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Free Groups

F,; free group with generators S
S={tli=1,...,4d},

|x| the length of the S-name of =z and
0F,; the boundary at infinity of [F,.

OF, can be seen as the set of infinite reduced words in
letters from S; the distance p extends to 0F;, where

—x AT

p(z,z) = 0,p(z,2") :=e
and, for x = 2/, x Az’ is the number of common initial
letters in the S-name of x and «'.



F' a finite subset of F; such that UpF"™ = Fy.

P(F) the set of probability measures p on Fy
such that the support of p is F.

Xn = wiwy - -wp the right random walk as-
sociated with p, where w; are i.i.d. random

elements of F; with distribution p.

(") the distribution of X,,.



Define, by subadditivity:

by = nl|_>moo— > d(z, e)p(n)(a:)
mEFd
hy = nl|_>moo —— Z p(n)(az)lnp(n)(a:)
ZCEFd

¢p is the linear drift of the random walk and
hyp is the entropy of the random walk ([Avez,
1972]).

hp/lp is the Hausdorff dimension of the exit
measure p>° (L, 2001).

Theorem [L, 2012] The mappings p — £
and p — hyp are real analytic on P(F).



‘The proof rests on formulas giving £, and hy,.

Thereis a unique stationary probability mea-
sure p>°on OF,, i.e. p*>° satisfies:

p>e(A) = > p(x)p™(z " A).

el

Then, by [Kaimanovich & Vershik, 1983] and
[Derriennic, 1980],

= =% ([, O ) oo
— —1 00
by = xg (/aFng(x )dp (E)) p(z).



dx«p°°

dp>®
1975] :

(¢) is the Martin kernel [Derriennic,

G(z~1y)
—& G(y)

dx*p

(&) = K(a) = lim
where G(z) =3, p{(2)
and Bg iIs the Busemann function:

Be(z) = lim z ™yl — Jyl.

We prove the regularity of all the elements
of the above formulas.



Let £, be the Banach space of Holder con-
tinuous real functions on JOFy.

Fact [L, 2001] For each p € P(F), there is
o > 0 such that the mapping p — p°° is real
analytic from a neighbourhood of p into the
dual space ICJ,.

Indeed, for o small enough, the natural Markov op-
erator, which depends analytically on p, preserves K,
and p*> is an eigenvector for an isolated eigenvalue of
the dual operator

Since, for a fixed z, { = B¢(x) € Kq, for all
o, the regularity of p — ¢, follows.



From the proof in [Derriennic, 1975], follows
that there is o > 0 such that, for all fixed z,
§ — InK¢(x) belongs to Ko. The regularity
of p — hp follows from

Proposition [L, 2010] For each p € P(F),
each x € Fy, there is a« > 0O such that the
mapping p — In K¢(x) is real analytic from a
neighbourhood of p into the space K.

Derriennic used the Birkhoff Contraction Theorem
for linear maps that preserve cones. The proof of
the Proposition uses a recent complex extension of
Birkhoff Theorem due to H.H. Rugh (2010).
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Extension 1: Hyperbolic groups

A group G is called hyperbolic if geodesic
triangles in the Cayley graph are thin.

Consider now G a finitely generated hyper-
bolic group. As before, we note

S a symmetric generator,
d the associated word distance,
F a finite subset of G such that UpF" = G,
P(F) the set of probability measures p on G
such that the support of p is F
and X, = wjws---wp the right random walk
associated with p.
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Define again the linear drift and the entropy:

by = n';moo— > d(g, e)p'™(g)
gEG
hp = lim —> L3 M (g) Inp™ ()
gEG

Theorem [L, 2012] With the above nota-
tions, if G is a finitely generated hyperbolic
group, the mappings p — £y, and p — hp are
Lipschitz continuous on P(F).
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Boundaries of G

Geometric boundary 0gG: geodesic rays, up
to bounded Hausdorff distance away from
one another.

Martin boundary (9,;G,p): compactification
G(z~1y)

by the functions x — B

as y — oo.

Busemann boundary 0dgG: compactification
by the functions x — d(x,y) — d(e,y),
as y — oo.
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[Ancona, 1990] For a finitely supported ran-
dom walk on a hyperbolic group, the Martin
boundary and the geometric boundary coin-
cide and there is a unigue stationary measure
p°° on this boundary.

