Regularity of the entropy for random walks

François Ledrappier University of Notre Dame/Université Paris 6

香港中文大學, 2012/12/11

1

• Free Groups

- Hyperbolic Groups
- Manifolds of negative curvature

• IFS

Free Groups

 \mathbb{F}_d free group with generators S

$$S = \{i^{\pm 1}; i = 1, \dots, d\},\$$

|x| the length of the *S*-name of *x* and $\partial \mathbb{F}_d$ the boundary at infinity of \mathbb{F}_d .

 $\partial \mathbb{F}_d$ can be seen as the set of infinite reduced words in letters from S; the distance ρ extends to $\partial \mathbb{F}_d$, where

$$\rho(x,x) = 0, \rho(x,x') := e^{-x \wedge x'}$$

and, for $x \neq x'$, $x \wedge x'$ is the number of common initial letters in the *S*-name of *x* and *x'*.

F a finite subset of \mathbb{F}_d such that $\cup_n F^n = \mathbb{F}_d$.

 $\mathcal{P}(F)$ the set of probability measures p on \mathbb{F}_d such that the support of p is F.

 $X_n = \omega_1 \omega_2 \cdots \omega_n$ the right random walk associated with p, where ω_i are i.i.d. random elements of \mathbb{F}_d with distribution p.

 $p^{(n)}$ the distribution of X_n .

Define, by subadditivity:

$$\ell_p := \lim_{n \to \infty} \frac{1}{n} \sum_{x \in \mathbb{F}_d} d(x, e) p^{(n)}(x)$$
$$h_p := \lim_{n \to \infty} -\frac{1}{n} \sum_{x \in \mathbb{F}_d} p^{(n)}(x) \ln p^{(n)}(x).$$

 ℓ_p is the *linear drift* of the random walk and h_p is the *entropy* of the random walk ([Avez, 1972]).

 h_p/ℓ_p is the Hausdorff dimension of the exit measure p^{∞} (L, 2001).

Theorem [L, 2012] The mappings $p \mapsto \ell_p$ and $p \mapsto h_p$ are real analytic on $\mathcal{P}(F)$. The proof rests on formulas giving ℓ_p and h_p .

There is a unique *stationary* probability measure p^{∞} on $\partial \mathbb{F}_d$, i.e. p^{∞} satisfies:

$$p^{\infty}(A) = \sum_{x \in F} p(x) p^{\infty}(x^{-1}A).$$

Then, by [Kaimanovich & Vershik, 1983] and [Derriennic, 1980],

$$h_{p} = -\sum_{x \in F} \left(\int_{\partial \mathbb{F}_{d}} \ln \frac{d(x^{-1})_{*} p^{\infty}}{dp^{\infty}}(\xi) dp^{\infty}(\xi) \right) p(x),$$

$$\ell_{p} = \sum_{x \in F} \left(\int_{\partial \mathbb{F}_{d}} B_{\xi}(x^{-1}) dp^{\infty}(\xi) \right) p(x).$$

$\frac{dx_*p^\infty}{dp^\infty}(\xi)$ is the Martin kernel [Derriennic, 1975] :

$$\frac{dx_*p^{\infty}}{dp^{\infty}}(\xi) = K_{\xi}(x) := \lim_{y \to \xi} \frac{G(x^{-1}y)}{G(y)},$$

where $G(z) = \sum_n p^{(n)}(z)$

and B_{ξ} is the Busemann function:

$$B_{\xi}(x) = \lim_{y \to \xi} |x^{-1}y| - |y|.$$

We prove the regularity of all the elements of the above formulas.

Let \mathcal{K}_{α} be the Banach space of Hölder continuous real functions on $\partial \mathbb{F}_d$.

Fact [L, 2001] For each $p \in \mathcal{P}(F)$, there is $\alpha > 0$ such that the mapping $p \mapsto p^{\infty}$ is real analytic from a neighbourhood of p into the dual space \mathcal{K}^*_{α} .

Indeed, for α small enough, the natural Markov operator, which depends analytically on p, preserves \mathcal{K}_{α} and p^{∞} is an eigenvector for an isolated eigenvalue of the dual operator

Since, for a fixed $x, \xi \mapsto B_{\xi}(x) \in \mathcal{K}_{\alpha}$, for all α , the regularity of $p \mapsto \ell_p$ follows.

