Hausdorff dimension of metric spaces and Lipschitz maps onto cubes

Tamás Keleti

Eötvös Loránd University, Budapest

AFRT2012, Hong Kong, December 10, 2012

Tamás Keleti (Eötvös University, Budapest) with András Máthé and Ondřej

Image: A math a math

Hausdorff dimension of metric spaces and Lipschitz maps onto cubes

Tamás Keleti

Eötvös Loránd University, Budapest

AFRT2012, Hong Kong, December 10, 2012

joint work with

András Máthé (Warwick) and Ondřej Zindulka (Prague)

4 D N 4 B N 4 B N

Main question

Which compact metric spaces X can be mapped onto a k-dimensional cube by a Lipschitz map?

A D > A B > A B >

Main question

Which compact metric spaces X can be mapped onto a k-dimensional cube by a Lipschitz map?

Since Lipschitz map cannot increase the Hausdorff measure we get

$$f: X \to [0,1]^k$$
Lipschitz and onto $\Longrightarrow \mathcal{H}^k(X) \ge \mathcal{H}^k(f(X)) = \mathcal{H}^k([0,1]^k) > 0,$

where \mathcal{H}^k denotes the k-dimensional Hausdorff measure. Therefore

Obvious necessary condition:

$$\mathcal{H}^k(X) > 0$$

Image: A match a ma

Main question

Which compact metric spaces X can be mapped onto a k-dimensional cube by a Lipschitz map?

Since Lipschitz map cannot increase the Hausdorff measure we get

$$f: X \to [0,1]^k$$
Lipschitz and onto $\Longrightarrow \mathcal{H}^k(X) \ge \mathcal{H}^k(f(X)) = \mathcal{H}^k([0,1]^k) > 0,$

where \mathcal{H}^k denotes the k-dimensional Hausdorff measure. Therefore

Obvious necessary condition:

$$\mathcal{H}^k(X) > 0$$

Is this sufficient?

Main question

Which compact metric spaces X can be mapped onto a k-dimensional cube by a Lipschitz map?

Since Lipschitz map cannot increase the Hausdorff measure we get

$$f: X \to [0,1]^k$$
Lipschitz and onto $\Longrightarrow \mathcal{H}^k(X) \geq \mathcal{H}^k(f(X)) = \mathcal{H}^k([0,1]^k) > 0,$

where \mathcal{H}^k denotes the k-dimensional Hausdorff measure. Therefore

Obvious necessary condition:

$$\mathcal{H}^k(X) > 0$$

Is this sufficient? No!

Vitushkin, Ivanov and Melnikov (1963)

There exists a compact set $K \subset \mathbb{R}^2$ with $\mathcal{H}^1(K) > 0$ that cannot be mapped onto a segment by a Lipschitz map.

Main question

Which compact metric spaces X can be mapped onto a k-dimensional cube by a Lipschitz map?

Obvious necessary condition:

 $\mathcal{H}^k(X) > 0$

• • • • • • • • • • • •

Main question

Which compact metric spaces X can be mapped onto a k-dimensional cube by a Lipschitz map?

Obvious necessary condition:

 $\mathcal{H}^k(X)>0$

Is this condition sufficient at least in the special case when $X \subset \mathbb{R}^k$?

Image: A match a ma

3 / 13

Main question

Which compact metric spaces X can be mapped onto a k-dimensional cube by a Lipschitz map?

Obvious necessary condition:

 $\mathcal{H}^k(X)>0$

Is this condition sufficient at least in the special case when $X \subset \mathbb{R}^k$?

The following long standing conjecture states exactly this:

Conjecture of Laczkovich (1991)

Every compact subset of \mathbb{R}^k with positive Lebesgue measure can be mapped onto a *k*-dimensional cube by a Lipschitz map.

イロト イポト イヨト イヨト

Main question

Which compact metric spaces X can be mapped onto a k-dimensional cube by a Lipschitz map?

Obvious necessary condition:

 $\mathcal{H}^k(X)>0$

Is this condition sufficient at least in the special case when $X \subset \mathbb{R}^k$?

