Diophantine approximation of the orbit of 1 in beta-transformation dynamical system

Bing LI (joint work with Baowei Wang and Jun Wu)

South China University of Technology and University of Oulu

CUHK, December, 2012

Diophantine approximation of the orbits of 1 under beta-transformations

(2) β -transformation and β -expansion

3 Distribution of regular cylinders in parameter space

イロト イポト イヨト イヨト

-

Diophantine approximation of the orbits of 1 under beta-transformations

イロト イポト イヨト イヨト

э

Backgrounds

• Poincaré Recurrence Theorem

Let (X, \mathcal{B}, μ, T) be a measure-preserving dynamical system (probability space) and $B \subset X$ with positive measure. Then

 $\mu\{x \in B : T^n x \in B \text{ infinitely often (i.o.)}\} = \mu(B).$

• Birkhoff ergodic theorem

Assume that μ is ergodic, then

$$\mu \{ x \in X : T^n x \in B \text{ i.o.} \} = 1.$$

• dynamical Borel-Cantelli Lemma or shrinking target problem Let $\{B_n\}_{n\geq 1}$ be a sequence of measurable sets with $\mu(B_n)$ decreasing to 0 as $n \to \infty$. Consider the metric properties of the following set

$$\{x \in X : T^n x \in B_n \text{ i.o.}\}$$

Backgrounds

well-approximable set

Let d be a metric on X consistent with the probability space (X, \mathcal{B}, μ) . Given a sequence of balls $B(y_0, r_n)$ with center $y_0 \in X$ and shrinking radius $\{r_n\}$, the set

$$F(y_0, \{r_n\}) := \{x \in X : d(T^n x, y_0) < r_n \text{ i.o.}\}$$

is called the well-approximable set.

• inhomogeneous Diophantine approximation

Let $S_{\alpha}: x \mapsto x + \alpha$ be the irrational rotation map on the circle with $\alpha \notin \mathbb{Q}$. The classic inhomogeneous Diophantine approximation can be written as

$$\big\{ \alpha \in \mathbb{Q}^c : |S^n_\alpha 0 - y_0| < r_n, \text{ i.o. } n \in \mathbb{N} \big\}.$$

beta-transformations

- $\beta > 1$
- β -transformation $T_{\beta}: [0,1] \rightarrow [0,1]$

$$T_{\beta}(x) = \beta x - \lfloor \beta x \rfloor,$$

where $\lfloor \beta x \rfloor$ denotes the integer part of βx .

• Example :
$$\beta = \frac{1+\sqrt{5}}{2}$$

• the orbit of 1 under T_{β} is crucial (we will see later)

Main problem

• well-approximable set

Fix a point $x_0 \in [0,1]$ and a given sequence of integers $\{\ell_n\}_{n \ge 1}$.

$$E(\{\ell_n\}_{n\geq 1}, x_0) = \{\beta > 1 : |T_{\beta}^n 1 - x_0| < \beta^{-\ell_n}, \text{ i.o.}\}$$

• Question :

$$\dim_{\mathrm{H}} E\bigl(\{\ell_n\}_{n\geq 1}, x_0\bigr) = ?$$

• (Persson and Schmeling, 2008) When $x_0 = 0$ and $\ell_n = \gamma n(\gamma > 0)$, then

$$\dim_H E(\{\gamma n\}_{n \ge 1}, 0) = \frac{1}{1+\gamma}.$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Main result

Theorem

Let $x_0 \in [0,1]$ and let $\{\ell_n\}_{n\geq 1}$ be a sequence of integers such that $\ell_n \to \infty$ as $n \to \infty$. Then

$$\dim_H E(\{\ell_n\}_{n\geq 1}, x_0) = \frac{1}{1+\alpha}, \text{ where } \alpha = \liminf_{n\to\infty} \frac{\ell_n}{n}.$$

International conference on advances on fractals and related topics Diophantine approximation of the orbit of 1 in beta-transformation dynamical

<ロ> <同> <同> < 回> < 回>

3

β -transformation and β -expansion

International conference on advances on fractals and related topics Diophantine approximation of the orbit of 1 in beta-transformation dynamical

イロト イポト イヨト イヨト

э

Recall beta-transformations

- $\bullet \ \beta > 1$
- β -transformation $T_{\beta}: [0,1] \rightarrow [0,1]$

$$T_{\beta}(x) = \beta x - \lfloor \beta x \rfloor,$$

where $\lfloor \beta x \rfloor$ denotes the integer part of βx .

