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Schrödinger operator with Sturm potential

Schrödinger operator on l2(Z):

(Hα,V ψ)n = ψn−1 + ψn+1 + vnψn, ∀n ∈ Z, ∀ψ ∈ l2(Z).

(vn)n∈Z: potential. Sturm potential:

vn = V χ[1−α,1)(nα+ φ mod 1), ∀n ∈ Z,

α = [0; a1, a2, · · · ]: frequency

V > 0: coupling; φ ∈ [0, 1): phase (take φ = 0)

Spectrum
σ(Hα,V ) = {x ∈ R : xI −Hα,V no bounded inverse } := σ.

1989, Bellissard and et. al.(BIST), Commun. Math. Phys.

∀V > 0, α irrational, L [σ] = 0.
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Fractal dimensions

Let α = [0; a1, a2, · · · ],

K∗ = lim inf
n

(a1 · · · an)1/n, K∗ = lim sup
n

(a1 · · · an)1/n

2004, L., Wen, Potential Analysis, V > 20,

• if K∗ <∞, then 0 < dimH σ < 1

• if K∗ =∞, then dimH σ = 1.

L., Qu, Wen, preprint, V > 25,

• if K∗ <∞, then 0 < dimB σ < 1

• if K∗ =∞, then dimB σ = 1.
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Asymptotic property of Fractal dimension

2008, Damanik et. al., CMP, α = [0; a1, a2, · · · ], an ≡ 1,

limV→∞(log V ) dimBσ = − log(
√

2− 1).

2007, L., Peyrière, Wen, Comptes Randus Mathematique,
supn an <∞, V > 20, s∗, s

∗ pre-dim,

dimH σ ≤ s∗ ≤ s∗ ≤ dimBσ,
lim

V→∞
s∗ log V = − log f∗(α), lim

V→∞
s∗ log V = − log f∗(α).

2011, Fan, L., Wen, Ergodic Theory and Dynamical Systems,
supn an <∞, then dimH σ = s∗ ≤ s∗ = dimBσ

L., Qu, Wen, preprint, V > 25, no restriction on {an},

lim
V→∞

(log V )dimH σ = − log f∗(α),

lim
V→∞

(log V )dimBσ = − log f∗(α).
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Case of bounded quotient

2011, Fan, L., Wen, Ergodic Theory and Dynamical Systems.

Theorem

Let α = [0; a1, a2, · · · ], supn an <∞, V > 20,

dimH σ = s∗, dimB σ = s∗.

Theorem

If α = [0; a1, a2, a3, · · · ] with (an)n≥1 ultimate periodic, V > 20

s∗ = s∗.

For (an)n≥1 ultimately periodic, we give an algorithm so that one
can estimation s∗ in any accuracy.
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Case of unbounded quotient

L., Qu, Wen, preprint.

Theorem

Let α = [0; a1, a2, · · · ], V > 25,

dimH σ = s∗, dimB σ = s∗.

lim
V→∞

s∗ · log V = − log f∗(α), lim
V→∞

s∗ · log V = − log f∗(α).

s∗, s
∗ are continuous on V .

Key techniques

Cookie-Cutter-like structure

trace formula

Homogeneous Moran set
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Cantor set

Let I = [0, 1], f : I → R, f(x) =

{
3x, 0 ≤ x ≤ 1

2
3(1− x), 1

2 < x ≤ 1
.

Then E = {x ∈ I : ∀n ≥ 0, fn(x) ∈ I} = Cantor set, and

dimH E = dimP E = dimBE =
log 2

log 3
= sup

µ:f−inv

hµ(f)∫
log |Df |dµ

.

Cookie-Cutter: f non-linear.

Cookie-Cutter-like: change fn to fn ◦ fn−1 ◦ · · · ◦ f1
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Definition for Cookie-Cutter set

Let I = [0, 1], I1, I2 ⊂ I, and f : I1 ∪ I2 → I satisfy:

(i) f |I1 , f |I2 is an 1− 1mapping to I.

(ii) f is c1+γ Hölder: |Df(x)−Df(y)| ≤ c|x− y|γ .

(iii) f is Expansive, 1 < b ≤ |Df(x)| ≤ B <∞.

E = {x ∈ I : ∀n ≥ 0, fn(x) ∈ I} Cookie-Cutter set of f .
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Definition of Cookie-Cutter like set

Given {(fk,
⊔qk
j=1 I

k
j , ck, γk, bk, Bk)}k≥1 satisfy:

(i’) fk|Ikj is an 1− 1mapping to I.

(ii’) fk is c1+γk Hölder

(iii’) fk is Expansive.

Cookie-Cutter-like set (CC-like set)

E = {x ∈ I : fk ◦ · · · ◦ f1(x) ∈ I, ∀k ≥ 0}.
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Symbol system and pre-dimension

Let Ωn =
∏n
k=1{1, · · · , qk}, Fn = fn ◦ · · · ◦ f1, ∀ω ∈ Ωn,

Fn is monotone on Iω, Fn(Iω) = I.