The following long standing conjecture states exactly this:

Conjecture of Laczkovich (1991)

Every compact subset of \mathbb{R}^k with positive Lebesgue measure can be mapped onto a *k*-dimensional cube by a Lipschitz map.

David Preiss: yes for k = 2

(a)

Main question

Which compact metric spaces X can be mapped onto a k-dimensional cube by a Lipschitz map?

Obvious necessary condition:

 $\mathcal{H}^k(X)>0$

Is this condition sufficient at least in the special case when $X \subset \mathbb{R}^k$?

The following long standing conjecture states exactly this:

Conjecture of Laczkovich (1991)

Every compact subset of \mathbb{R}^k with positive Lebesgue measure can be mapped onto a *k*-dimensional cube by a Lipschitz map.

David Preiss: yes for k = 2For $k \ge 3$ it is open.

(a)

Our main result

Main question

Which compact metric spaces X can be mapped onto a k-dimensional cube by a Lipschitz map?

Obvious necessary condition:

 $\mathcal{H}^k(X) > 0$

▲ @ ▶ ▲ ∃ ▶

Our main result

Main question

Which compact metric spaces X can be mapped onto a k-dimensional cube by a Lipschitz map?

Obvious necessary condition:

 $\mathcal{H}^k(X) > 0$

The slightly stronger condition that $\dim_H(X) > k$ is already sufficient:

Main Theorem

If X is a compact metric space with $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

イロト イポト イヨト イヨト

More general metric spaces

Theorem

If X is a compact metric space with $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

More general metric spaces

Theorem

If X is a compact metric space with $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

In fact we proved this result for a larger class of metric spaces:

Theorem - for more general metric spaces

If X is an analytic (for example Borel) subset of a complete separable metric space and $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

More general metric spaces

Theorem

If X is a compact metric space with $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

In fact we proved this result for a larger class of metric spaces:

Theorem - for more general metric spaces

If X is an analytic (for example Borel) subset of a complete separable metric space and $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

But some assumption is needed for the metric space.

Theorem - negative result

There exist separable metric spaces with arbitrarily large Hausdorff dimension that cannot be mapped onto a segment by a uniformly continuous function.

(a)

Theorem - negative result

There exist separable metric spaces with arbitrarily large Hausdorff dimension that cannot be mapped onto a segment by a uniformly continuous function.

Image: A match a ma

Theorem - negative result

There exist separable metric spaces with arbitrarily large Hausdorff dimension that cannot be mapped onto a segment by a uniformly continuous function.

It is well known that the following hypothesis is independent of the standard ZFC axioms.

$\operatorname{cov} \mathcal{M} < \mathfrak{c}$

The real line can be covered by less than continuum many sets of first category.

• • • • • • • • • • • • •

Theorem - negative result

There exist separable metric spaces with arbitrarily large Hausdorff dimension that cannot be mapped onto a segment by a uniformly continuous function.

It is well known that the following hypothesis is independent of the standard ZFC axioms.

$\operatorname{\mathsf{cov}} \mathcal{M} < \mathfrak{c}$

The real line can be covered by less than continuum many sets of first category.

To prove the negative result we give different constructions depending on the validity of this hypothesis:

(日) (同) (日) (日)

Theorem - negative result

There exist separable metric spaces with arbitrarily large Hausdorff dimension that cannot be mapped onto a segment by a uniformly continuous function.

It is well known that the following hypothesis is independent of the standard ZFC axioms.

$\operatorname{\mathsf{cov}} \mathcal{M} < \mathfrak{c}$

The real line can be covered by less than continuum many sets of first category.

To prove the negative result we give different constructions depending on the validity of this hypothesis:

• If $\operatorname{cov} \mathcal{M} < \mathfrak{c}$ holds then our example is a separable metric space of cardinality less than continuum.

イロト 不得下 イヨト イヨト

Theorem - negative result

There exist separable metric spaces with arbitrarily large Hausdorff dimension that cannot be mapped onto a segment by a uniformly continuous function.

It is well known that the following hypothesis is independent of the standard ZFC axioms.

$\operatorname{\mathsf{cov}} \mathcal{M} < \mathfrak{c}$

The real line can be covered by less than continuum many sets of first category.