From the proof in [Derriennic, 1975], follows that there is $\alpha > 0$ such that, for all fixed x, $\xi \mapsto \ln K_{\xi}(x)$ belongs to \mathcal{K}_{α} . The regularity of $p \mapsto h_p$ follows from

Proposition [L, 2010] For each $p \in \mathcal{P}(F)$, each $x \in \mathbb{F}_d$, there is $\alpha > 0$ such that the mapping $p \mapsto \ln K_{\xi}(x)$ is real analytic from a neighbourhood of p into the space \mathcal{K}_{α} .

Derriennic used the Birkhoff Contraction Theorem for linear maps that preserve cones. The proof of the Proposition uses a recent complex extension of Birkhoff Theorem due to H.H. Rugh (2010). Previous works:

- D. Ruelle, Analyticity properties of the characteristic exponents of random matrix products (1979)
- Y. Peres, Domains of analytic continuation for the top Lyapunov exponent (1992)
- A. Erschler & V.A. Kaimanovich, Continuity of entropy for random walks on hyperbolic groups.
- G. Han & B. Marcus, Analyticity of entropy rate of hidden Markov chains (2006).
- G. Han, B. Marcus & Y. Peres, A note on a complex Hilbert metric with application to domain of analyticity for entropy rate of hidden Markov processes (2011).

Extension 1: Hyperbolic groups

A group G is called hyperbolic if geodesic triangles in the Cayley graph are thin.

Consider now G a finitely generated hyperbolic group. As before, we note

S a symmetric generator, d the associated word distance, F a finite subset of G such that $\cup_n F^n = G$, $\mathcal{P}(F)$ the set of probability measures p on G such that the support of p is F and $X_n = \omega_1 \omega_2 \cdots \omega_n$ the right random walk associated with p. Define again the linear drift and the entropy:

$$\ell_p := \lim_{n \to \infty} \frac{1}{n} \sum_{g \in G} d(g, e) p^{(n)}(g)$$
$$h_p := \lim_{n \to \infty} -\frac{1}{n} \sum_{g \in G} p^{(n)}(g) \ln p^{(n)}(g)$$

Theorem [L, 2012] With the above notations, if G is a finitely generated hyperbolic group, the mappings $p \mapsto \ell_p$ and $p \mapsto h_p$ are Lipschitz continuous on $\mathcal{P}(F)$. Boundaries of G:

Geometric boundary $\partial_G G$: geodesic rays, up to bounded Hausdorff distance away from one another.

Martin boundary $(\partial_M G, p)$: compactification by the functions $x \mapsto \frac{G(x^{-1}y)}{G(y)}$, as $y \to \infty$.

Busemann boundary $\partial_B G$: compactification by the functions $x \mapsto d(x,y) - d(e,y)$, as $y \to \infty$. [Ancona, 1990] For a finitely supported random walk on a hyperbolic group, the Martin boundary and the geometric boundary coincide and there is a unique stationary measure p^{∞} on this boundary.

[Izumi, Neshveyev & Okayasu, 2008] Moreover, $\ln K_{\xi} \in \mathcal{K}_{\alpha}$ for some $\alpha > 0$.

[Coornaert & Papadopoulos, 2001] The Busemann boundary has a nice Markov structure.

BUT...

The Busemann boundary and the geometric boundary do not necessarily coincide (see the discussion in [Webster & Winchester, 2005]).

There might be several stationary measures on the Busemann boundary.

The geometric boundary doesn't necessary have a nice Markov structure.

There are still formulas for h_p and ℓ_p :

$$h_p = -\sum_{x \in F} \left(\int_{\partial_G G} \ln K_{\xi}(x^{-1}) dp^{\infty}(\xi) \right) p(x),$$

$$\ell_p = \sup_m \left\{ \sum_{x \in F} \left(\int_{\partial_B G} B_{\xi}(x^{-1}) dm \right) p(x) \right\},$$

where the sup in the second formula is over the stationary probability measures on $\partial_B G$; see [Kaimanovich (2000)] for the entropy, [Karlsson & L (2007)] for the linear drift. Assume (**BA**): The Busemann boundary coincide with the geometry boundary. Then,

Proposition Under (BA), for each $p \in \mathcal{P}(F)$, there is $\alpha > 0$ such that the mapping $p \mapsto p^{\infty}$ is real analytic from a neighbourhood of p into the dual space \mathcal{K}^*_{α} .

