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.. 1.Introduction

We present asymptotic properties for generalized Mandelbrot’s
cascades, formulated by consecutive products of random
weights whose distributions depend on a random environment
indexed by time, which is supposed to be iid.

We also present limit theorems for a closely related model,
called branching random walk on R with random environment in
time, in which the offspring distribution of a particle of
generation n and the distributions of the displacements of their
children depend on a random environment ξn indexed by the
time n.
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.. Why Random Environment

In random environment models, the controlling distributions are
realizations of a stochastic process, rather then a fixed
(deterministic) distribution.

The random environment hypothesis is very natural, because in
practice the distributions that we observe are usually
realizations of a (measure-valued) stochastic process, rather
then being constant.

This explains partially why random environment models attract
much attention of many mathematicians and physicians.
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.. 2. Description of the model

Mandelbrot’s cascade on a Galton-Watson tree. Let

(Nu,Au1,Au2, ...)

be a famille of independent and identically distributed random
variables, indexed by all finite sequences u of positive integers,
with values in N× R+ × R+ × · · · . By convention,
N = N∅,Ai = A∅i . We are interested in the total weights of
generation n:

Yn =
∑

Au1Au1u2 · · ·Au1...un , n ≥ 1,

where the sum is taken over all particles u = u1...un of gen. n
of the Galton-Watson tree T associated with (Nu): ∅ ∈ T ; if
u ∈ T , then ui ∈ T iff 1 ≤ i ≤ Nu.

{ Yn

EYn
: n ≥ 1}

forms a martingale, called generalized Mandelbrot’s martingale.
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.. Mandelbrot’s cascade in a Random Environment

Instead of the assumption of identical distribution, we consider
the case where the distributions of

(Nu,Au1,Au2, ...)

depend on an environment ξ = (ξn) indexed by the time n:
given the environment ξ = (ξn), the above vector is of
distribution µn = µ(ξn) if |u| = n; the random distributions ξn are
supposed to be iid (as measure-valued random variables).
Notice that if Au = 1 for all u, then

Yn = card {u ∈ T : |u| = n},n ≥ 1,

is a branching process in a random environment.
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.. boundary of the branching tree T in RE

Let

∂T = {u = u1u2... : u|n := u1 · · ·un ∈ T ∀n ≥ 0}

(with u|0 = ∅) be the boundary of the Galton-Watson tree T,
equipped with the ultrametric

d(u, v) = e−|u∧v |,

u ∧ v denoting the maximal common sequence of u and v .

We consider the supercritical case where ∂T ̸= ∅ with positive
probability.
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.. Quenched and annealed laws

Let (Γ,Pξ) be the probability space under which the process is
defined when the environment ξ is fixed. As usual, Pξ is called
quenched law.
The total probability space can be formulated as the product
space (ΘN × Γ,P), where P = Pξ ⊗ τ in the sense that for all
measurable and positive g, we have∫

gdP =

∫ ∫
g(ξ, y)dPξ(y)dτ(ξ),

where τ is the law of the environment ξ. P is called annealed
law. Pξ may be considered to be the conditional probability of P
given ξ.
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.. Mandelbrot’s martingale in a random environment

Without loss of generality we suppose that

Eξ

N∑
i=1

Ai = 1 a.s.

(otherwise we replace Aui by Aui/mn, where mn = Eξ
∑N

i=1 Aui
with |u| = n). Then

Yn =
∑
|v |=n

Xv , with Xv = Av1 · · ·Av1···vn , if v = v1 · · · vn

is a martingale associated with the natural filtration (both under
Pξ and under P), called Mandelbrot’s martingale in a random
environment. Hence the limit

Y = lim
n→∞

Yn

exists a.s. with EξY ≤ 1 a.s.
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.. Mandelbrot’s measure in a random environment

For each finite sequence u we define Yu with the weighted tree
T u beginning with u just as we defined Y with the weighted tree
T beginning with ∅ (so that Y∅ = Y ). It is clear that for each finit
sequence u,

XuYu =
Nu∑
i=1

XuiYui

(X∅ = 1). Therefore by Kolmogorov’s consistency theorem
there is a unique measure µ = µω on ∂T such that for all u ∈ T ,

µ([u]) = PuZu, where [u] = {v ∈ ∂T : u < v}

with mass µ(∂T ) = Z . Notice that when Z ̸= 0,

µ([u])
Z

= lim
k→∞

∑
v>u,|v |=k Pv∑

|v |=k Pv
,

describing the proportion of the weights of the descendants of
u over the total weights of all individuals (in gen. k ).
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.. Problems that we consider

Following Mandelbrot (1972), Kahane- Peyrière (1976) and
others, we consider:

1) Non degeneration of Y ;

2) Existence of moments and weighted moments of Y ;
3) Hausdorff dim of µ and its multifractal spectrum
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.. 3. Main results on Mandelbrot’s cascades in RE

Non-degeneration of Y . For x ∈ R, write

ρ(x) = E
N∑

i=1

Ax
i . (1)

.
Theorem 0 (Biggins - Kyprianou (2004) ; Kuhlbusch (2004))
..

