# Diophantine approximation of the orbit of 1 in beta-transformation dynamical system 

Bing LI<br>(joint work with Baowei Wang and Jun Wu)

South China University of Technology and University of Oulu
CUHK, December, 2012

## Outline

(1) Diophantine approximation of the orbits of 1 under beta-transformations
(2) $\beta$-transformation and $\beta$-expansion
(3) Distribution of regular cylinders in parameter space

## Diophantine approximation of the orbits of 1 under beta-transformations

## Backgrounds

- Poincaré Recurrence Theorem

Let $(X, \mathcal{B}, \mu, T)$ be a measure-preserving dynamical system (probability space) and $B \subset X$ with positive measure. Then

$$
\left.\mu\left\{x \in B: T^{n} x \in B \text { infinitely often (i.o. }\right)\right\}=\mu(B)
$$

- Birkhoff ergodic theorem Assume that $\mu$ is ergodic, then

$$
\mu\left\{x \in X: T^{n} x \in B \text { i.o. }\right\}=1 .
$$

- dynamical Borel-Cantelli Lemma or shrinking target problem Let $\left\{B_{n}\right\}_{n \geq 1}$ be a sequence of measurable sets with $\mu\left(B_{n}\right)$ decreasing to 0 as $n \rightarrow \infty$. Consider the metric properties of the following set

$$
\left\{x \in X: T^{n} x \in B_{n} \text { i.o. }\right\}
$$

## Backgrounds

- well-approximable set

Let $d$ be a metric on $X$ consistent with the probability space $(X, \mathcal{B}, \mu)$. Given a sequence of balls $B\left(y_{0}, r_{n}\right)$ with center $y_{0} \in X$ and shrinking radius $\left\{r_{n}\right\}$, the set

$$
F\left(y_{0},\left\{r_{n}\right\}\right):=\left\{x \in X: d\left(T^{n} x, y_{0}\right)<r_{n} \text { i.o. }\right\}
$$

is called the well-approximable set.

- inhomogeneous Diophantine approximation

Let $S_{\alpha}: x \mapsto x+\alpha$ be the irrational rotation map on the circle with $\alpha \notin \mathbb{Q}$. The classic inhomogeneous Diophantine approximation can be written as

$$
\left\{\alpha \in \mathbb{Q}^{c}:\left|S_{\alpha}^{n} 0-y_{0}\right|<r_{n}, \text { i.o. } n \in \mathbb{N}\right\} .
$$

## beta-transformations

- $\beta>1$
- $\beta$-transformation $T_{\beta}:[0,1] \rightarrow[0,1]$

$$
T_{\beta}(x)=\beta x-\lfloor\beta x\rfloor,
$$

where $\lfloor\beta x\rfloor$ denotes the integer part of $\beta x$.

- Example : $\beta=\frac{1+\sqrt{5}}{2}$

- the orbit of 1 under $T_{\beta}$ is crucial (we will see later)


## Main problem

- well-approximable set

Fix a point $x_{0} \in[0,1]$ and a given sequence of integers $\left\{\ell_{n}\right\}_{n \geq 1}$.

$$
E\left(\left\{\ell_{n}\right\}_{n \geq 1}, x_{0}\right)=\left\{\beta>1:\left|T_{\beta}^{n} 1-x_{0}\right|<\beta^{-\ell_{n}}, \text { i.o. }\right\}
$$

- Question :

$$
\operatorname{dim}_{\mathrm{H}} E\left(\left\{\ell_{n}\right\}_{n \geq 1}, x_{0}\right)=?
$$

- (Persson and Schmeling, 2008)

When $x_{0}=0$ and $\ell_{n}=\gamma n(\gamma>0)$, then

$$
\operatorname{dim}_{H} E\left(\{\gamma n\}_{n \geq 1}, 0\right)=\frac{1}{1+\gamma} .
$$

## Main result

## Theorem

Let $x_{0} \in[0,1]$ and let $\left\{\ell_{n}\right\}_{n \geq 1}$ be a sequence of integers such that $\ell_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Then

$$
\operatorname{dim}_{H} E\left(\left\{\ell_{n}\right\}_{n \geq 1}, x_{0}\right)=\frac{1}{1+\alpha}, \text { where } \alpha=\liminf _{n \rightarrow \infty} \frac{\ell_{n}}{n} .
$$

## $\beta$-transformation and $\beta$-expansion

## Recall beta-transformations

- $\beta>1$
- $\beta$-transformation $T_{\beta}:[0,1] \rightarrow[0,1]$

$$
T_{\beta}(x)=\beta x-\lfloor\beta x\rfloor,
$$

where $\lfloor\beta x\rfloor$ denotes the integer part of $\beta x$.