It was indeed observed in [Bjorklund, 2010] that, under (BA), p^{∞} is an eigenvector for an isolated eigenvalue of the natural dual Markov operator in the suitable \mathcal{K}_{α} .

Corollary Under (BA), the mapping $p \mapsto \ell_p$ is real analytic on $\mathcal{P}(F)$.

Question Under (BA), the mapping $p \mapsto h_p$ is C^{∞} on $\mathcal{P}(F)$.

The other result in the case of hyperbolic groups is for symmetric probability measures. If F is a symmetric set, denote $\mathcal{P}_{\sigma}(F)$ the set of probability measures with support F and such that $p(x) = p(x^{-1})$.

Theorem [Mathieu (2012)] With the above notations, if G is a finitely generated hyperbolic group, the mappings $p \mapsto \ell_p$ and $p \mapsto h_p$ are C^1 on $\mathcal{P}_{\sigma}(F)$.

Moreover, Mathieu has an expression for the derivative.

Extension 2: Manifolds of negative curvature

M a compact closed manifold \widetilde{M} the universal cover $\mathcal{P}(M)$ the set of C^{∞} metrics of negative curvature of M, endowed with the C^2 topology.

For $g \in \mathcal{P}(M)$, \tilde{g} the lifted metric on \widetilde{M} , \mathbb{P}_g the family of probabilities on $C(\mathbb{R}_+, \widetilde{M})$ that describe the Brownian motion associated to the metric \tilde{g} , p(t, x, y) the heat kernel of \tilde{g} ; p(t, x, y)dy is the distribution of the Brownian particle $\omega(t)$ under \mathbb{P}_g^x . We set, for $g \in \mathcal{P}(M)$,

$$\ell_g := \lim_{t \to \infty} \frac{1}{t} \int_{\widetilde{M}} d(y, x) p(t, x, y) dy$$
$$h_g := \lim_{t \to \infty} -\frac{1}{t} \int_{\widetilde{M}} p(t, x, y) \ln p(t, x, y) dy.$$

By compactness, the limits do not depend on the origin point x;

 ℓ_g is the *linear drift* ([Guivarc'h, 1980]) of the Brownian motion on $(\widetilde{M}, \widetilde{g})$

and h_g is the stochastic entropy of (M,g) ([Kaimanovich,1986]).

Theorem [L & Shu, 2013] Let φ be a C^3 function on M and consider the curve $\lambda \mapsto g(\lambda) = e^{\lambda \varphi}g$ of metrics conformal to a metric $g \in \mathcal{P}(M)$. Then, the mappings $\lambda \mapsto \ell_{g(\lambda)}$ and $\lambda \mapsto h_{g(\lambda)}$ are differentiable at $\lambda = 0$.

Observe that the metric $g(\lambda)$ has negative curvature for λ close to 0. The proof extends the techniques of the hyperbolic group case ([L, 2012] and [Mathieu, 2012]). In particular, from the formula for the derivative, we obtain:

Theorem [L & Shu, 2013]

Assume *M* is a locally symmetric space and consider C^3 curves $\lambda \mapsto g(\lambda) = e^{\varphi_{\lambda}}g$ of conformal metrics with total area 1 on *M*. Then, the stochastic entropy $\lambda \mapsto h_{g(\lambda)}$ has a critical point at 0 for all such curves.

In dimension 2, the stochastic entropy depends only on the volume.

The above theorem is meaningful only in higher dimensions. The converse is an open problem. **Extension 3: IFS.** The above suggests the following questions about the familiar ICBM

Set, for $0 < p, \lambda < 1$, $\mu_{p,\lambda}$ for the distribution of $\sum_{i=1}^{\infty} \varepsilon_i \lambda^i$, where $\{\varepsilon_i\}_{i \in \mathbb{N}}$ are i.i.d. $(\{-1, +1\}, (p, 1-p))$.

By [Feng & Hu, 2009], $\mu_{p,\lambda}$ is exact dimensional with dimension $\delta(p,\lambda)$. What is the regularity of $p \mapsto \delta(p,\lambda)$? In particular for λ^{-1} Pisot?