Schrödinger operator with Sturm potentials —Fractal dimensions

Liu Qinghui

Beijing Institute of Technology

Joint work with Qu Yanhui and Wen Zhiying

Hong Kong, Dec. 12, 2012

Outline

1 Schrödinger operator with Sturm potential

- Spectrum
- study history
- recent result

2 Cookie-Cutter-like sets

- Cantor set
- Cookie-Cutter set and Cookie-Cutter like set

3 Sketch of proof

- Bounded variation and bounded covariation
- Deal with different types
- Homogeneous Moran set

Spectrum study history recent result

Schrödinger operator with Sturm potential

Schrödinger operator on $l^2(\mathbb{Z})$:

$$(H_{\alpha,V}\psi)_n = \psi_{n-1} + \psi_{n+1} + v_n\psi_n, \ \forall n \in \mathbb{Z}, \ \forall \psi \in l^2(\mathbb{Z}).$$

• $(v_n)_{n \in \mathbb{Z}}$: potential. Sturm potential:

$$v_n = V \ \chi_{[1-\alpha,1)}(n\alpha + \phi \mod 1), \quad \forall n \in \mathbb{Z},$$

• $\alpha = [0; a_1, a_2, \cdots]$: frequency

• V > 0: coupling; $\phi \in [0,1]$: phase (take $\phi = 0$)

• Spectrum

 $\sigma(H_{\alpha,V}) = \{x \in \mathbb{R} : xI - H_{\alpha,V} \text{ no bounded inverse}\} := \sigma.$

• 1989, Bellissard and et. al. (BIST), Commun. Math. Phys.

 $\forall V > 0, \alpha \text{ irrational}, \mathscr{L}[\sigma] = 0.$

+ b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < <

Spectrum study history recent result

Schrödinger operator with Sturm potential

Schrödinger operator on $l^2(\mathbb{Z})$:

$$(H_{\alpha,V}\psi)_n = \psi_{n-1} + \psi_{n+1} + v_n\psi_n, \ \forall n \in \mathbb{Z}, \ \forall \psi \in l^2(\mathbb{Z}).$$

• $(v_n)_{n \in \mathbb{Z}}$: potential. Sturm potential:

$$v_n = V \ \chi_{[1-\alpha,1)}(n\alpha + \phi \mod 1), \quad \forall n \in \mathbb{Z},$$

• $\alpha = [0; a_1, a_2, \cdots]$: frequency

- V > 0: coupling; $\phi \in [0,1)$: phase (take $\phi = 0$)
- Spectrum

 $\sigma(H_{\alpha,V}) = \{x \in \mathbb{R} : xI - H_{\alpha,V} \text{ no bounded inverse }\} := \sigma.$

1989, Bellissard and et. al. (BIST), Commun. Math. Phys.

 $\forall V > 0, \alpha \text{ irrational}, \mathscr{L}[\sigma] = 0.$

+ b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < <

Spectrum study history recent result

Schrödinger operator with Sturm potential

Schrödinger operator on $l^2(\mathbb{Z})$:

$$(H_{\alpha,V}\psi)_n = \psi_{n-1} + \psi_{n+1} + v_n\psi_n, \ \forall n \in \mathbb{Z}, \ \forall \psi \in l^2(\mathbb{Z}).$$

• $(v_n)_{n \in \mathbb{Z}}$: potential. Sturm potential:

$$v_n = V \ \chi_{[1-\alpha,1)}(n\alpha + \phi \mod 1), \quad \forall n \in \mathbb{Z},$$

• $\alpha = [0; a_1, a_2, \cdots]$: frequency

• V > 0: coupling; $\phi \in [0,1)$: phase (take $\phi = 0$)

Spectrum

 $\sigma(H_{\alpha,V}) = \{x \in \mathbb{R} : xI - H_{\alpha,V} \text{ no bounded inverse }\} := \sigma.$

1989, Bellissard and et. al (BIST), Commun. Math. Phys.

