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Definition

Let µ be a compactly supported probability measure on Rd ,
{e2πi〈λ,·〉}λ∈Λ is called a Fourier frame of µ if for all f ∈ L2(µ),

A‖f ‖2 ≤
∑
λ∈Λ

|
∫

f (x)e2πi〈λ,x〉dµ(x)|2 ≤ B‖f ‖2.

If such Fourier frame exists, then µ is called an F-spectral measure
and Λ is called an F-spectrum of µ.

1 Fourier frame generalizes orthonormal basis, and it is
”overcomplete” i.e. every f can be expanded using linear
combination of the frame, but it is not unique.

2 If it is unique, then it is called an (exponential) Riesz basis.
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If a measure µ exists an exponential orthonormal basis, µ is called
a spectral measure. The frequency set is called a spectrum.

Conjecture (Fuglede)

Ω ⊂ Rd is a spectral set if and only if Ω is a translational tile.

He showed that

1 Any fundamental domain given by a discrete lattice are
spectral sets with its dual lattice as its spectrum.

2 Triangles and circles on R2 are not spectral.

3 [0, 1] ∪ [2, 3] is not a fundamental domain, but it is still
spectral (clearly it is a tile).

However, until 2004, Tao [T] gave a counterexample in Rd , d ≥ 5.
The examples was modified later so that the conjecture are false in
both directions on Rd , d ≥ 3.
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Other fractal probability measures were also found to have Fourier
frame.

[Jorgensen and Pedersen, 1998]
Let µ4 be the Cantor measures supported on Cantor sets of 1/4
contractions.

µ4(E ) =
1

2
µ4(4E ) +

1

2
µ4(4E − 2).

For such measure, It was found that

Λ = {0, 1} ⊕ 4{0, 1} ⊕ 42{0, 1} ⊕ ...

is an orthonormal basis spectrum of µ4.

The same also works for µ2n. More spectral self-similar measures
was found by  Laba and Wang based on certain algebraic conditions.
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However, for the µ3, the Cantor measures supported on Cantor
sets of 1/3 contractions.

µ3(E ) = 1/2µ3(3E ) + 1/2µ3(3E − 2).

For such measure, there are at most 2 mutually orthogonal
exponentials. Hence, there is no complete orthogonal exponentials
in L2(dµ3). The same for µ2n+1.

Qu: Is µ3 F-spectral?

More generally, we ask
Qu: which self-similar/self-affine measures are F-spectral?
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In the following, we will decompose a measure µ as its Lebesgue
decomposition.

µ = µd + µs + µc .

µd : discrete part
µs : singular (w.r.t. Lebesgue) part
µc : absolutely continuous

Theorem (He, Lai and Lau, 2011)

Let µ be an F-spectral measure on Rd . Then it must be one of the
three pure types: discrete (and finite), singularly continuous or
absolutely continuous.
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For discrete measures,

Theorem (He, Lai and Lau, 2011)

(1) Every discrete measure admits some exponential Riesz basis.
(2) Suppose

(i)µ be a spectral measure on R1 with Zero set of µ̂ are integers.
(ii)η be a discrete measure of atoms in Z.

Then η ∗ µ admits an exponential Riesz basis (some are not
spectral measure).
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Absolutely continuous measures

Theorem

Let µ be a compactly supported absolutely continuous probability
measure on Rd with dµ = ϕ(x)dx. Then µ is an F-spectral
measure if and only if there exists 0 < m,M <∞ such that
m ≤ ϕ(x) ≤ M a.e. on suppµ.

There are three proofs to this theorem.

1 Comparing Beurling densities with its subset of the support

2 Convolution inequality and Beurling density (with Gabardo)

3 Translational absolute continuity (with Dutkay)
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Windowed exponentials:⋃q
j=1 E(gj ,Λj) =

⋃q
j=1{gj(x)e2πi〈λ,x〉 : λ ∈ Λj}

Theorem (Gabardo and Lai)

Let µ = ϕ(x)dx be an absolutely continuous measures with
support Ω = {ϕ 6= 0} and let gj , j = 1, 2 · · · , q be a finite set of
functions in L2(ϕdx). Then there exists Λj such that⋃q

j=1 E(gj ,Λj) form a frame in L2(ϕdx) if and only if we can find
0 < m ≤ M <∞ such that

m
√
ϕ
≤ max
{j :gj∈L∞(ϕdx)}

|gj | ≤
M
√
ϕ

almost everywhere on Ω.
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2. Translational Absolute Continuity.
Let F be such that µ(F ) > 0. Denote ω(·) = µ((·+ a) ∩ (F + a))
with a ∈ Rd . We have the following theorem.