- Example : $\beta=\frac{1+\sqrt{5}}{2}$



## Invariant measure

- (Rényi 1957)

When $\beta$ is not an integer, there exists a unique invariant measure $\mu_{\beta}$ which is equivalent to the Lebesgue measure.

$$
1-\frac{1}{\beta} \leq \frac{d \mu_{\beta}}{d \mathcal{L}}(x) \leq \frac{1}{1-\frac{1}{\beta}}
$$

- Equivalent invariant measure $\mu_{\beta}$ (Parry 1960 and Gel'fond 1959)

$$
\frac{d \mu_{\beta}}{d \mathcal{L}}(x)=\frac{1}{F(\beta)} \sum_{\substack{n \geq 0 \\ x<T_{\beta}^{0}(1)}} \frac{1}{\beta^{n}}
$$

where $F(\beta)=\int_{0}^{1} \sum_{n \geq 0 x<T_{\beta}^{n}(1)} 1 / \beta^{n} d x$ is a normalizing factor.

## $\beta$-expansion

- digit set

$$
\mathcal{A}= \begin{cases}\{0,1, \ldots, \beta-1\} & \text { when } \beta \text { is an integer } \\ \{0,1, \ldots,\lfloor\beta\rfloor\} & \text { otherwise. }\end{cases}
$$

- digit function

$$
\varepsilon_{1}(\cdot, \beta):[0,1] \rightarrow \mathcal{A} \text { as } x \mapsto\lfloor\beta x\rfloor
$$

- $\varepsilon_{n}(x, \beta):=\varepsilon_{1}\left(T_{\beta}^{n-1} x, \beta\right)$
- $\beta$-expansion (Rényi, 1957)

$$
x=\frac{\varepsilon_{1}(x, \beta)}{\beta}+\frac{\varepsilon_{2}(x, \beta)}{\beta^{2}}+\cdots+\frac{\varepsilon_{n}(x, \beta)}{\beta^{n}}+\cdots
$$

- notation :

$$
\varepsilon(x, \beta)=\left(\varepsilon_{1}(x, \beta), \varepsilon_{2}(x, \beta), \ldots, \varepsilon_{n}(x, \beta), \ldots\right)
$$

## admissible sequence

- admissible sequence/word

$$
\begin{aligned}
& \Sigma_{\beta}=\left\{\omega \in \mathcal{A}^{\mathbb{N}}: \exists x \in[0,1) \text { such that } \varepsilon(x, \beta)=\omega\right\} \\
& \Sigma_{\beta}^{n}=\left\{\omega \in \mathcal{A}^{n}: \exists x \in[0,1) \text { such that } \varepsilon_{i}(x, \beta)=\omega_{i} \text { for all } i=1, \cdots, n\right\}
\end{aligned}
$$

- $\beta$ is an integer

$$
\Sigma_{\beta}=\mathcal{A}^{\mathbb{N}} \text { (except countable points) }
$$

- Example : $\beta_{0}=\frac{\sqrt{5}+1}{2}$

$$
\Sigma_{\beta_{0}}=\left\{\omega \in\{0,1\}^{\mathbb{N}}: \text { the word } 11 \text { dosen't appear in } \omega\right\}
$$

- number of admissible words of length $n$

$$
\beta^{n} \leq \sharp \Sigma_{\beta}^{n} \leq \frac{\beta^{n+1}}{\beta-1}
$$

## admissible sequence

- the infinite expansion of the number 1

$$
\varepsilon^{*}(1, \beta)= \begin{cases}\varepsilon(1, \beta) & \text { if there are infinite many } \\
\left(\varepsilon_{1}(1, \beta), \cdots,\left(\varepsilon_{n}(1, \beta)-1\right)\right)^{\infty} & \begin{array}{l}
\varepsilon_{n}(1, \beta) \neq 0 \text { in } \varepsilon(1, \beta) \\
\\
\text { otherwise, where } \varepsilon_{n}(1, \beta) \text { is } \\
\\
\text { the last non-zero element } \\
\\
\text { in } \varepsilon(1, \beta) .
\end{array}\end{cases}
$$