 $\forall V > 0, \alpha \text{ irrational}, \mathscr{L}[\sigma] = 0.$

+ b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < b > < <

Spectrum study history recent result

Schrödinger operator with Sturm potential

Schrödinger operator on $l^2(\mathbb{Z})$:

$$(H_{\alpha,V}\psi)_n = \psi_{n-1} + \psi_{n+1} + v_n\psi_n, \ \forall n \in \mathbb{Z}, \ \forall \psi \in l^2(\mathbb{Z}).$$

• $(v_n)_{n \in \mathbb{Z}}$: potential. Sturm potential:

$$v_n = V \ \chi_{[1-\alpha,1)}(n\alpha + \phi \mod 1), \quad \forall n \in \mathbb{Z},$$

• $\alpha = [0; a_1, a_2, \cdots]$: frequency

• V > 0: coupling; $\phi \in [0,1)$: phase (take $\phi = 0$)

• Spectrum $\sigma(H_{\alpha,V}) = \{x \in \mathbb{R} : xI - H_{\alpha,V} \text{ no bounded inverse }\} := \sigma.$

• 1989, Bellissard and et. al.(BIST), Commun. Math. Phys. $\forall V > 0, \alpha \text{ irrational}, \mathscr{L}[\sigma] = 0.$

Spectrum study history recent result

Fractal dimensions

Let
$$\alpha = [0; a_1, a_2, \cdots],$$

 $K_* = \liminf_n (a_1 \cdots a_n)^{1/n}, \quad K^* = \limsup_n (a_1 \cdots a_n)^{1/n}$
• 2004, L., Wen, Potential Analysis, $V > 20,$
• if $K_* < \infty$, then $0 < \dim_H \sigma < 1$
• if $K_* = \infty$, then $\dim_H \sigma = 1.$
• L., Qu, Wen, preprint, $V > 25,$
• if $K^* < \infty$, then $0 < \dim_B \sigma < 1$
• if $K^* = \infty$, then $\dim_B \sigma = 1.$

4/19

Spectrum study history recent result

Asymptotic property of Fractal dimension

• 2008, Damanik et. al., *CMP*,
$$lpha=[0;a_1,a_2,\cdots]$$
, $a_{m n}\equiv 1$

$$\lim_{V \to \infty} (\log V) \ \overline{\dim}_B \sigma = -\log(\sqrt{2} - 1).$$

• 2007, L., Peyrière, Wen, *Comptes Randus Mathematique*, $\sup_n a_n < \infty$, V > 20, s_*, s^* pre-dim,

•
$$\dim_H \sigma \leq s_* \leq s^* \leq \dim_B \sigma$$
,

- $\lim_{V \to \infty} s_* \log V = -\log f_*(\alpha), \quad \lim_{V \to \infty} s^* \log V = -\log f^*(\alpha).$
- 2011, Fan, L., Wen, *Ergodic Theory and Dynamical Systems*, $\sup_n a_n < \infty$, then $\dim_H \sigma = s_* \le s^* = \overline{\dim}_B \sigma$
- L., Qu, Wen, preprint, V > 25, no restriction on $\{a_n\}$,

$$\lim_{V \to \infty} (\log V) \dim_H \sigma = -\log f_*(\alpha),$$
$$\lim_{V \to \infty} (\log V) \overline{\dim}_B \sigma = -\log f^*(\alpha).$$

Spectrum study history recent result

Case of bounded quotient

2011, Fan, L., Wen, Ergodic Theory and Dynamical Systems.

Theorem Let $\alpha = [0; a_1, a_2, \cdots]$, $\sup_n a_n < \infty$, V > 20, $\dim_H \sigma = s_*, \quad \overline{\dim}_B \sigma = s^*.$ Theorem If $\alpha = [0; a_1, a_2, a_3, \cdots]$ with $(a_n)_{n \ge 1}$ ultimate periodic, V > 20 $s_{*} = s^{*}$. For $(a_n)_{n\geq 1}$ ultimately periodic, we give an algorithm so that one

For $(a_n)_{n\geq 1}$ ultimately periodic, we give an algorithm so that one can estimation s_* in any accuracy.

<<u>

<br</u>

Spectrum study history recent result

Case of unbounded quotient

L., Qu, Wen, preprint.

Theorem

Let
$$\alpha = [0; a_1, a_2, \cdots]$$
, $V > 25$,

• $\dim_H \sigma = s_*, \quad \overline{\dim}_B \sigma = s^*.$

•
$$\lim_{V \to \infty} s_* \cdot \log V = -\log f_*(\alpha), \quad \lim_{V \to \infty} s^* \cdot \log V = -\log f^*(\alpha).$$

• s_*, s^* are continuous on V.