• Example :
$$\beta = \frac{1+\sqrt{5}}{2}$$

Diophantine approximation of the orbit of 1 in beta-transformation dynamical

(人間) システン イラン

-

Invariant measure

• (Rényi 1957)

When β is not an integer, there exists a unique invariant measure μ_{β} which is equivalent to the Lebesgue measure.

$$1 - \frac{1}{\beta} \le \frac{d\mu_{\beta}}{d\mathcal{L}}(x) \le \frac{1}{1 - \frac{1}{\beta}}$$

• Equivalent invariant measure μ_{β} (Parry 1960 and Gel'fond 1959)

$$\frac{d\mu_{\beta}}{d\mathcal{L}}(x) = \frac{1}{F(\beta)} \sum_{\substack{n \ge 0\\ x < T_{\beta}^{n}(1)}} \frac{1}{\beta^{n}}$$

where $F(\beta) = \int_0^1 \sum_{n \ge 0} x < T_{\beta}^n(1) 1/\beta^n dx$ is a normalizing factor.

イロト イポト イヨト イヨト

 β -transformation and β -expansion

β -expansion

• digit set

$$\mathcal{A} = \begin{cases} \{0, 1, \dots, \beta - 1\} & \text{when } \beta \text{ is an integer} \\ \{0, 1, \dots, \lfloor \beta \rfloor \} & \text{otherwise.} \end{cases}$$

digit function

$$\varepsilon_1(\cdot,\beta):[0,1]\to\mathcal{A} \text{ as } x\mapsto \lfloor\beta x
floor$$

•
$$\varepsilon_n(x,\beta) := \varepsilon_1(T_\beta^{n-1}x,\beta)$$

• β -expansion (Rényi, 1957)

$$x = \frac{\varepsilon_1(x,\beta)}{\beta} + \frac{\varepsilon_2(x,\beta)}{\beta^2} + \dots + \frac{\varepsilon_n(x,\beta)}{\beta^n} + \dots$$

onotation :

$$\varepsilon(x,\beta) = (\varepsilon_1(x,\beta), \varepsilon_2(x,\beta), \dots, \varepsilon_n(x,\beta), \dots)$$

э

admissible sequence

• admissible sequence/word $\Sigma_{\beta} = \{ \omega \in \mathcal{A}^{\mathbb{N}} : \exists x \in [0, 1) \text{ such that } \varepsilon(x, \beta) = \omega \}$

 $\Sigma_{\beta}^{n} = \{\omega \in \mathcal{A}^{n}: \ \exists \ x \in [0,1) \text{ such that } \varepsilon_{i}(x,\beta) = \omega_{i} \text{ for all } i=1,\cdots,n \}$

• β is an integer

 $\Sigma_{\beta} = \mathcal{A}^{\mathbb{N}}$ (except countable points)

• Example : $\beta_0 = \frac{\sqrt{5}+1}{2}$

 $\Sigma_{\beta_0} = \{\omega \in \{0,1\}^{\mathbb{N}}: \text{ the word } 11 \text{ dosen't appear in } \omega\}$

 $\bullet\,$ number of admissible words of length n

$$\beta^n \leq \sharp \Sigma_\beta^n \leq \frac{\beta^{n+1}}{\beta-1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

admissible sequence

• the infinite expansion of the number 1

$$\varepsilon^*(1,\beta) = \begin{cases} \varepsilon(1,\beta) \\ (\varepsilon_1(1,\beta),\cdots,(\varepsilon_n(1,\beta)-1))^{\infty} \end{cases}$$

if there are infinite many $\varepsilon_n(1,\beta) \neq 0$ in $\varepsilon(1,\beta)$ otherwise, where $\varepsilon_n(1,\beta)$ is the last non-zero element in $\varepsilon(1,\beta)$.

