On exact scaling log-Infinitely divisible cascades

Xiong Jin
University of St Andrews
xj3@st-andrews.ac.uk
Joint work with Julien Barral

December 11, 2012

Mandelbrot cascades

$$
\Lambda^{*}=\{\emptyset\} \cup\{0,1\} \cup \cdots: \text { set of all }
$$ finite dyadic words;

Mandelbrot cascades

$$
\Lambda^{*}=\{\emptyset\} \cup\{0,1\} \cup \cdots: \text { set of all }
$$

finite dyadic words;
$W=W_{\emptyset} \geq 0$: a random variable with expectation 1 ;

Mandelbrot cascades

$$
\Lambda^{*}=\{\emptyset\} \cup\{0,1\} \cup \cdots: \text { set of all }
$$

finite dyadic words;
$W=W_{\emptyset} \geq 0$: a random variable with expectation 1 ;
$\left\{W_{i}: i \in \wedge^{*}\right\}$: an i.i.d. sequence encoded by \wedge^{*};

Mandelbrot cascades

$$
\Lambda^{*}=\{\emptyset\} \cup\{0,1\} \cup \cdots: \text { set of all }
$$ finite dyadic words;

$W=W_{\emptyset} \geq 0$: a random variable with expectation 1 ;
$\left\{W_{i}: i \in \wedge^{*}\right\}$: an i.i.d. sequence encoded by \wedge^{*};
For $n \geq 1$ and $\underline{i} \in \Lambda^{\mathbb{N}}$ define

$$
Q_{n}(i)=W_{i_{1}} W_{i_{1} 1_{2}} \cdots W_{i_{1} \cdots i_{n}} ;
$$

Mandelbrot cascades

$$
\Lambda^{*}=\{\emptyset\} \cup\{0,1\} \cup \cdots: \text { set of all }
$$ finite dyadic words;

$W=W_{\emptyset} \geq 0$: a random variable with expectation 1 ;
$\left\{W_{i}: i \in \wedge^{*}\right\}$: an i.i.d. sequence encoded by \wedge^{*};
For $n \geq 1$ and $\underline{i} \in \Lambda^{\mathbb{N}}$ define

$$
Q_{n}(\underline{i})=W_{i_{1}} W_{i_{1} i_{2}} \cdots W_{i_{1} \cdots i_{n} ;} ;
$$

For $n \geq 1: \mu_{n}(\mathrm{~d} \underline{i})=Q_{n}(\underline{i}) \mathrm{d} \underline{i}$;

Mandelbrot cascades

$$
\Lambda^{*}=\{\emptyset\} \cup\{0,1\} \cup \cdots: \text { set of all }
$$ finite dyadic words;

$W=W_{\emptyset} \geq 0$: a random variable with expectation 1 ;
$\left\{W_{i}: i \in \wedge^{*}\right\}$: an i.i.d. sequence encoded by \wedge^{*};
For $n \geq 1$ and $\underline{i} \in \Lambda^{\mathbb{N}}$ define

$$
Q_{n}(\underline{i})=W_{i_{1}} W_{i_{1} i_{2}} \cdots W_{i_{1} \cdots i_{n} ;} ;
$$

For $n \geq 1: \mu_{n}(\underline{d})=Q_{n}(\underline{i}) \mathrm{d} \underline{i} ;$
A measure-valued martingale:

$$
\mu_{n} \rightarrow \mu .
$$

Kahane \& Peyrière 76

Let $Z=\|\mu\|$ and $\varphi(q)=\log _{2} \mathbb{E}\left(W^{q}\right)-q+1$ on $I=\left\{q: \mathbb{E}\left(W^{q}\right)<\infty\right\}$.

Kahane \& Peyrière 76

Let $Z=\|\mu\|$ and $\varphi(q)=\log _{2} \mathbb{E}\left(W^{q}\right)-q+1$ on $I=\left\{q: \mathbb{E}\left(W^{q}\right)<\infty\right\}$.

Non-degeneracy (ND) [Kahane]

$\mathbb{E}(Z)>0 \Leftrightarrow \mathbb{E}(Z)=1 \Leftrightarrow \varphi^{\prime}\left(1^{-}\right)<0$.

Kahane \& Peyrière 76

$$
\text { Let } Z=\|\mu\| \text { and } \varphi(q)=\log _{2} \mathbb{E}\left(W^{q}\right)-q+1 \text { on } I=\left\{q: \mathbb{E}\left(W^{q}\right)<\infty\right\} \text {. }
$$

Non-degeneracy (ND) [Kahane]

$\mathbb{E}(Z)>0 \Leftrightarrow \mathbb{E}(Z)=1 \Leftrightarrow \varphi^{\prime}\left(1^{-}\right)<0$.