Key techniques

- Cookie-Cutter-like structure
- trace formula
- Homogeneous Moran set

Cantor set Cookie-Cutter set and Cookie-Cutter like set

2

Cantor set

• Let
$$I = [0, 1], f: I \to \mathbb{R}, f(x) = \begin{cases} 3x, & 0 \le x \le \frac{1}{2} \\ 2(1 - x), & 1 \le x \le 1 \end{cases}$$

Then $E = \{x \in I : \forall n \ge 0, f^n(x) \in I\} =$ Cantor set, and

$$\dim_H E = \dim_P E = \overline{\dim}_B E = \frac{\log 2}{\log 3} = \sup_{\mu: f - inv} \frac{h_\mu(f)}{\int \log |Df| d\mu}.$$

• Cookie-Cutter: f non-linear.

ullet Cookie-Cutter-like: change f^n to $f_n\circ f_{n-1}\circ \cdots \circ f_1$

8/19

Cantor set Cookie-Cutter set and Cookie-Cutter like set

9/19

Definition for Cookie-Cutter set

Let
$$I = [0, 1]$$
, $I_1, I_2 \subset I$, and $f : I_1 \cup I_2 \rightarrow I$ satisfy:
(i) $f|_{I_1}, f|_{I_2}$ is an $1 - 1$ mapping to I .
(ii) f is $c^{1+\gamma}$ Hölder: $|Df(x) - Df(y)| \le c|x - y|^{\gamma}$.
(iii) f is Expansive, $1 < b \le |Df(x)| \le B < \infty$.
• $E = \{x \in I : \forall n \ge 0, f^n(x) \in I\}$ Cookie-Cutter set of f .
 $I_1 = I_2$

Definition of Cookie-Cutter like set

Given
$$\{(f_k, \bigsqcup_{j=1}^{q_k} I_j^k, c_k, \gamma_k, b_k, B_k)\}_{k \ge 1}$$
 satisfy
(i') $f_k|_{I_k^k}$ is an $1 - 1$ mapping to I .

- (ii') f_k is $c^{1+\gamma_k}$ Hölder
- (iiii') f_k is Expansive.
 - Cookie-Cutter-like set (CC-like set)

$$E = \{x \in I : f_k \circ \dots \circ f_1(x) \in I, \forall k \ge 0\}.$$

Cantor set Cookie-Cutter set and Cookie-Cutter like set

Symbol system and pre-dimension

• Let $\Omega_n = \prod_{k=1}^n \{1, \cdots, q_k\}$, $F_n = f_n \circ \cdots \circ f_1$, $\forall \omega \in \Omega_n$,

 F_n is monotone on I_ω , $F_n(I_\omega) = I$.

• $\forall n > 0$, $\{I_{\omega}\}_{\omega \in \Omega_n}$ is a covering of E.

• $\forall k \geq 1$, let s_k satisfies ($\exists .1.$) $\sum_{\omega \in \Omega_k} |I_{\omega}|^{s_k} = 1$, and

$$s_* = \liminf_k s_k, \quad s^* = \limsup_k s_k$$

Cantor set Cookie-Cutter set and Cookie-Cutter like set

Ma, Rao, Wen, Sci. China A, 2001

Let E be CC-like set for
$$\{(f_k, \bigsqcup_{j=1}^{q_k} I_j^k, c_k, \gamma_k, b_k, B_k)\}_{k \ge 1}$$
.

Theorem

$$\dim_H E = s_*, \dim_P E = \overline{\dim}_B E = s^*.$$

Theorem

$$s_*,s^*$$
 depend continuously on $\{(f_k,igsqcup_{j=1}^{q_k}I_j^k,c_k,\gamma_k,b_k,B_k)\}_{k\geq 1}.$

• $\sigma(H_{\alpha,V})$ has a kind of CC-like structure (multi-type).

- Let $\alpha = [0; a_1, a_2, \cdots]$, a_k partly determines f_k .
- $(a_k)_{k\geq 1}$ bounded implies bounded expansive.

Cantor set Cookie-Cutter set and Cookie-Cutter like set

key properties [MRW01]

Recall
$$F_n=f_n\circ \cdots \circ f_1$$
 , $orall \omega\in \Omega_n$, $F_n(I_\omega)=I$.