To prove the negative result we give different constructions depending on the validity of this hypothesis:

- If $\operatorname{cov} \mathcal{M} < \mathfrak{c}$ holds then our example is a separable metric space of cardinality less than continuum.
- If $\operatorname{cov} \mathcal{M} < \mathfrak{c}$ is false then we can give an example in \mathbb{R}^n .

イロト 不得下 イヨト イヨト

Motivation - Transfinite Hausdorff Dimension

Definition (Urbanski)

 $\mathsf{tHD}(X) = \sup\{\mathsf{ind}\, f(Y) : Y \subset X, f : Y \to Z \text{ Lipschitz, } Z \text{ a metric space}\},\$

where ind denotes the transfinite small inductive topological dimension.

Image: A math a math

Motivation - Transfinite Hausdorff Dimension

Definition (Urbanski)

 $\mathsf{tHD}(X) = \sup\{\mathsf{ind}\, f(Y): Y \subset X, \, f: Y \to Z \text{ Lipschitz, } Z \text{ a metric space}\},$

where ind denotes the transfinite small inductive topological dimension.

Combining a theorem of Urbanski and our general theorem we get the following.

Theorem

Let A be an analytic subset of a complete separable metric space.

- If dim_H A is finite but not an integer then $tHD(A) = \lfloor \dim_H A \rfloor$,
- if dim_H A is an integer then tHD(A) is dim_H A or dim_H A 1, and
- if dim_H $A = \infty$ then tHD(A) $\geq \omega_0$.

(日) (同) (日) (日)

Motivation - Transfinite Hausdorff Dimension

Definition (Urbanski)

 $\mathsf{tHD}(X) = \sup\{\mathsf{ind}\, f(Y): Y \subset X, \, f: Y \to Z \text{ Lipschitz, } Z \text{ a metric space}\},$

where ind denotes the transfinite small inductive topological dimension.

Combining a theorem of Urbanski and our general theorem we get the following.

Theorem

Let A be an analytic subset of a complete separable metric space.

- If dim_H A is finite but not an integer then $tHD(A) = \lfloor \dim_H A \rfloor$,
- if dim_H A is an integer then tHD(A) is dim_H A or dim_H A 1, and
- if dim_H $A = \infty$ then tHD(A) $\geq \omega_0$.

Using our negative result we get that for general separable metric spaces nothing can be said:

Theorem

There exist separable metric spaces with zero transfinite Hausdorff dimension and arbitrarily large Hausdorff dimension.

Definition (Zindulka)

A metric space (X, d) is monotone if there exists a linear order < and a C s.t.

$$(*) \quad \operatorname{diam}([a,b]) \leq C \cdot d(a,b) \quad (\forall a, b \in X),$$

where $[a, b] = \{x \in X : a \le x \le b\}.$

Image: A math a math

Definition (Zindulka)

A metric space (X, d) is monotone if there exists a linear order < and a C s.t.

$$(*) \qquad \operatorname{diam}([a,b]) \leq C \cdot d(a,b) \qquad (\forall a,b \in X),$$

where $[a, b] = \{x \in X : a \le x \le b\}.$

Theorem - *s*-Hölder map for compact monotone metric spaces (*X*, *d*) compact, monotone and $\mathcal{H}^{s}(X) > 0 \implies \exists g : X \rightarrow [0, 1]$ *s*-Hölder onto

Sketch of the proof:

Image: A match a ma

Definition (Zindulka)

A metric space (X, d) is monotone if there exists a linear order < and a C s.t.

$$(*) \qquad \operatorname{diam}([a,b]) \leq C \cdot d(a,b) \qquad (\forall a,b \in X),$$

where $[a, b] = \{x \in X : a \le x \le b\}.$

Theorem - s-Hölder map for compact monotone metric spaces

(X,d) compact, monotone and $\mathcal{H}^{s}(X)>0 \Longrightarrow \exists g:X
ightarrow [0,1]$ s-Hölder onto

Sketch of the proof:

(X, d) monotone $\Longrightarrow \exists C$ and < s.t. (*) holds.