Moments of positive orders (MP) [Kahane]

For $q>1,0<\mathbb{E}\left(Z^{q}\right)<\infty \Leftrightarrow q \in I \& \varphi(q)<0$.

Kahane \& Peyrière 76

$$
\text { Let } Z=\|\mu\| \text { and } \varphi(q)=\log _{2} \mathbb{E}\left(W^{q}\right)-q+1 \text { on } I=\left\{q: \mathbb{E}\left(W^{q}\right)<\infty\right\} \text {. }
$$

Non-degeneracy (ND) [Kahane]

$\mathbb{E}(Z)>0 \Leftrightarrow \mathbb{E}(Z)=1 \Leftrightarrow \varphi^{\prime}\left(1^{-}\right)<0$.

Moments of positive orders (MP) [Kahane]

For $q>1,0<\mathbb{E}\left(Z^{q}\right)<\infty \Leftrightarrow q \in I \& \varphi(q)<0$.

Finite moments of all positive orders (FMP) [Kahane]

$(\uparrow) \Leftrightarrow\|W\|_{\infty} \leq 2 \& \mathbb{P}(W=2)<\frac{1}{2} \Rightarrow \lim _{q \rightarrow \infty} \frac{\log \mathbb{E}\left(Z^{q}\right)}{q \log q}=\log _{2}\|W\|_{\infty}$.

Kahane \& Peyrière 76

$$
\text { Let } Z=\|\mu\| \text { and } \varphi(q)=\log _{2} \mathbb{E}\left(W^{q}\right)-q+1 \text { on } I=\left\{q: \mathbb{E}\left(W^{q}\right)<\infty\right\} \text {. }
$$

Non-degeneracy (ND) [Kahane]

$$
\mathbb{E}(Z)>0 \Leftrightarrow \mathbb{E}(Z)=1 \Leftrightarrow \varphi^{\prime}\left(1^{-}\right)<0 .
$$

Moments of positive orders (MP) [Kahane]

For $q>1,0<\mathbb{E}\left(Z^{q}\right)<\infty \Leftrightarrow q \in I \& \varphi(q)<0$.

Finite moments of all positive orders (FMP) [Kahane]

$$
(\uparrow) \Leftrightarrow\|W\|_{\infty} \leq 2 \& \mathbb{P}(W=2)<\frac{1}{2} \Rightarrow \lim _{q \rightarrow \infty} \frac{\log \mathbb{E}\left(Z^{q}\right)}{q \log q}=\log _{2}\|W\|_{\infty} .
$$

Hausdorff dimension (HD) [Peyrière], [Kahane 87]

Almost surely $\operatorname{dim}_{H} \mu=-\varphi^{\prime}\left(1^{-}\right)$.

Guivarc'h 90

Infinite moments of some positive orders (IMP)

If there exists $\xi \in(1, \infty) \cap /$ s.t. $\varphi(\xi)=0$ and the distribution of $\log (W)$ is non-arithmetic, then there exists a constant $0<d<\infty$ such that

$$
\lim _{x \rightarrow \infty} x^{\xi} \mathbb{P}(Z>x)=d
$$

Key ingredient: a functional equation

$$
2 Z=W_{0} Z_{0}+W_{1} Z_{1}
$$

A sketched history

- Mandelbrot 1972-1974

A sketched history

- Mandelbrot 1972-1974
- Kahane \& Peyrière 1976

A sketched history

- Mandelbrot 1972-1974
- Kahane \& Peyrière 1976
- Kahane 1985

A sketched history

- Mandelbrot 1972-1974
- Kahane \& Peyrière 1976
- Kahane 1985
- Fan 1997

A sketched history

- Mandelbrot 1972-1974
- Kahane \& Peyrière 1976
- Kahane 1985
- Fan 1997
- Barral \& Mandelbrot 2002

A sketched history

- Mandelbrot 1972-1974
- Kahane \& Peyrière 1976
- Kahane 1985
- Fan 1997
- Barral \& Mandelbrot 2002
- Bacry \& Muzy 2003

Independently scattered random measures (ISRM)

$\mathbb{H}=\mathbb{R} \times \mathbb{R}_{+}$: upper half-plane; λ the measure on \mathbb{H} with

$$
\lambda(\mathrm{d} x \mathrm{~d} y)=y^{-2} \mathrm{~d} x \mathrm{~d} y
$$

ψ : a characteristic Lévy exponent given by

$$
\psi: q \in \mathbb{R} \mapsto i a q-\frac{1}{2} \sigma^{2} q^{2}+\int_{\mathbb{R}}\left(e^{i q x}-1-i q x \mathbf{1}_{|x| \leq 1}\right) \nu(\mathrm{d} x) .
$$