• Bounded variation. $\exists \xi \geq 1$, $\forall n \geq 1$, $\omega \in \Omega_n$, $x, y \in I_\omega$,

$$\xi^{-1} \le \frac{|DF_n(x)|}{|DF_n(y)|} < \xi, \qquad |I_{\omega}| \sim |DF_n(x)|^{-1}.$$

• Bounded covariation. $\forall m > k \ge 1, \omega_1, \omega_2 \in \Omega_k, \tau \in \Omega_{k+1,m},$

$$\xi^{-2} \frac{|I_{\omega_2 * \tau}|}{|I_{\omega_2}|} \le \frac{|I_{\omega_1 * \tau}|}{|I_{\omega_1}|} \le \xi^2 \frac{|I_{\omega_2 * \tau}|}{|I_{\omega_2}|}$$

• Existence of Gibbs-like measure. Given $\beta > 0$, there exist $\eta > 0$ and a probability measure μ_{β} supported by E such that for any $n \ge 1$ and $\omega_0 \in \Omega_n$, we have

$$-\frac{|I_{\omega_0}|^{\beta}}{\sum\limits_{\omega\in\Omega_n}|I_{\omega}|^{\beta}} \le \mu_{\beta}(I_{\omega_0}) \le \eta \frac{|I_{\omega_0}|^{\beta}}{\sum\limits_{\omega\in\Omega_n}|I_{\omega}|^{\beta}}.$$

Bounded variation and bounded covariation Deal with different types Homogeneous Moran set

Method to proof bounded variation for spectrum

• Let $I_{n+1} \subset I_n \subset I_{n-1}$ be interval of order n+1, n and n-1,

• F_i is monotone on I_i ,

•
$$F_i(I_i) = [-2, 2], \qquad i = n+1, n, n-1.$$

• In stead of $F_n = f_n \circ \cdots \circ f_1$ in CC-like case, we have

$$F_{n+1} = z(F_n, F_{n-1})S_p(F_n) - F_{n-1}S_{p-1}(F_n),$$

where

- z(x,y) is a solution of the equation $x^2 + y^2 + z^2 xyz = V^2$,
- $S_p(\cdot)$ chebishev polynomial,
- p determined by a_n and type of I_{n+1} , I_n , I_{n-1} .

• From (*), for any $x, y \in I_{n+1}$, we can estimate by iteration

$$\frac{DF_{n+1}(x)}{DF_n(x)}, \qquad \frac{DF_{n+1}(x)}{DF_n(x)} - \frac{DF_{n+1}(y)}{DF_n(y)}.$$

4/19

Bounded variation and bounded covariation Deal with different types Homogeneous Moran set

15/19

Case of $\{a_n\}$ unbounded

• Illustrate in simple case of $F_n = f_n \circ f_{n-1} \circ \cdots \circ f_1$,

$$\begin{split} \ln \frac{|DF_n(x)|}{|DF_n(y)|} &= \ln |DF_n(x)| - \ln |DF_n(y)| \\ &\leq \sum_{i=1}^n |\ln |Df_i(F_{i-1}(x))| - \ln |Df_i(F_{i-1}(y))|| \\ &\leq \sum_{i=1}^n |Df_i(F_{i-1}(x)) - Df_i(F_{i-1}(y))| \\ &\leq \sum_{i=1}^n |F_{i-1}(x) - F_{i-1}(y)|^{\gamma} < \ln \xi \end{split}$$

Bounded variation and bounded covariation Deal with different types Homogeneous Moran set

Deal with different types for unbounded $\{a_n\}$

For i = 1, 2, 3, $m \ge k > 1$, define

 $b_{m,s}^{(k,i)} = \operatorname{Sum} \left\{ |J|^s : \begin{array}{c} J \text{ is an order } m \text{ interval,} \\ \text{its order-}k\text{-father is of type } i \end{array} \right\}.$

We have to estimate

- ratio between $b_{m,s}^{(m,i)}$, i = 1, 2, 3.
- ratio between $b_{m,s}^{(k,i)}$, i=1,2,3, $m\gg k.$

Schrödinger operator with Sturm potential Cookie-Cutter-like sets Sketch of proof Homogeneous Moran set

Fractal dimensions

• It is direct to prove that

$$\dim_H \sigma \leq s_* \leq s^* \leq \overline{\dim}_B \sigma.$$

We only need to prove

$$\dim_H \sigma \geq s_*, \quad \dim_B \sigma \leq s^*$$

- For $\{a_k\}$ unbounded, they are more difficult.
- Our idea come from Feng, Wen, Wu's (Sci. China, 1997) study on Homogeneous Moran set.

Schrödinger operator with Sturm potential Cookie-Cutter-like sets Sketch of proof Homogeneous Moran set

Homogeneous Moran sets

• $\mathcal{M}(\{n_k\}, \{c_k\})$ a class of Homogeneous Moran sets $(n_k \ge 2)$ any $E \in \mathcal{M}(\{n_k\}, \{c_k\})$ has a Homogeneous Moran structure:

Schrödinger operator with Sturm potential	
Cookie-Cutter-like sets	Deal with different types
Sketch of proof	Homogeneous Moran set

