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Free Groups

Fd free group with generators S

S = {i±1; i = 1, . . . , d},
|x| the length of the S-name of x and
∂Fd the boundary at infinity of Fd.

∂Fd can be seen as the set of infinite reduced words in
letters from S; the distance ρ extends to ∂Fd, where

ρ(x, x) = 0, ρ(x, x′) := e−x∧x
′

and, for x 6= x′, x∧x′ is the number of common initial

letters in the S-name of x and x′.
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F a finite subset of Fd such that ∪nFn = Fd.

P(F ) the set of probability measures p on Fd
such that the support of p is F .

Xn = ω1ω2 · · ·ωn the right random walk as-

sociated with p, where ωi are i.i.d. random

elements of Fd with distribution p.

p(n) the distribution of Xn.
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Define, by subadditivity:

`p := lim
n→∞

1

n

∑
x∈Fd

d(x, e)p(n)(x)

hp := lim
n→∞−

1

n

∑
x∈Fd

p(n)(x) ln p(n)(x).

`p is the linear drift of the random walk and
hp is the entropy of the random walk ([Avez,
1972]).
hp/`p is the Hausdorff dimension of the exit
measure p∞ (L, 2001).

Theorem [L, 2012] The mappings p 7→ `p
and p 7→ hp are real analytic on P(F ).
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The proof rests on formulas giving `p and hp.

There is a unique stationary probability mea-
sure p∞on ∂Fd, i.e. p∞ satisfies:

p∞(A) =
∑
x∈F

p(x)p∞(x−1A).

Then, by [Kaimanovich & Vershik, 1983] and
[Derriennic, 1980],

hp = −
∑
x∈F

(∫
∂Fd

ln
d(x−1)∗p∞

dp∞
(ξ)dp∞(ξ)

)
p(x),

`p =
∑
x∈F

(∫
∂Fd

Bξ(x
−1)dp∞(ξ)

)
p(x).
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dx∗p∞

dp∞
(ξ) is the Martin kernel [Derriennic,

1975] :

dx∗p∞

dp∞
(ξ) = Kξ(x) := lim

y→ξ
G(x−1y)

G(y)
,

where G(z) =
∑
n p

(n)(z)

and Bξ is the Busemann function:

Bξ(x) = lim
y→ξ
|x−1y| − |y|.

We prove the regularity of all the elements
of the above formulas.
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Let Kα be the Banach space of Hölder con-
tinuous real functions on ∂Fd.

Fact [L, 2001] For each p ∈ P(F ), there is
α > 0 such that the mapping p 7→ p∞ is real
analytic from a neighbourhood of p into the
dual space K∗α.

Indeed, for α small enough, the natural Markov op-

erator, which depends analytically on p, preserves Kα
and p∞ is an eigenvector for an isolated eigenvalue of

the dual operator

Since, for a fixed x, ξ 7→ Bξ(x) ∈ Kα, for all
α, the regularity of p 7→ `p follows.
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From the proof in [Derriennic, 1975], follows
that there is α > 0 such that, for all fixed x,
ξ 7→ lnKξ(x) belongs to Kα. The regularity
of p 7→ hp follows from

Proposition [L, 2010] For each p ∈ P(F ),
each x ∈ Fd, there is α > 0 such that the
mapping p 7→ lnKξ(x) is real analytic from a
neighbourhood of p into the space Kα.

Derriennic used the Birkhoff Contraction Theorem

for linear maps that preserve cones. The proof of

the Proposition uses a recent complex extension of

Birkhoff Theorem due to H.H. Rugh (2010).
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Extension 1: Hyperbolic groups

A group G is called hyperbolic if geodesic
triangles in the Cayley graph are thin.

Consider now G a finitely generated hyper-
bolic group. As before, we note

S a symmetric generator,
d the associated word distance,
F a finite subset of G such that ∪nFn = G,
P(F ) the set of probability measures p on G
such that the support of p is F
and Xn = ω1ω2 · · ·ωn the right random walk
associated with p.
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Define again the linear drift and the entropy:

`p := lim
n→∞

1

n

∑
g∈G

d(g, e)p(n)(g)

hp := lim
n→∞−

1

n

∑
g∈G

p(n)(g) ln p(n)(g)

Theorem [L, 2012] With the above nota-

tions, if G is a finitely generated hyperbolic

group, the mappings p 7→ `p and p 7→ hp are

Lipschitz continuous on P(F ).
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Boundaries of G:

Geometric boundary ∂GG: geodesic rays, up

to bounded Hausdorff distance away from

one another.

Martin boundary (∂MG, p): compactification

by the functions x 7→ G(x−1y)
G(y) , as y →∞.