[Izumi, Neshveyev & Okayasu, 2008]
Moreover, In Kf c Ko for some a > 0.

[Coornaert & Papadopoulos, 2001]
The Busemann boundary has a nice Markov

structure.

BUT...
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The Busemann boundary and the geomet-
ric boundary do not necessarily coincide (see
the discussion in [Webster & Winchester,
2005]).

There might be several stationary measures
on the Busemann boundary.

The geometric boundary doesn’'t necessary
have a nice Markov structure.
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There are still formulas for hy, and £p:

hp = — a;;r </3GG In Kg(w_l)dpoo(f)> p(x),
_ ~1
by = sup {m; </E93G Be(x )dm) p(az)} :

where the sup in the second formula is over
the stationary probability measures on 0gG;
see [Kaimanovich (2000)] for the entropy,
[Karlsson & L (2007)] for the linear drift.
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Assume (BA): The Busemann boundary co-
incide with the geometry boundary. Then,

Proposition Under (BA), for each p €
P(F), there is o« > 0 such that the mapping
p +— p°° is real analytic from a neighbourhood
of p into the dual space KC},.

It was indeed observed in [Bjorklund, 2010] that, un-
der (BA), p*> is an eigenvector for an isolated eigen-
value of the natural dual Markov operator in the suit-
able KC,.
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Corollary Under (BA), the mapping p — £y
is real analytic on P(F).

Question Under (BA), the mapping p — hyp
is C°° on P(F).
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The other result in the case of hyperbolic
groups is for symmetric probability measures.
If Fis a symmetric set, denote P,(F) the set
of probability measures with support F' and
such that p(z) = p(z~1).

Theorem [Mathieu (2012)] With the above
notations, if G is a finitely generated hyper-
bolic group, the mappings p — £, and p — hyp
are C1 on P,(F).

Moreover, Mathieu has an expression for the
derivative.
19



Extension 2: Manifolds of negative cur-
vature

M a compact closed manifold

M the universal cover

P(M) the set of C*° metrics of negative cur-
vature of M, endowed with the C? topology.

For g € P(M), g the lifted metric on M, P,
the family of probabilities on C (R4, M) that
describe the Brownian motion associated to
the metric g, p(t,x,y) the heat kernel of g;
p(t, z,y)dy is the distribution of the Brownian
particle w(t) under P.
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We set, for g € P(M),

1

= |lim — [_
Yy Jim -~ Md(y,:v)p(t,w,y)dy

1
hg lim —— /Mp(t,x,y) Inp(t, z,y)dy.

t—oo ¢t

By compactness, the limits do not depend on the
origin point z;

¢y is the linear drift ([Guivarc'h, 1980]) of
the Brownian motion on (M, g)

and hg is the stochastic entropy of (M,g)
([Kaimanovich,1986]).
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Theorem [L & Shu, 2013]

Let o be a C3 function on M and consider
the curve A — g()\) = e*?g of metrics con-
formal to a metric g € P(M). Then, the
mappings A £,\y and A — hgcyy are differ-
entiable at A = 0.

Observe that the metric g(\) has negative curvature
for X\ close to 0. The proof extends the techniques
of the hyperbolic group case ([L, 2012] and [Math-
ieu, 2012]). In particular, from the formula for the
derivative, we obtain:
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Theorem [L & Shu, 2013]

Assume M is a locally symmetric space and
consider C3 curves X — g(\) = ePAg of con-
formal metrics with total area 1 on M. T hen,
the stochastic entropy A\ — hg(A) has a criti-
cal point at O for all such curves.

In dimension 2, the stochastic entropy depends only
on the volume.

The above theorem is meaningful only in higher di-
mensions. The converse is an open problem.
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Extension 3: IFS. The above suggests the
following questions about the familiar ICBM

Set, for 0 <p,A <1, p,, for the distribution

©.@)
of ) &\, where
i=1

{eitien areiid. ({-1,+1},(p,1—p)).

By [Feng & Hu, 2009], u, ) is exact dimen-
sional with dimension 6(p,\). What is the
regularity of p — 6(p, A)7?
In particular for A~1 Pisot?
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