Image: A match a ma

Definition (Zindulka)

A metric space (X, d) is monotone if there exists a linear order < and a C s.t.

$$(*) \quad \operatorname{diam}([a,b]) \leq C \cdot d(a,b) \quad (\forall a, b \in X),$$

where $[a, b] = \{x \in X : a \le x \le b\}.$

Theorem - *s*-Hölder map for compact monotone metric spaces

(X,d) compact, monotone and $\mathcal{H}^{s}(X) > 0 \Longrightarrow \exists g : X \to [0,1]$ *s*-Hölder onto

Sketch of the proof:

(X, d) monotone $\Longrightarrow \exists C$ and < s.t. (*) holds.

 $\mathcal{H}^{s}(X) > 0 \stackrel{\textit{Frostman}, \textit{lemma}}{\Longrightarrow} \exists \text{ Borel } \mu \text{ on } X \text{ s.t. } \mu(E) \leq (\operatorname{diam}(E))^{s} (\forall E \subset X).$

(日) (同) (三) (三)

Definition (Zindulka)

A metric space (X, d) is monotone if there exists a linear order < and a C s.t.

$$(*) \quad \operatorname{diam}([a,b]) \leq C \cdot d(a,b) \quad (\forall a, b \in X),$$

where $[a, b] = \{x \in X : a \le x \le b\}.$

Theorem - *s*-Hölder map for compact monotone metric spaces (*X*, *d*) compact, monotone and $\mathcal{H}^{s}(X) > 0 \Longrightarrow \exists g : X \to [0, 1]$ *s*-Hölder onto

Sketch of the proof:

(X, d) monotone $\Longrightarrow \exists C$ and < s.t. (*) holds.

 $\mathcal{H}^{s}(X) > 0 \xrightarrow{\text{Frostman lemma}} \exists \text{ Borel } \mu \text{ on } X \text{ s.t. } \mu(E) \leq (\operatorname{diam}(E))^{s} \ (\forall E \subset X).$ Let $g(x) = \mu((-\infty, x))$, where $(-\infty, x) = \{y \in X : y < x\}.$

イロト イポト イヨト イヨト

Definition (Zindulka)

A metric space (X, d) is monotone if there exists a linear order < and a C s.t.

$$(*) \qquad \operatorname{diam}([a,b]) \leq C \cdot d(a,b) \qquad (\forall a,b \in X),$$

where $[a, b] = \{x \in X : a \le x \le b\}.$

Theorem - *s*-Hölder map for compact monotone metric spaces (*X*, *d*) compact, monotone and $\mathcal{H}^{s}(X) > 0 \Longrightarrow \exists g : X \to [0, 1]$ *s*-Hölder onto

Sketch of the proof:

(X, d) monotone $\Longrightarrow \exists C$ and < s.t. (*) holds.

 $\mathcal{H}^{s}(X) > 0 \xrightarrow{\text{Frostman lemma}} \exists \text{ Borel } \mu \text{ on } X \text{ s.t. } \mu(E) \leq (\operatorname{diam}(E))^{s} \ (\forall E \subset X).$ Let $g(x) = \mu((-\infty, x))$, where $(-\infty, x) = \{y \in X : y < x\}.$

Then g is s-Hölder since $g(b) - g(a) = \mu([a, b)) \leq \operatorname{diam}([a, b))^s \leq (C \cdot d(a, b))^s$.

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem - *s*-Hölder map for compact monotone metric spaces (*X*, *d*) compact, monotone and $\mathcal{H}^{s}(X) > 0 \implies \exists g : X \rightarrow [0, 1]$ *s*-Hölder onto

Image: A math a math

Theorem - *s*-Hölder map for compact monotone metric spaces (*X*, *d*) compact, monotone and $\mathcal{H}^{s}(X) > 0 \implies \exists g : X \rightarrow [0, 1]$ *s*-Hölder onto

Theorem - positive result for compact monotone metric spaces (X, d) compact, monotone and $\mathcal{H}^k(X) > 0 \Longrightarrow \exists f : X \to [0, 1]^k$ Lipschitz onto

Image: A math a math

9 / 13

Theorem - *s*-Hölder map for compact monotone metric spaces (*X*, *d*) compact, monotone and $\mathcal{H}^{s}(X) > 0 \implies \exists g : X \rightarrow [0, 1]$ *s*-Hölder onto

Theorem - positive result for compact monotone metric spaces (X, d) compact, monotone and $\mathcal{H}^k(X) > 0 \Longrightarrow \exists f : X \to [0, 1]^k$ Lipschitz onto

Proof.