## Theorem (Parry, 1960)

Let $\beta>1$ be a real number and $\varepsilon^{*}(1, \beta)$ the infinite expansion of the number 1. Then $\omega \in \Sigma_{\beta}$ if and only if

$$
\sigma^{k}(\omega) \prec \varepsilon^{*}(1, \beta) \text { for all } k \geq 0,
$$

where $\prec$ means the lexicographical order.

## self-admissible sequence

## Corollary (Parry, 1960)

$w$ is the $\beta$-expansion of 1 for some $\beta \Longleftrightarrow \sigma^{k}(w) \preceq w$ for all $k \geq 0$

- self-admissible sequence

$$
\sigma^{k}(w) \preceq w \text { for all } k \geq 0
$$

## distribution of full cylinders

- cylinder of order $n\left(\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}\right) \in \Sigma_{\beta}^{n}\right)$

$$
I_{n}\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}\right)=\left\{x \in[0,1): \varepsilon_{k}(x)=\varepsilon_{k}, 1 \leq k \leq n\right\}
$$

- full cylinder

$$
\left|I_{n}\left(w_{1}, \cdots, w_{n}\right)\right|=\beta^{-n}
$$

## Theorem

Every $n+1$ consecutive cylinders of order $n$ contains a full cylinder.

- The quantities $n+1$ can be improved, for example, if $S_{\beta}$ satisfies the specification property, then $n+1$ can be optimally improved to a constant just depends on $\beta$ and independent of $n$. But for the other $\beta$ 's, we still do not the optimal estimate for this quantity.


## Corollary

Let $\beta>1$. For any $y \in[0,1]$ and an integer $\ell \in \mathbb{N}$, the ball $B\left(y, \beta^{-\ell}\right)$ can be covered by at most $4(\ell+1)$ cylinders of order $\ell$ in the $\beta$-expansion.

## Distribution of regular cylinders in parameter space

## cylinders in parameter space

- Recall :
a word $w=\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)$ is called self-admissible if $\sigma^{i} w \preceq w$ for all $1 \leq i<n$, that is,

$$
\sigma^{i}\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right) \preceq \varepsilon_{1}, \cdots, \varepsilon_{n} .
$$

## Definition

Let $\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)$ be self-admissible. A cylinder in the parameter space is defined as

$$
I_{n}^{P}\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)=\left\{\beta>1: \varepsilon_{1}(1, \beta)=\varepsilon_{1}, \cdots, \varepsilon_{n}(1, \beta)=\varepsilon_{n}\right\},
$$

i.e., the collection of $\beta$ for which the $\beta$-expansion of 1 begins with $\varepsilon_{1}, \cdots, \varepsilon_{n}$.

## cylinders in parameter space

- (Schmeling, 1997)

The cylinder $I_{n}^{P}\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)$ is a half-open interval $\left[\beta_{0}, \beta_{1}\right)$. The left endpoint $\beta_{0}$ is given as the only solution in $(1, \infty)$ to the equation

$$
1=\frac{\varepsilon_{1}}{\beta}+\cdots+\frac{\varepsilon_{n}}{\beta^{n}}
$$

The right endpoint $\beta_{1}$ is given as the limit of the solutions $\left\{\beta_{N}\right\}_{N \geq 1}$ in $(1, \infty)$ to the equations

$$
1=\frac{\varepsilon_{1}}{\beta}+\cdots+\frac{\varepsilon_{n}}{\beta^{n}}+\frac{\varepsilon_{n+1}}{\beta^{n+1}}+\cdots+\frac{\varepsilon_{N}}{\beta^{N}},
$$

where $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}, \varepsilon_{n+1}, \ldots, \varepsilon_{N}\right)$ is the maximal self-admissible word beginning with $\varepsilon_{1}, \cdots, \varepsilon_{n}$ in the lexicographical order. Moreover,

$$
\left|I_{n}^{P}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)\right| \leq \beta_{1}^{-n}
$$

- Remark: If the left endpoint of $I_{n}^{P}\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)$ is 1 , then the cylinder will be an open interval. For example, $I_{2}^{P}(1,0)=\left(1, \frac{1+\sqrt{5}}{2}\right)$.