Theorem

Let µ be a finite Borel measure on Rd and suppose there exists a
Fourier frame for µ, with frame bounds A,B > 0. Assume ω � µ.
Then

B

A
≥
∥∥∥∥dω

dµ

∥∥∥∥
∞
.
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2. Translational Absolute Continuity. Let h = dω/dµ, then∫
f dω =

∫
F+a

f (x − a) dµ(x) =

∫
f (x)h(x)dµ(x)

Let M = ‖h‖∞. By restricting to a subset, we may assume it is
finite. Let

E = {x ∈ F : M − ε ≤ h ≤ M}, f1 :=
1√
µ(E )

χE

‖f1(· − a)‖2
L2(µ) =

∫
|f1(x − a)|2 dµ(x) =

∫
|f1(x)|2h(x) dµ(x),

(f1(· − a) dµ)̂(ξ) = e−2πit·a f̂1h dµ(ξ)

Chun-Kit Lai, McMaster University Uniformity of measures with Fourier frames



Background and Motivations Theories and Main results Further Problems

Theories and Main results

2. Translational Absolute Continuity.
Denote ν =

∑
λ∈Λ δλ, Compare using the frame inequality

AM2 ≤
∫
|M̂f1dµ(ξ)|2dν(ξ)

≤
∣∣∣‖M̂f1dµ‖2

L2(ν) − ‖ ̂f1(· − a)dµ‖2
L2(ν)

∣∣∣
+ ‖ ̂f1(· − a)dµ‖2

L2(ν)

≤Cε+ B

∫
|f1(· − a)|2 ≤ Cε+ BM.
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Theorem (Dutkay and Lai )

Let µ = g dx be an absolutely continuous measure on Rd . If µ has
a Fourier frame bounds A,B > 0 then on the support of µ

B

A
≥ sup(g)

inf(g)
.

Sketch of Proof. Restricting on the subset {N−1 ≤ g ≤ N}, we
may assume upper and lower bound M,m. Now, consider

C = {x : m ≤ g(x) ≤ m + ε}, D = {x : M − ε ≤ g(x) ≤ M}

Take a set F of positive Lebesgue measure such that F ⊂ C and
F + a ⊂ D (it is possible by considering χC ∗ χD and take Fourier
transform).
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Consider ω(·) = µ((·+ a) ∩ (F + a)), then∥∥∥∥dω)

dµ

∥∥∥∥
∞

=

∥∥∥∥g(x + a)

g(x)
|E
∥∥∥∥
∞
≥ M − ε

m + ε
.

Hence, B
A ≥

M−ε
m+ε .
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Corollary

Suppose µ = ϕ dx admits a tight frame (A = B), then ϕ is a
constant multiple of a characteristic function.

Note that

1 Laba and Wang (2006) showed that this corollart is true when
the support is an interval. Dutkay, Han and Jorgensen (2009)
showed it is true for finite union of intervals.

2 The proof is just simply note that B = A implies
inf ϕ ≥ supϕ.
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(IV) Self-affine measures
Let R be a real d × d expanding matrix, i.e., all its eigenvalues λ
have absolute value |λ| > 1. Let B be a finite subset of Rd and let
(pb)b∈B be a set of positive probability weight, pb > 0 and∑

b∈B pb = 1. We define the affine iterated function system(IFS)

τb(x) := R−1(x + b), (x ∈ X , b ∈ B).

There is a unique Borel probability measure µ = µB on Rs called
the invariant measure, such that

µ(E ) =
∑
b∈B

pbµ(τ−1
b (E )), for all Borel sets E . (1)

In addition, the measure µ is supported on the attractor X .