 $\mathcal{H}^k(X) > 0 \stackrel{\textit{Previous theorem}}{\Longrightarrow} \exists g: X
ightarrow [0,1] k$ -Hölder onto

Image: A match a ma

Theorem - *s*-Hölder map for compact monotone metric spaces (*X*, *d*) compact, monotone and $\mathcal{H}^{s}(X) > 0 \implies \exists g : X \rightarrow [0, 1]$ *s*-Hölder onto

Theorem - positive result for compact monotone metric spaces (X, d) compact, monotone and $\mathcal{H}^k(X) > 0 \Longrightarrow \exists f : X \to [0, 1]^k$ Lipschitz onto

Proof.

 $\mathcal{H}^k(X) > 0 \stackrel{\textit{Previous theorem}}{\Longrightarrow} \exists g: X
ightarrow [0,1] k$ -Hölder onto

Let $h: [0,1] \rightarrow [0,1]^k$ be a 1/k-Hölder Peano curve.

• • • • • • • • • • • •

Theorem - *s*-Hölder map for compact monotone metric spaces (*X*, *d*) compact, monotone and $\mathcal{H}^{s}(X) > 0 \implies \exists g : X \rightarrow [0, 1]$ *s*-Hölder onto

Theorem - positive result for compact monotone metric spaces (X, d) compact, monotone and $\mathcal{H}^k(X) > 0 \Longrightarrow \exists f : X \to [0, 1]^k$ Lipschitz onto

Proof.

 $\mathcal{H}^k(X) > 0 \stackrel{Previous theorem}{\Longrightarrow} \exists g: X \to [0,1] \ k ext{-H\"older onto}$

Let $h: [0,1] \rightarrow [0,1]^k$ be a 1/k-Hölder Peano curve.

Then $f = h \circ g : X \to [0,1]^k$ Lipschitz onto.

(日) (同) (日) (日)

Ultrametric spaces are also useful!

Definition

An ultrametric space is a metric space with the stronger triangle inequality

 $d(x,y) \le \max(d(x,z),d(y,z))$

Image: A match a ma

Ultrametric spaces are also useful!

Definition

An ultrametric space is a metric space with the stronger triangle inequality

```
d(x,y) \le \max(d(x,z),d(y,z))
```

First good news:

Easy fact

Every compact ultrametric space is monotone.

• • • • • • • • • • • • •

Ultrametric spaces are also useful!

Definition

An ultrametric space is a metric space with the stronger triangle inequality

```
d(x,y) \leq \max(d(x,z),d(y,z))
```

First good news:

Easy fact

Every compact ultrametric space is monotone.

Second good news:

Theorem (Mendel-Naor, 2012)

For any (X, d) compact metric space and $\varepsilon > 0$ there exists a closed subset $Y \subset X$ s.t. dim_H $Y \ge (1 - \varepsilon) \dim_H X$ and (Y, d) is and (Y, d) is bi-Lipschitz equivalent to an ultrametric space.

(日) (四) (三) (三)

Theorem (Mendel-Naor, 2012)

For any (X, d) compact metric space and $\varepsilon > 0$ there exists a closed subset $Y \subset X$ s.t. dim_H $Y \ge (1 - \varepsilon) \dim_H X$ and (Y, d) is and (Y, d) is bi-Lipschitz equivalent to an ultrametric space.

Main Theorem

If X is a compact metric space with $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

< ロ > < 同 > < 三 > < 三

Theorem (Mendel-Naor, 2012)

For any (X, d) compact metric space and $\varepsilon > 0$ there exists a closed subset $Y \subset X$ s.t. dim_H $Y \ge (1 - \varepsilon) \dim_H X$ and (Y, d) is and (Y, d) is bi-Lipschitz equivalent to an ultrametric space.