.

. ..

.

.

Assume that

ρ′(1) := E
N∑

i=1

Ai ln Ai

is well-defined with value in [−∞,∞). Then the following
assertions are equivalent:
(a) ρ′(1) < 0 and EY1 ln+ Y1 < ∞;
(b) EY = 1;
(c) P(Y = 0) < 1.
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.. Moments

.
Theorem 1 (Liang and Liu (2012)
..

.

. ..

.

.

For α > 1, the following assertions are equivalent:
(a) EYα

1 < ∞ and ρ(α) < 1;
(b) EYα < ∞.

Recall:

Y1 =
N∑

i=1

Ai ,

ρ(α) = E
N∑

i=1

Aα
i .
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.. Comments on the Moments

For the deterministic case:
(a) When N is constant or bounded: Kahane and Peyrière

(1976), Durrett and Liggett (1983); direct estimation using

Y = A1Y1 + ...+ ANYN .

(b) When Ai ≤ 1: Bingham and Doney (1975), using Tauberian
theorems and the functional equation for ϕ(t) = Ee−tY :

ϕ(t) = E
N∏

i=1

ϕ(Ai t).

(c) In the general case: Liu (2000), using the Peyrière
measure to transform the above distributional equation to

Z = AZ + B in law,

where (A,B) is indep. of Z , P(Z ∈ dx) = xP(Y ∈ dx).
In the random environment case: We failed to prove the result
using these methods; new ideas are needed.
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.. More Comments on the Moments in RE

For branching process in a random environment:
(a) Afanasyev (2001) gave a sufficient condition (which is not

necessary) with several pages of calculation
(b) Guivarc’h and Liu (2001) gave the criterion.
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.. Weighted Moments of order α > 1

The preceding theorem suggests that if ρ(α) < 1, then Y1 and
Y would have similar tail behavior. We shall ensure this by
establishing comparison theorems for weighted moments of Y1
and Y .
Let ℓ : [0,∞) 7→ [0,∞) be a measurable function slowly varying
at ∞ in the sense that

lim
x→∞

ℓ(λx)
ℓ(x)

= 1 ∀λ > 0.

.
Theorem 2 (Liang and Liu (2012))
..

.

. ..

.

.

For α ∈ Int{a > 1 : ρ(α) < 1}, the following assertions are
equivalent:
(a) EYα

1 ℓ(Y1) < ∞;
(b) EYαℓ(Y ) < ∞.
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.. Comments on Weighted Moments of order α > 1

In the deterministic case:

(a) For GW process: Bingham and Doney (1974): α not an
integer; additional condition needed otherwise
Alsmeyer and Rösler (2004): α not a power of 2.

(b) For Mandelbrot’s martingale: Alsmeyer and Kuhlbusch
(2010): α not a power of 2.

Mais tool of the approach: Burkholder-Davis-Gundy inequality
(convex inequality for martingales).
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.. Weighted Moments of order 1

The situation for order 1 is different. Let ℓ : [0,∞) 7→ [0,∞) be
slowly varying at ∞, and concave on [a0,∞) for some a0 ≥ 0.
Set

ℓ̂(x) =

{∫ x
1

ℓ(t)
t dt if x > 1;

0 if x ≤ 1.

Example: if ℓ(x) = (ln x)a, then ℓ̂(x) = (ln x)a+1/(a + 1), x > 1.
.
Theorem 3 (Liang and Huang (2012)
..

.

. ..

.

.

Assume that there exists some δ > 0 such that ρ(1 + δ) < ∞. If
EY1ℓ̂(Y1) < ∞, then EY ℓ(Y ) < ∞.

The converse also holds in special cases. The argument leads
to a new proof for the non-degeneration of Y .
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.. Hölder exponent and Hausdorff dimension of µ

.
Theorem 4 (Liang and Liu (2012))
..

.

. ..

.

.

Assume EY1(log+ Y1)
2 < ∞ and ρ′(1) := E

∑N
i=1 Ai ln Ai < 0.

Then for P-almost all ω and µω-almost all u ∈ ∂T ,

lim
n→∞

logµω([u|n])
n

= ρ′(1).

Consequently,
dim µω = −ρ′(1) a.s.
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.. Two critical values t− and t+
Let

Λ(t) = E log m0(t), with m0(t) = Eξ

N∑
i=1

At
i ,

be well defined for all t ∈ R. Set

λ(t) = tΛ′(t)− Λ(t).