$\Lambda: ~ a(\psi, \lambda)$ ISRM: that is for any $B \in \mathcal{B}$ with $\lambda(B)<\infty$,

$$
\mathbb{E}\left(e^{i q \Lambda(B)}\right)=e^{\psi(q) \lambda(B)} .
$$

In particular, for any two disjoint B_{1}, B_{2}, the random variable $\Lambda\left(B_{1}\right)$ and $\Lambda\left(B_{2}\right)$ are independent.
Assumption: $\psi(-i)=0$ and

$$
[0,1] \subset I_{\nu}:=\left\{q \in \mathbb{R}: \int_{|x| \geq 1} e^{q x} \nu(\mathrm{~d} x)<\infty\right\}
$$

Log-infinitely divisible cascades

Fix $T>0$. For $t \in[0, T]$ take

$$
V^{T}(t)=\text { the gray cone. }
$$

For $\epsilon>0$ let

$$
V_{\epsilon}^{T}(t)=V^{T}(t) \cap\{y>\epsilon\}
$$

Then let

$$
\mu_{\epsilon}(\mathrm{d} t)=e^{\wedge\left(V_{\epsilon}^{T}(t)\right)} \mathrm{d} t
$$

A measure-valued martingale:

$$
\mu_{\epsilon} \rightarrow \mu
$$

Log-infinitely divisible cascades

Let $T=1, Z=\|\mu\|$ and $\varphi(q)=\psi(-i q)-q+1$ on I_{ν}.
Barral \& Mandelbrot 02; Bacry \& Muzy 03

ND	MP	FMP	HD	IMP
almost	almost	not known	almost	not known
$\Rightarrow \varphi^{\prime}\left(1^{-}\right) \leq 0$	$\Rightarrow \varphi(q) \leq 0$		$\varphi^{\prime}(1)$ exists	

Log-infinitely divisible cascades

Let $T=1, Z=\|\mu\|$ and $\varphi(q)=\psi(-i q)-q+1$ on I_{ν}.

Barral \& J. 2012 (arXiv:1208.2221)

ND	MP	FMP	HD	IMP
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Barral's observation

A "non-independent" functional equation

Z

A "non-independent" functional equation

Z

A "non-independent" functional equation

Z
 W_{0} and Z_{1}

A "non-independent" functional equation

$$
\begin{gathered}
Z \\
W_{0} \text { and } Z_{0} \\
W_{1} \text { and } Z_{1}
\end{gathered}
$$

A "non-independent" functional equation

$$
\begin{gathered}
Z \\
W_{0} \text { and } Z_{0} \\
W_{1} \text { and } Z_{1} \\
2 Z=W_{0} Z_{0}+W_{1} Z_{1}
\end{gathered}
$$

A "non-independent" functional equation

$$
\begin{gathered}
Z \\
W_{0} \text { and } Z_{0} \\
W_{1} \text { and } Z_{1} \\
2 Z=W_{0} Z_{0}+W_{1} Z_{1}
\end{gathered}
$$

For the critical value $\xi>1$ with $\varphi(\xi)=0$, though

$$
\mathbb{E}\left(Z^{\xi}\right)=\infty
$$

but

$$
\mathbb{E}\left(Z_{0}^{\xi-1} Z_{1}\right)<\infty!
$$

Goldie's implicit renewal theory

Goldie 91

Suppose there exists $\kappa>0$ such that

$$
\begin{equation*}
\mathbb{E}\left(A^{\kappa}\right)=1, \quad \mathbb{E}\left(A^{\kappa} \log ^{+} A\right)<\infty \tag{1}
\end{equation*}
$$

and suppose that the conditional law of $\log A$, given $A \neq 0$, is non-arithmetic. For

$$
\widetilde{R}=A R+B,
$$

where \widetilde{R} and R have the same law, and A and R are independent, we have that if

$$
\mathbb{E}\left((A R+B)^{\kappa}-(A R)^{\kappa}\right)<\infty
$$

then

$$
\lim _{t \rightarrow \infty} t^{\kappa} \mathbb{P}(R>t)=\frac{\mathbb{E}\left((A R+B)^{\kappa}-(A R)^{\kappa}\right)}{\kappa \mathbb{E}\left(A^{\kappa} \log A\right)} \in(0, \infty)
$$

Thanks!