Busemann boundary ∂BG: compactification

by the functions x 7→ d(x, y)− d(e, y),

as y →∞.
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[Ancona, 1990] For a finitely supported ran-
dom walk on a hyperbolic group, the Martin
boundary and the geometric boundary coin-
cide and there is a unique stationary measure
p∞ on this boundary.

[Izumi, Neshveyev & Okayasu, 2008]
Moreover, lnKξ ∈ Kα for some α > 0.

[Coornaert & Papadopoulos, 2001]
The Busemann boundary has a nice Markov
structure.

BUT...
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The Busemann boundary and the geomet-

ric boundary do not necessarily coincide (see

the discussion in [Webster & Winchester,

2005]).

There might be several stationary measures

on the Busemann boundary.

The geometric boundary doesn’t necessary

have a nice Markov structure.

15



There are still formulas for hp and `p:

hp = −
∑
x∈F

(∫
∂GG

lnKξ(x
−1)dp∞(ξ)

)
p(x),

`p = sup
m

∑
x∈F

(∫
∂BG

Bξ(x
−1)dm

)
p(x)

 ,
where the sup in the second formula is over
the stationary probability measures on ∂BG;
see [Kaimanovich (2000)] for the entropy,
[Karlsson & L (2007)] for the linear drift.
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Assume (BA): The Busemann boundary co-

incide with the geometry boundary. Then,

Proposition Under (BA), for each p ∈
P(F ), there is α > 0 such that the mapping

p 7→ p∞ is real analytic from a neighbourhood

of p into the dual space K∗α.

It was indeed observed in [Bjorklund, 2010] that, un-

der (BA), p∞ is an eigenvector for an isolated eigen-

value of the natural dual Markov operator in the suit-

able Kα.
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Corollary Under (BA), the mapping p 7→ `p

is real analytic on P(F ).

Question Under (BA), the mapping p 7→ hp

is C∞ on P(F ).
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The other result in the case of hyperbolic

groups is for symmetric probability measures.

If F is a symmetric set, denote Pσ(F ) the set

of probability measures with support F and

such that p(x) = p(x−1).

Theorem [Mathieu (2012)] With the above

notations, if G is a finitely generated hyper-

bolic group, the mappings p 7→ `p and p 7→ hp
are C1 on Pσ(F ).

Moreover, Mathieu has an expression for the

derivative.
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Extension 2: Manifolds of negative cur-
vature

M a compact closed manifold
M̃ the universal cover
P(M) the set of C∞ metrics of negative cur-
vature of M , endowed with the C2 topology.

For g ∈ P(M), g̃ the lifted metric on M̃ , Pg
the family of probabilities on C(R+, M̃) that
describe the Brownian motion associated to
the metric g̃, p(t, x, y) the heat kernel of g̃;
p(t, x, y)dy is the distribution of the Brownian
particle ω(t) under Pxg.
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We set, for g ∈ P(M),

`g := lim
t→∞

1

t

∫
M̃
d(y, x)p(t, x, y)dy

hg := lim
t→∞

−
1

t

∫
M̃
p(t, x, y) ln p(t, x, y)dy.

By compactness, the limits do not depend on the

origin point x;

`g is the linear drift ([Guivarc’h, 1980]) of
the Brownian motion on (M̃, g̃)

and hg is the stochastic entropy of (M, g)
([Kaimanovich,1986]).
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Theorem [L & Shu, 2013]
Let ϕ be a C3 function on M and consider
the curve λ 7→ g(λ) = eλϕg of metrics con-
formal to a metric g ∈ P(M). Then, the
mappings λ 7→ `g(λ) and λ 7→ hg(λ) are differ-
entiable at λ = 0.

Observe that the metric g(λ) has negative curvature

for λ close to 0. The proof extends the techniques

of the hyperbolic group case ([L, 2012] and [Math-

ieu, 2012]). In particular, from the formula for the

derivative, we obtain:
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Theorem [L & Shu, 2013]

Assume M is a locally symmetric space and

consider C3 curves λ 7→ g(λ) = eϕλg of con-

formal metrics with total area 1 on M . Then,

the stochastic entropy λ 7→ hg(λ) has a criti-

cal point at 0 for all such curves.

In dimension 2, the stochastic entropy depends only

on the volume.

The above theorem is meaningful only in higher di-

mensions. The converse is an open problem.
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Extension 3: IFS. The above suggests the

following questions about the familiar ICBM

Set, for 0 < p, λ < 1, µp,λ for the distribution

of
∞∑
i=1

εiλ
i, where

{εi}i∈N are i.i.d. ({−1,+1}, (p,1− p)).

By [Feng & Hu, 2009], µp,λ is exact dimen-

sional with dimension δ(p, λ). What is the

regularity of p 7→ δ(p, λ)?

In particular for λ−1 Pisot?
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