Main Theorem

If X is a compact metric space with $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

Proof. $\dim_H(X) > k \xrightarrow{Mendel-Naor} \exists F \subset X \text{ closed s.t. } F \text{ is bi-Lipschitz equivalent to an}$ $\operatorname{ultrametric space} Y \text{ and } \dim_H(Y) = \dim_H(F) > k.$

(日) (同) (日) (日)

Theorem (Mendel-Naor, 2012)

For any (X, d) compact metric space and $\varepsilon > 0$ there exists a closed subset $Y \subset X$ s.t. dim_H $Y \ge (1 - \varepsilon) \dim_H X$ and (Y, d) is and (Y, d) is bi-Lipschitz equivalent to an ultrametric space.

Main Theorem

If X is a compact metric space with $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

Proof. $\dim_H(X) > k \xrightarrow{Mendel-Naor} \exists F \subset X \text{ closed s.t. } F \text{ is bi-Lipschitz equivalent to an}$ $\operatorname{ultrametric space} Y \text{ and } \dim_H(Y) = \dim_H(F) > k.$

Howroyd theorem \implies We can suppose that F is compact, and then so is Y.

イロト 不得下 イヨト イヨト

Theorem (Mendel-Naor, 2012)

For any (X, d) compact metric space and $\varepsilon > 0$ there exists a closed subset $Y \subset X$ s.t. dim_H $Y \ge (1 - \varepsilon) \dim_H X$ and (Y, d) is and (Y, d) is bi-Lipschitz equivalent to an ultrametric space.

Main Theorem

If X is a compact metric space with $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

Proof. $\dim_H(X) > k \xrightarrow{Mendel-Naor} \exists F \subset X \text{ closed s.t. } F \text{ is bi-Lipschitz equivalent to an ultrametric space } Y \text{ and } \dim_H(Y) = \dim_H(F) > k.$ Howroyd theorem \implies We can suppose that F is compact, and then so is Y. Y compact ultrametric space \implies Y compact monotone metric space.

Theorem (Mendel-Naor, 2012)

For any (X, d) compact metric space and $\varepsilon > 0$ there exists a closed subset $Y \subset X$ s.t. dim_H $Y \ge (1 - \varepsilon) \dim_H X$ and (Y, d) is and (Y, d) is bi-Lipschitz equivalent to an ultrametric space.

Main Theorem

If X is a compact metric space with $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

Proof.

 $\dim_{H}(X) > k \xrightarrow{Mendel-Naor} \exists F \subset X \text{ closed s.t. } F \text{ is bi-Lipschitz equivalent to an}$ ultrametric space Y and $\dim_{H}(Y) = \dim_{H}(F) > k.$

Howroyd theorem \implies We can suppose that F is compact, and then so is Y.

Y compact ultrametric space \implies Y compact monotone metric space.

 \implies Y can be mapped onto $[0,1]^k$ by a Lipschitz map

Theorem (Mendel-Naor, 2012)

For any (X, d) compact metric space and $\varepsilon > 0$ there exists a closed subset $Y \subset X$ s.t. dim_H $Y \ge (1 - \varepsilon) \dim_H X$ and (Y, d) is and (Y, d) is bi-Lipschitz equivalent to an ultrametric space.

Main Theorem

If X is a compact metric space with $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

Proof.

 $\dim_{H}(X) > k \xrightarrow{Mendel-Naor} \exists F \subset X \text{ closed s.t. } F \text{ is bi-Lipschitz equivalent to an}$ ultrametric space Y and $\dim_{H}(Y) = \dim_{H}(F) > k.$

Howroyd theorem \implies We can suppose that F is compact, and then so is Y.

Y compact ultrametric space \implies Y compact monotone metric space.

- \implies Y can be mapped onto $[0,1]^k$ by a Lipschitz map
- \implies F can be mapped onto $[0,1]^k$ by a Lipschitz map

Theorem (Mendel-Naor, 2012)

For any (X, d) compact metric space and $\varepsilon > 0$ there exists a closed subset $Y \subset X$ s.t. dim_H $Y \ge (1 - \varepsilon) \dim_H X$ and (Y, d) is and (Y, d) is bi-Lipschitz equivalent to an ultrametric space.