Then λ′(t) = tΛ”(t), λ(t) decreases on R−, increases on R+,
and attains its minimum at 0 with mint λ(t) = ρ(0) = −Λ(0) < 0.
Let

t− = inf{t ∈ R : λ(t) ≤ 0},
t+ = sup{t ∈ R : λ(t) ≤ 0}.

Then −∞ ≤ t− < 0 < t+ ≤ ∞, and for t ∈ R,

λ(t)


= 0 if t = t− or t+,
< 0 if t− < t < t+,
> 0 if t < t− or t > t+
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.. Legendre transform of Λ

Let
Λ∗(x) = sup

t∈R
{xt − Λ(t)}

be the Legendre transform of Λ. Then

Λ∗(x) =
{

λ(t) if x = Λ′(t) for some t ∈ R,
+∞ if x < Λ′(−∞) or x > Λ′(+∞),

and

min
x

Λ∗(x) = Λ∗(Λ′(0)) = −Λ(0) = −E log m0(0) < 0.
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.. Multifractal spectrum of µω

For x ∈ R, define

E(x) = {u ∈ ∂T : lim
n→∞

logµω([u|n])
n

= x}

.
Theorem 5 (Liang and Liu (2012))
..

.

. ..

.

.

Under simple moment conditions, we have a.s.
(a) If x < Λ′(t−) or x > Λ′(t+), then E(x) = ∅;
(b) If x = Λ′(t) for some t ∈ R, t− ≤ t ≤ t+, then E(x) ̸= ∅, and

dim E(x) = −Λ∗(x) = −λ(t).

For deterministic case: Holley and Waymire (1992), Molchan
(1996), Barral (1997,2000).
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.. 4. Branching Random Walk in a Random Env.

The Mandelbrot cascade in a random environment is closely
related to the Branching Random Walk with a random
environment in time defined as follows:

S∅ = 0, Su1...un = log Au1 + · · ·+ log Au1···un ,

where Su denotes the position of u ∈ T (the i-th child ui of u
has displacement log Aui ). Let

Zn =
∑
|u|=n

δSu

be the counting measure of particles of gen. n, so that for
A ⊂ R,

Zn(A) = number of particles of gen. n located inA.
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.. Convergence of the free energy

The laplace transform of Zn is

Z̃n(t) :=
∫

etxdZn(x) =
∑
|u|=n

etSu .

It is also called the partition function. Notice that
{Z̃n(t)/EξZ̃n(t)} is a Mandelbrot martingale in random
environment.
.
Theorem 6 (Huang and Liu (2012)
..

.

. ..

.

.

We have a.s.

lim
n→∞

log Z̃n(t)
n

= Λ̃(t) :=


Λ(t) if t ∈ (t−, t+)
tΛ′(t+) if t ≥ t+
tΛ′(t−) if t ≤ t−

Deterministic case: B. Chauvin and A. Rouault (1997), J.
Franchi (1993).
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.. Large Deviation Principle

Let Λ̃∗(x) = supt{tx − Λ̃(t)} be the Legendre transform of Λ̃. By
the preceding theorem and Gärtner- Ellis’ theorem, we obtain:
.
Theorem 7 (Huang and Liu 2012)
..

.

. ..

.

.

A.s. the sequence of finite measures A 7→ Zn(nA) satisfies a
large deviation principle with rate function Λ̃∗: for each
measurable subset A of R,

− inf
x∈Ao

Λ̃∗(x) ≤ lim inf
n→∞

1
n

log Zn(nA)

≤ lim sup
n→∞

1
n

log Zn(nA) ≤ − inf
x∈Ā

Λ̃∗(x),

where Ao denotes the interior of A, and Ā its closure.

For deterministic branching random walk: see Biggins (1977).
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.. Leftmost and rightmost particles

The two critical values t− and t+ are related to the positions of
leftmost and rightmost particles defined by

Ln = min
|u|=n

Su, Rn = max
|u|=n

Su.

.
Theorem 8 (Huang and Liu 2012)
..

.

. ..

.

.

It is a.s. that
lim

n

Ln

n
= Λ′(t−),

lim
n

Rn

n
= Λ′(t+).

For deterministic branching random walk: see Biggins (1977).
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.. Multifractal spectrum for the BRW

For x ∈ R, define

E(x) = {u ∈ ∂T : lim
n

Su|n

n
= x}

.
Theorem 9 (Liang and Liu (2012))
..

.

. ..

.

.

Under simple moment conditions, we have a.s.
(a) If x < Λ′(t−) or x > Λ′(t+), then E(x) = ∅;
(b) If x = Λ′(t) for some t ∈ R, t− ≤ t ≤ t+, then E(x) ̸= ∅, and

dim E(x) = −Λ∗(x) = −λ(t).

For deterministic environment case and in Rd : Attia and Barral
(2012).
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