of Z_n is

$$ilde{Z}_n(t) := \int e^{tx} dZ_n(x) = \sum_{|u|=n} e^{tS_u}.$$

It is also called the partition function. Notice that $\{\tilde{Z}_n(t)/E_{\xi}\tilde{Z}_n(t)\}$ is a Mandelbrot martingale in random environment.

Theorem 6 (Huang and Liu (2012)

We have a.s.

$$\lim_{n\to\infty}\frac{\log\tilde{Z}_n(t)}{n}=\tilde{\Lambda}(t):=\begin{cases} \Lambda(t) & \text{if} \quad t\in(t_-,t_+)\\ t\Lambda'(t_+) & \text{if} \quad t\geq t_+\\ t\Lambda'(t_-) & \text{if} \quad t\leq t_- \end{cases}$$

Deterministic case: B. Chauvin and A. Rouault (1997), J. Franchi (1993).

Large Deviation Principle

Let $\tilde{\Lambda}^*(x) = \sup_t \{tx - \tilde{\Lambda}(t)\}$ be the Legendre transform of $\tilde{\Lambda}$. By the preceding theorem and Gärtner- Ellis' theorem, we obtain:

Theorem 7 (Huang and Liu 2012)

A.s. the sequence of finite measures $A \mapsto Z_n(nA)$ satisfies a large deviation principle with rate function $\tilde{\Lambda}^*$: for each measurable subset A of \mathbb{R} ,

$$\begin{array}{rcl} -\inf_{x\in\mathcal{A}^o}\tilde{\Lambda}^*(x) &\leq & \liminf_{n\to\infty}\frac{1}{n}\log Z_n(n\mathcal{A})\\ &\leq & \limsup_{n\to\infty}\frac{1}{n}\log Z_n(n\mathcal{A})\leq -\inf_{x\in\bar{\mathcal{A}}}\tilde{\Lambda}^*(x). \end{array}$$

where A^o denotes the interior of A, and \overline{A} its closure.

For deterministic branching random walk: see Biggins (1977).

Leftmost and rightmost particles

The two critical values t_{-} and t_{+} are related to the positions of leftmost and rightmost particles defined by

$$L_n = \min_{|u|=n} S_u, \ R_n = \max_{|u|=n} S_u.$$

Theorem 8 (Huang and Liu 2012)

It is a.s. that

$$\lim_{n} \frac{L_{n}}{n} = \Lambda'(t_{-}),$$
$$\lim_{n} \frac{R_{n}}{n} = \Lambda'(t_{+}).$$

For deterministic branching random walk: see Biggins (1977).

Multifractal spectrum for the BRW

For $x \in \mathbb{R}$, define

$$\mathsf{E}(x) = \{ u \in \partial T : \lim_{n} \frac{S_{u|n}}{n} = x \}$$

Theorem 9 (Liang and Liu (2012))

Under simple moment conditions, we have a.s. (a) If $x < \Lambda'(t_{-})$ or $x > \Lambda'(t_{+})$, then $E(x) = \emptyset$; (b) If $x = \Lambda'(t)$ for some $t \in \mathbb{R}$, $t_{-} \le t \le t_{+}$, then $E(x) \neq \emptyset$, and

dim
$$E(x) = -\Lambda^*(x) = -\lambda(t)$$
.

For deterministic environment case and in \mathbb{R}^d : Attia and Barral (2012).

(日本) (日本) (日本)

Thank you !

Quansheng.Liu@univ-ubs.fr

Quansheng LIU Mandelbrot's cascade in a Random Environment

< ∃→

э