## maximal self-admissible sequence

## Definition

Let $w=\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)$ be a word of length $n$. The recurrence time $\tau(w)$ of $w$ is defined as

$$
\tau(w):=\inf \left\{k \geq 1: \sigma^{k}\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)=\varepsilon_{1}, \cdots, \varepsilon_{n-k}\right\} .
$$

If such an integer $k$ does not exist, then $\tau(w)$ is defined to be $n$ and $w$ is said to be of full recurrence time.

## Theorem

Then the periodic sequence

$$
\left(\varepsilon_{1}, \cdots, \varepsilon_{k}\right)^{\infty}
$$

is the maximal self-admissible sequence beginning with $\varepsilon_{1}, \cdots, \varepsilon_{n}$.

## lengths of cylinders in parameter space

## Theorem

Let $w=\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)$ be self-admissible with $\tau(w)=k$. Let $\beta_{0}$ and $\beta_{1}$ be the left and right endpoints of $I_{n}^{P}\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)$. Then we have

$$
\left|I_{n}^{P}\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)\right| \geq \begin{cases}C \beta_{1}^{-n}, & \text { when } k=n ; \\ C\left(\frac{\varepsilon_{t+1}}{\beta_{1}^{n+1}}+\cdots+\frac{\varepsilon_{k}+1}{\beta_{1}^{(+1) k}}\right), & \text { otherwise } .\end{cases}
$$

where $C:=\left(\beta_{0}-1\right)^{2}$ is a constant depending on $\beta_{0}$; the integers $t$ and $\ell$ are given as $\ell k<n \leq(\ell+1) k$ and $t=n-\ell k$.

- regular cylinder

When $\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)$ is of full recurrence time, the length

$$
C \beta_{1}^{-n} \leq\left|I_{n}^{P}\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)\right| \leq \beta_{1}^{-n}
$$

in this case, $I_{n}^{P}\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)$ is called regular cylinder.

## distribution of regular cylinders in parameter space

## Proposition

Let $w_{1}, w_{2}$ be two self-admissible words of length $n$. Assume that $w_{2} \prec w_{1}$ and $w_{2}$ is next to $w_{1}$ in the lexicographic order. If $\tau\left(w_{1}\right)<n$, then

$$
\tau\left(w_{2}\right)>\tau\left(w_{1}\right)
$$

- Denote by $C_{n}^{P}$ the collection of cylinders of order $n$ in parameter space.


## Corollary

Among any $n$ consecutive cylinders in $C_{n}^{P}$, there is at least one with full recurrence time, hence with regular length.

- This corollary was established for the first time by Persson and Schmeling (2008).


## Recall main result

## Theorem

Let $x_{0} \in[0,1]$ and let $\left\{\ell_{n}\right\}_{n \geq 1}$ be a sequence of integers such that $\ell_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Then

$$
\operatorname{dim}_{H} E\left(\left\{\ell_{n}\right\}_{n \geq 1}, x_{0}\right)=\frac{1}{1+\alpha}, \text { where } \alpha=\liminf _{n \rightarrow \infty} \frac{\ell_{n}}{n} .
$$

- The generality of $\left\{\ell_{n}\right\}_{n \geq 1}$ arises no extra difficulty compared with special $\left\{\ell_{n}\right\}_{n \geq 1}$.
- The difficulty comes from that $x_{0} \neq 0$ has no uniform $\beta$-expansion for different $\beta$.
- When $x_{0} \neq 1$, the set $E\left(\{\ell\}_{n \geq 1}, x_{0}\right)$ can be regarded as a type of shrinking target problem. While $x_{0}=1$, it becomes a type of recurrence properties.
- The notion of the recurrence time of a word in symbolic space is introduced to characterize the lengths and the distribution of cylinders in the parameter space $\left\{\beta \in \mathbb{R}: \beta>_{\square} 1\right\}$.


## Thanks for your attention!