Chun-Kit Lai, McMaster University Uniformity of measures with Fourier frames
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If for all b, b′ ∈ B, b 6= b′ we have µB(τb(X ) ∩ τb′(X ) = 0 then we
say that the affine IFS has measure disjoint condition.
Checking also the condition of translational absolute continuity
theorem we have

Theorem

Let (τb)b∈B, (pb)b∈B be an affine iterated function system with
measure-disjoint condition. Suppose the invariant measure µB is
an F-spectral measure. Then all the probabilities pb, b ∈ B must
be equal.

Chun-Kit Lai, McMaster University Uniformity of measures with Fourier frames
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Proof. Pick two elements b 6= c in B. For any n ∈ N, let
F = τnb (X ) and F + a = τnc (X ) for some a. This is possible since
they are affine maps.
For any E ⊂ F , by the measure-disjoint condition,

µ(E ) = pn
bµ(τ−nb (E )).

On the other hand,

ω(E ) = pn
cµ(τ−nb (E )).

Hence dω/dµ = pn
c /pn

b . Hence,

pn
c

pn
b

≤ B

A
.
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If the affine iterated function system does not satisfy the no
overlap condition, we still have some conclusion on dimension 1.
Assume the IFS with functions τi (x) = λx + bi , for 0 < λ < 1,
i = 1, ..,N and

B = {0 = b1 < ... < bN = 1− λ}.

In this case, the self-similar set XB is a subset [0, 1]. The
self-similar measure with weight pi is the unique Borel probability
measure satisfying

µ =
N∑
i=1

piµ ◦ τ−1.
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Theorem

Suppose µ defined is absolutely continuous with respect to Hα|X
and 0 < Hα(X ) <∞. If µ has a frame measure, then p1 = pN .
If α = 1 (i.e. µ� L|X ), then pj ≤ λ for all j and p1 = pN = λ.

In particular, if the measure is of equal weight, i.e. pi = 1
N , then

the µ must be a measure supported on a self-similar tile.
However, it’s hard to analyze the pi for i 6= 1,N, since we need to
tackle overlaps.
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If we assume more strongly that µ is spectral. We have a solved a
special case of  Laba-Wang conjecture of the spectral measure.

Theorem

Suppose µ be the self-similar measure that is absolutely continuous
with respect to the Lebesgue measure and suppose µ admits a
tight frame. Then

(i) p1 = · · · = pN = λ.

(ii) λ = 1
N .

(iii) There exists α > 0 such that D′ := αD ⊂ Z and D′ tiles Z.

In particular, µ is the normalized Lebesgue measure of a self-similar
tile.
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All the above are proved by based on the assumption of
translational absolute continuity. We say that a finite Borel
measure µ is translationally absolutely continuous if for all Borel
sets F with µ(F ) > 0 and for all a ∈ Rd such that
F ,F + a ⊂ suppµ, ω � µ. (recall ω(·) = µ(·+ a ∩ F + a))

Conjecture

If µ is an F−spectral measure. Then µ must be translationally
absolutely continuous and it has only one local dimension.

Recall

dimlocµ(x) := lim
r→0

logµ(Br (x))

log r
.
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However, there do exist examples for which such translational
absolute continuity fails. The following suggests that singular
measures supported essentially on positive Lebesgue measurable
sets give such examples.

Example

Let µ be a measure whose support is exactly [0, 1]. Suppose µ is
singular with respect to the Lebesgue measure on [0, 1], then
there exists F ,F + a ⊂ [0, 1] such that ω is singular with respect
to µ.

Sketch of Proof. Pick µ(E ) > 0 and L(E ) = 0.
Consider ∫

I
µ(E + x)dx > 0.
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If we know the measure µ is ”uniform” on the support, the above
arguments cannot work, there should be some other criterion for
F-spectrality. This is again the most interesting question:

(Q1). For the case µ3, are there any Fourier frame?

(Q2). Find a singular measure with a Fourier frame but which is
not absolutely continuous with respect to a spectral measure nor a
convolution of spectral measures with some discrete measures.

(Q3) Find a self-similar measure admitting a Fourier frame of the
type described in Q2.
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There are possibilities of sets we may try.
(1) unbounded sets of finite Lebesgue measure
(2) the surface measure supported on some Riemannian manifold
sitting on Rd

(3) 3/8 Bernoulli convolution
(4) Salem construction of Cantor sets µ̂(ξ) = O(|ξ|−β/2).
(5) Riesz product
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Thank You !!
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