Theorem (Parry, 1960)

Let $\beta > 1$ be a real number and $\varepsilon^*(1,\beta)$ the infinite expansion of the number 1. Then $\omega \in \Sigma_\beta$ if and only if

$$\sigma^k(\omega) \prec \varepsilon^*(1,\beta)$$
 for all $k \ge 0$,

where \prec means the lexicographical order.

self-admissible sequence

Corollary (Parry, 1960)

w is the β -expansion of 1 for some $\beta \Longleftrightarrow \sigma^k(w) \preceq w$ for all $k \ge 0$

• self-admissible sequence

$$\sigma^k(w) \preceq w \ \text{ for all } \ k \geq 0$$

distribution of full cylinders

• cylinder of order n $((\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n) \in \Sigma_{\beta}^n)$

$$I_n(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n) = \{x \in [0, 1) : \varepsilon_k(x) = \varepsilon_k, 1 \le k \le n\}$$

• full cylinder

$$\left|I_n(w_1,\cdots,w_n)\right|=\beta^{-n}$$

Theorem

Every n + 1 consecutive cylinders of order n contains a full cylinder.

 The quantities n + 1 can be improved, for example, if S_β satisfies the specification property, then n + 1 can be optimally improved to a constant just depends on β and independent of n. But for the other β's, we still do not the optimal estimate for this quantity.

Corollary

Let $\beta > 1$. For any $y \in [0,1]$ and an integer $\ell \in \mathbb{N}$, the ball $B(y, \beta^{-\ell})$ can be covered by at most $4(\ell + 1)$ cylinders of order ℓ in the β -expansion.

International conference on advances on fractals and related topics

Diophantine approximation of the orbit of 1 in beta-transformation dynamical

Distribution of regular cylinders in parameter space

(人間) シスヨン スヨン

cylinders in parameter space

• Recall :

a word $w=(\varepsilon_1,\cdots,\varepsilon_n)$ is called self-admissible if $\sigma^iw\preceq w$ for all $1\leq i< n,$ that is,

$$\sigma^i(\varepsilon_1,\cdots,\varepsilon_n) \preceq \varepsilon_1,\cdots,\varepsilon_n.$$

Definition

Let $(\varepsilon_1,\cdots,\varepsilon_n)$ be self-admissible. A cylinder in the parameter space is defined as

$$I_n^P(\varepsilon_1,\cdots,\varepsilon_n) = \Big\{\beta > 1 : \varepsilon_1(1,\beta) = \varepsilon_1,\cdots,\varepsilon_n(1,\beta) = \varepsilon_n\Big\},\$$

i.e., the collection of β for which the $\beta\text{-expansion}$ of 1 begins with $\varepsilon_1,\cdots,\varepsilon_n.$

イロン 不同 とくほど イロン

cylinders in parameter space

• (Schmeling, 1997)

The cylinder $I_n^P(\varepsilon_1, \cdots, \varepsilon_n)$ is a half-open interval $[\beta_0, \beta_1)$. The left endpoint β_0 is given as the only solution in $(1, \infty)$ to the equation

$$1 = \frac{\varepsilon_1}{\beta} + \dots + \frac{\varepsilon_n}{\beta^n}.$$

The right endpoint β_1 is given as the limit of the solutions $\{\beta_N\}_{N\geq 1}$ in $(1,\infty)$ to the equations

$$1 = \frac{\varepsilon_1}{\beta} + \dots + \frac{\varepsilon_n}{\beta^n} + \frac{\varepsilon_{n+1}}{\beta^{n+1}} + \dots + \frac{\varepsilon_N}{\beta^N},$$

where $(\varepsilon_1, \ldots, \varepsilon_n, \varepsilon_{n+1}, \ldots, \varepsilon_N)$ is the maximal self-admissible word beginning with $\varepsilon_1, \cdots, \varepsilon_n$ in the lexicographical order. Moreover,

$$\left|I_n^P(\varepsilon_1,\ldots,\varepsilon_n)\right| \leq \beta_1^{-n}.$$

• Remark : If the left endpoint of $I_n^P(\varepsilon_1, \dots, \varepsilon_n)$ is 1, then the cylinder will be an open interval. For example, $I_2^P(1,0) = (1, \frac{1+\sqrt{5}}{2})$.