∀n > 0, {Iω}ω∈Ωn is a covering of E.

∀k ≥ 1, let sk satisfies (∃.1.)
∑

ω∈Ωk
|Iω|sk = 1, and

s∗ = lim inf
k

sk, s∗ = lim sup
k

sk.
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Ma, Rao, Wen, Sci. China A, 2001

Let E be CC-like set for {(fk,
⊔qk
j=1 I

k
j , ck, γk, bk, Bk)}k≥1.

Theorem

dimH E = s∗, dimP E = dimBE = s∗.

Theorem

s∗, s
∗ depend continuously on {(fk,

⊔qk
j=1 I

k
j , ck, γk, bk, Bk)}k≥1.

σ(Hα,V ) has a kind of CC-like structure (multi-type).

Let α = [0; a1, a2, · · · ], ak partly determines fk.

(ak)k≥1 bounded implies bounded expansive.
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key properties [MRW01]

Recall Fn = fn ◦ · · · ◦ f1 , ∀ω ∈ Ωn, Fn(Iω) = I.

Bounded variation. ∃ξ ≥ 1, ∀n ≥ 1, ω ∈ Ωn, x, y ∈ Iω,

ξ−1 ≤ |DFn(x)|
|DFn(y)|

< ξ, |Iω| ∼ |DFn(x)|−1.

Bounded covariation. ∀m > k ≥ 1, ω1, ω2 ∈ Ωk,
τ ∈ Ωk+1,m,

ξ−2 |Iω2∗τ |
|Iω2 |

≤ |Iω1∗τ |
|Iω1 |

≤ ξ2 |Iω2∗τ |
|Iω2 |

.

Existence of Gibbs-like measure. Given β > 0, there exist
η > 0 and a probability measure µβ supported by E such that
for any n ≥ 1 and ω0 ∈ Ωn, we have

η−1 |Iω0 |β∑
ω∈Ωn

|Iω|β
≤ µβ(Iω0) ≤ η |Iω0 |β∑

ω∈Ωn

|Iω|β
.
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Method to proof bounded variation for spectrum

Let In+1 ⊂ In ⊂ In−1 be interval of order n+ 1, n and n− 1,

Fi is monotone on Ii,
Fi(Ii) = [−2, 2], i = n+ 1, n, n− 1.

In stead of Fn = fn ◦ · · · ◦ f1 in CC-like case, we have

Fn+1 = z(Fn, Fn−1)Sp(Fn)− Fn−1Sp−1(Fn), ∗

where

z(x, y) is a solution of the equation x2 + y2 + z2 − xyz = V 2,
Sp(·) chebishev polynomial,
p determined by an and type of In+1, In, In−1.

From (∗), for any x, y ∈ In+1, we can estimate by iteration

DFn+1(x)

DFn(x)
,

DFn+1(x)

DFn(x)
− DFn+1(y)

DFn(y)
.

14 / 19



Schrödinger operator with Sturm potential
Cookie-Cutter-like sets

Sketch of proof

Bounded variation and bounded covariation
Deal with different types
Homogeneous Moran set

Case of {an} unbounded

Illustrate in simple case of Fn = fn ◦ fn−1 ◦ · · · ◦ f1,

ln |DFn(x)|
|DFn(y)| = ln |DFn(x)| − ln |DFn(y)|

≤
n∑
i=1
| ln |Dfi(Fi−1(x))| − ln |Dfi(Fi−1(y))||

≤
n∑
i=1
|Dfi(Fi−1(x))−Dfi(Fi−1(y))|

≤
n∑
i=1
|Fi−1(x)− Fi−1(y)|γ < ln ξ

For any b > a > 1,
replace ln b− ln a < b− a
by ln b− ln a < a−1(b− a).
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Deal with different types for unbounded {an}

For i = 1, 2, 3, m ≥ k > 1, define

b(k,i)m,s = Sum

{
|J |s :

J is an order m interval,
its order-k-father is of type i

}
.

We have to estimate

ratio between b
(m,i)
m,s , i = 1, 2, 3.

ratio between b
(k,i)
m,s , i = 1, 2, 3, m� k.
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Fractal dimensions

It is direct to prove that

dimH σ ≤ s∗ ≤ s∗ ≤ dimBσ.

We only need to prove

dimH σ ≥ s∗, dimBσ ≤ s∗.

For {ak} unbounded, they are more difficult.

Our idea come from Feng, Wen, Wu’s (Sci. China, 1997)
study on Homogeneous Moran set.
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Homogeneous Moran sets

M ({nk}, {ck}) a class of Homogeneous Moran sets (nk ≥ 2)
any E ∈M ({nk}, {ck}) has a Homogeneous Moran structure:

Classical Cantor set is in M ({nk}, {ck}) with

nk ≡ 2, ck ≡
1

3
.

multi-type, non-linear, throw ε-interval away(ε→ 0)
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Thank you !
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