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Introduction

• Let (ln) be a sequence of positive numbers.

• Let (ξn) be a sequence of independent random variables
uniformly distributed on the circle S1.

• Define the random covering set by

E = lim sup
n→∞

[ξn, ξn + ln].

Remark
Almost surely
(1) L(E) = 1 provided that

∑∞
n=1 ln =∞

(2) L(E) = 0 provided that
∑∞

n=1 ln <∞.
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Introduction: the case of full measure

Dvoretzky covering problem (1956)

What conditions on (ln) guarantee that E = S1 almost surely?

• Kahane (1956), Erdős (1961), Billard (1965); Mandelbrot (1972)

Theorem (Shepp 1972)

E = S1 almost surely if and only if
∑∞

n=1
1
n2 exp(l1 + · · ·+ ln) =∞.

• Fan and Kahane (1993), Fan (2002), Barral and Fan (2005)
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Introduction: the case of zero measure

Question
What is the dimension of E?

• Fan and Wu (2004): almost surely dimH E = 1/α in the case
ln = a/nα for some a > 0 and α > 1.

• Durand (2010): dimH E = inf{0 < s < 1 |
∑∞

n=1 lsn <∞} almost
surely.

• Li, Shieh and Xiao
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Higher dimensional case

• Let (gn) be a sequence of subsets of Td.

• Let (ξn) be a sequence of independent random variables
uniformly distributed on Td.

• Define the random covering set by

E = lim sup
n→∞

(gn + ξn) =

∞⋂
n=1

∞⋃
k=n

(gk + ξk).

Remark
Almost surely
(1) L(E) = 1 provided that

∑∞
n=1 L(gn) =∞

(2) L(E) = 0 provided that
∑∞

n=1 L(gn) <∞.
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Higher dimensional case: uniformly ball like sets

For a ball B = B(x, r) ⊂ Rd and 0 < s < d write Bs = B(x, r
s
d ).

Mass transference principle (Beresnevich and Velani)

Let (Bn) ⊂ Rd be a sequence of balls whose radii converge to zero.
Suppose that for any ball B ⊂ Rd

Hd(B ∩ lim sup
n→∞

Bs
n) = Hd(B).

Then for any ball B ⊂ Rd

Hs(B ∩ lim sup
n→∞

Bn) =∞.
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Higher dimensional case: uniformly ball like sets

• Let (gn) ⊂ Td and ρn → 0 where ρn = diam(gn).

• Assume that B(xn, rn) ⊂ gn and there is C <∞ such that ρn ≤ Crn
for all n.

Proposition
Almost surely

dimH E = min{s0, d},

where s0 = inf{s ≥ 0 |
∑∞

n=1 ρ
s
n <∞}.
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Proof: the upper bound

For s > s0 we obtain

Hs(E) ≤ lim inf
N→∞

∞∑
n=N

ρs
n = 0,

giving dimH E ≤ min{s0, d}.
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Proof: the lower bound

Obviously, E ⊃ lim supn→∞ Bn where Bn = B(xn, rn).

Consider s < min{s0, d}. Then

∞∑
n=1

L(Bs
n) = K

∞∑
n=1

rs
n ≥ KC−1

∞∑
n=1

ρs
n =∞.

Hence L(lim supn→∞ Bs
n) = 1,implying

L(lim sup
n→∞

Bs
n ∩ B) = L(B)

for any ball B ⊂ Td.
The mass transference priciple givesHs(lim supn→∞ Bn) =∞, which
leads to dimH E ≥ min{s0, d}.
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Higher dimensional case: main theorem

• Given a contractive linear injection L : Rd → Rd, let
0 < αd(L) ≤ · · · ≤ α1(L) < 1 be the singular values of L.

• For 0 < s ≤ d, define the singular value function by

Φs(L) = α1(L) · · ·αm−1(L)αm(L)s−m+1,

where m is the integer such that m− 1 < s ≤ m.
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Higher dimensional case: main theorem

• Assume that gn = Π(Ln(R)) where R ⊂ [0, 1]d has non-empty
interior and and Π : Rd → Td is the natural covering map.

• Assume that αi(Ln) ↓ 0 as n→∞.
• Define

s0 = inf{0 < s ≤ d |
∞∑

n=1

Φs(Ln) <∞},

with the interpretation s0 = d if
∑∞

n=1 Φd(Ln) =∞.

Theorem
Almost surely dimH E = s0.
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Outline of the proof: the upper bound

• Enough to consider the case where gn is a rectangular
parallelepiped.

• The verification of the upper bound: Falconer.
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Outline of the proof: the lower bound

• Consider m− 1 < s < s0(gn) ≤ m where m is an integer.

• Construct an event Ω(∞) ⊂ Ω, having positive probability, and a
random Cantor set Cω such that Cω ⊂ Eω for all ω ∈ Ω(∞).

• Using potential theoretical methods, verify that dimH Cω ≥ s
almost surely conditioned on Ω(∞).

• This gives P(dimH Eω ≥ s) > 0.
• The Kolmogorov zero-one law implies that P(dimH E ≥ s) = 1.
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