maximal self-admissible sequence

Definition

Let $w=(\varepsilon_1,\cdots,\varepsilon_n)$ be a word of length n. The recurrence time $\tau(w)$ of w is defined as

$$\tau(w) := \inf \left\{ k \ge 1 : \sigma^k(\varepsilon_1, \cdots, \varepsilon_n) = \varepsilon_1, \cdots, \varepsilon_{n-k} \right\}.$$

If such an integer k does not exist, then $\tau(w)$ is defined to be n and w is said to be of full recurrence time.

Theorem

Then the periodic sequence

$$(\varepsilon_1,\cdots,\varepsilon_k)^\infty$$

is the maximal self-admissible sequence beginning with $\varepsilon_1, \cdots, \varepsilon_n$.

lengths of cylinders in parameter space

Theorem

Let $w = (\varepsilon_1, \cdots, \varepsilon_n)$ be self-admissible with $\tau(w) = k$. Let β_0 and β_1 be the left and right endpoints of $I_n^P(\varepsilon_1, \cdots, \varepsilon_n)$. Then we have

$$\left|I_{n}^{P}(\varepsilon_{1},\cdots,\varepsilon_{n})\right| \geq \begin{cases} C\beta_{1}^{-n}, & \text{when } k=n, \\ C\left(\frac{\varepsilon_{t+1}}{\beta_{1}^{n+1}}+\cdots+\frac{\varepsilon_{k}+1}{\beta_{1}^{(\ell+1)k}}\right), & \text{otherwise.} \end{cases}$$

where $C := (\beta_0 - 1)^2$ is a constant depending on β_0 ; the integers t and ℓ are given as $\ell k < n \leq (\ell + 1)k$ and $t = n - \ell k$.

• regular cylinder

When $(\varepsilon_1, \cdots, \varepsilon_n)$ is of full recurrence time, the length

$$C\beta_1^{-n} \le |I_n^P(\varepsilon_1, \cdots, \varepsilon_n)| \le \beta_1^{-n},$$

in this case, $I_n^P(arepsilon_1,\cdots,arepsilon_n)$ is called regular cylinder.

Diophantine approximation of the orbit of 1 in beta-transformation dynamica

distribution of regular cylinders in parameter space

Proposition

Let w_1, w_2 be two self-admissible words of length n. Assume that $w_2 \prec w_1$ and w_2 is next to w_1 in the lexicographic order. If $\tau(w_1) < n$, then

 $\tau(w_2) > \tau(w_1).$

• Denote by C_n^P the collection of cylinders of order n in parameter space.

Corollary

Among any n consecutive cylinders in C_n^P , there is at least one with full recurrence time, hence with regular length.

• This corollary was established for the first time by Persson and Schmeling (2008).

Recall main result

Theorem

Let $x_0 \in [0,1]$ and let $\{\ell_n\}_{n \ge 1}$ be a sequence of integers such that $\ell_n \to \infty$ as $n \to \infty$. Then

$$\dim_H E(\{\ell_n\}_{n\geq 1}, x_0) = \frac{1}{1+\alpha}, \text{ where } \alpha = \liminf_{n\to\infty} \frac{\ell_n}{n}.$$

- The generality of $\{\ell_n\}_{n\geq 1}$ arises no extra difficulty compared with special $\{\ell_n\}_{n\geq 1}$.
- The difficulty comes from that $x_0 \neq 0$ has no uniform β -expansion for different β .
- When $x_0 \neq 1$, the set $E(\{\ell\}_{n\geq 1}, x_0)$ can be regarded as a type of shrinking target problem. While $x_0 = 1$, it becomes a type of recurrence properties.

200

Thanks for your attention !

International conference on advances on fractals and related topics Diophantine approximation of the orbit of 1 in beta-transformation dynamical

イロト イポト イヨト イヨト