Main Theorem

If X is a compact metric space with $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

Proof.

 $\dim_{H}(X) > k \xrightarrow{Mendel-Naor} \exists F \subset X \text{ closed s.t. } F \text{ is bi-Lipschitz equivalent to an} \\ \text{ultrametric space } Y \text{ and } \dim_{H}(Y) = \dim_{H}(F) > k.$

Howroyd theorem \implies We can suppose that F is compact, and then so is Y.

Y compact ultrametric space \implies Y compact monotone metric space.

- \implies Y can be mapped onto $[0,1]^k$ by a Lipschitz map
- \implies F can be mapped onto $[0,1]^k$ by a Lipschitz map
- \implies X can be mapped onto $[0,1]^k$ by a Lipschitz map

Special case of the Main Theorem

If $X \subset \mathbb{R}^n$ is a compact with $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

Special case of the Main Theorem

If $X \subset \mathbb{R}^n$ is a compact with $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

Sketch of the proof.

Let $S \subset \mathbb{R}^n$ be a self-similar set with the SSC with large enough Hausdorff dimension.

< ロ > < 同 > < 三 > < 三

Special case of the Main Theorem

If $X \subset \mathbb{R}^n$ is a compact with dim_{*H*}(X) > k then X can be mapped onto a k-dimensional cube by a Lipschitz map.

Sketch of the proof.

Let $S \subset \mathbb{R}^n$ be a self-similar set with the SSC with large enough Hausdorff dimension.

By a theorem of Mattila: \exists isometry ϕ s.t. $\dim_H(X \cap \phi(S)) > k$.

< ロ > < 同 > < 三 > < 三

Special case of the Main Theorem

If $X \subset \mathbb{R}^n$ is a compact with $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

Sketch of the proof.

Let $S \subset \mathbb{R}^n$ be a self-similar set with the SSC with large enough Hausdorff dimension.

By a theorem of Mattila: \exists isometry ϕ s.t. dim_H($X \cap \phi(S)$) > k.

Every self-similar set with SSC is bi-Lipshitz equivalent to an ultrametric space,

(日) (同) (日) (日)

Special case of the Main Theorem

If $X \subset \mathbb{R}^n$ is a compact with $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

Sketch of the proof.

Let $S \subset \mathbb{R}^n$ be a self-similar set with the SSC with large enough Hausdorff dimension.

By a theorem of Mattila: \exists isometry ϕ s.t. dim_H($X \cap \phi(S)$) > k.

Every self-similar set with SSC is bi-Lipshitz equivalent to an ultrametric space, so it is monotone, then so is $X \cap \phi(S)$.

イロト 不得下 イヨト イヨト

Special case of the Main Theorem

If $X \subset \mathbb{R}^n$ is a compact with $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

Sketch of the proof.

Let $S \subset \mathbb{R}^n$ be a self-similar set with the SSC with large enough Hausdorff dimension.

By a theorem of Mattila: \exists isometry ϕ s.t. dim_H($X \cap \phi(S)$) > k.

Every self-similar set with SSC is bi-Lipshitz equivalent to an ultrametric space, so it is monotone, then so is $X \cap \phi(S)$.

```
\implies X \cap \phi(S) can be mapped onto [0,1]^k by a Lipschitz map
```

Special case of the Main Theorem

If $X \subset \mathbb{R}^n$ is a compact with $\dim_H(X) > k$ then X can be mapped onto a k-dimensional cube by a Lipschitz map.

Sketch of the proof.

Let $S \subset \mathbb{R}^n$ be a self-similar set with the SSC with large enough Hausdorff dimension.

By a theorem of Mattila: \exists isometry ϕ s.t. dim_H($X \cap \phi(S)$) > k.

Every self-similar set with SSC is bi-Lipshitz equivalent to an ultrametric space, so it is monotone, then so is $X \cap \phi(S)$.

```
\implies X \cap \phi(S) can be mapped onto [0,1]^k by a Lipschitz map
```

 \implies X can be mapped onto $[0,1]^k$ by a Lipschitz map

