## Multifractal analysis of arithmetic functions

## Stéphane Jaffard

Université Paris Est (France)

Collaborators:
Arnaud Durand Université Paris Sud Orsay
Samuel Nicolay Université de Liège

International Conference on Advances on Fractals and Related Topics Hong-Kong, December 10-14, 2012

## Multifractal analysis

Purpose of multifractal analysis: Introduce and study classification parameters for data (functions, measures, distributions, signals, images), which are based on regularity

## Multifractal analysis

Purpose of multifractal analysis : Introduce and study classification parameters for data (functions, measures, distributions, signals, images), which are based on regularity


Weierstrass function

$$
\begin{gathered}
W_{H}(x)=\sum_{j=0}^{+\infty} 2^{-H j} \cos \left(2^{j} x\right) \\
0<H<1
\end{gathered}
$$

## Multifractal analysis

Purpose of multifractal analysis: Introduce and study classification parameters for data (functions, measures, distributions, signals, images), which are based on regularity


Weierstrass function

$$
\begin{gathered}
W_{H}(x)=\sum_{j=0}^{+\infty} 2^{-H j} \cos \left(2^{j} x\right) \\
0<H<1
\end{gathered}
$$



Brownian motion

## Everywhere irregular signals and images



Fully developed turbulence


Euro vs Dollar (2001-2009)



## Van Gogh painting



## Van Gogh painting

f752



## Pointwise regularity

## Definition :

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a locally bounded function and $x_{0} \in \mathbb{R}^{d}$;
$f \in C^{\alpha}\left(x_{0}\right)$ if there exist $C>0$ and a polynomial $P$ such that, for
$\left|x-x_{0}\right|$ small enough,

$$
\left|f(x)-P\left(x-x_{0}\right)\right| \leq C\left|x-x_{0}\right|^{\alpha}
$$

## Pointwise regularity

## Definition :

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a locally bounded function and $x_{0} \in \mathbb{R}^{d}$;
$f \in C^{\alpha}\left(x_{0}\right)$ if there exist $C>0$ and a polynomial $P$ such that, for
$\left|x-x_{0}\right|$ small enough,

$$
\left|f(x)-P\left(x-x_{0}\right)\right| \leq C\left|x-x_{0}\right|^{\alpha}
$$

The Hölder exponent of $f$ at $x_{0}$ is

$$
h_{f}\left(x_{0}\right)=\sup \left\{\alpha: \quad f \in C^{\alpha}\left(x_{0}\right)\right\}
$$

## Pointwise regularity

## Definition :

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a locally bounded function and $x_{0} \in \mathbb{R}^{d}$;
$f \in C^{\alpha}\left(x_{0}\right)$ if there exist $C>0$ and a polynomial $P$ such that, for
$\left|x-x_{0}\right|$ small enough,

$$
\left|f(x)-P\left(x-x_{0}\right)\right| \leq C\left|x-x_{0}\right|^{\alpha}
$$

The Hölder exponent of $f$ at $x_{0}$ is

$$
h_{f}\left(x_{0}\right)=\sup \left\{\alpha: \quad f \in C^{\alpha}\left(x_{0}\right)\right\}
$$

The Hölder exponent of the Weierstrass function $W_{H}$ is constant and equal to $H$ (Hardy)

The Hölder exponent of Brownian motion is constant and equal to 1/2 (Wiener)
$W_{H}$ and $B$ are mono-Hölder function

## Multifractal spectrum (Parisi and Frisch, 1985)

The iso-Hölder sets of $f$ are the sets

$$
E_{H}=\left\{x_{0}: \quad h_{f}\left(x_{0}\right)=H\right\}
$$

## Multifractal spectrum (Parisi and Frisch, 1985)

The iso-Hölder sets of $f$ are the sets

$$
E_{H}=\left\{x_{0}: \quad h_{f}\left(x_{0}\right)=H\right\}
$$

Let $f$ be a locally bounded function. The Hölder spectrum of $f$ is

$$
D_{f}(H)=\operatorname{dim}\left(E_{H}\right)
$$

where dim stands for the Hausdorff dimension (by convention, $\operatorname{dim}(\emptyset)=-\infty$ )

## Multifractal spectrum (Parisi and Frisch, 1985)

The iso-Hölder sets of $f$ are the sets

$$
E_{H}=\left\{x_{0}: \quad h_{f}\left(x_{0}\right)=H\right\}
$$

Let $f$ be a locally bounded function. The Hölder spectrum of $f$ is

$$
D_{f}(H)=\operatorname{dim}\left(E_{H}\right)
$$

where dim stands for the Hausdorff dimension (by convention, $\operatorname{dim}(\emptyset)=-\infty$ )

The upper-Hölder sets of $f$ are the sets

$$
\overline{E_{H}}=\left\{x_{0}: \quad h_{f}\left(x_{0}\right) \geq H\right\}
$$

The lower-Hölder sets of $f$ are the sets

$$
\underline{E_{H}}=\left\{x_{0}: \quad h_{f}\left(x_{0}\right) \leq H\right\}
$$

Riemann's non-differentiable function and beyond

$$
\mathcal{R}_{2}(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} x\right)}{n^{2}}
$$



Riemann's non-differentiable function and beyond

$$
\begin{gathered}
\mathcal{R}_{2}(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} x\right)}{n^{2}} \\
d_{F}(H)=\left\{\begin{array}{rll}
4 H-2 & \text { if } & H \in[1 / 2,3 / 4] \\
0 & \text { if } & H=3 / 2 \\
-\infty & \text { else }
\end{array}\right.
\end{gathered}
$$



## Riemann's non-differentiable function and beyond

$$
\begin{gathered}
\mathcal{R}_{2}(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} x\right)}{n^{2}} \\
d_{F}(H)=\left\{\begin{array}{rll}
4 H-2 & \text { if } & H \in[1 / 2,3 / 4] \\
0 & \text { if } & H=3 / 2 \\
-\infty & \text { else }
\end{array}\right.
\end{gathered}
$$



The cubic Riemann function : $\mathcal{R}_{3}(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n^{3} x\right)}{n^{3}}$

## Riemann's non-differentiable function and beyond

$$
\begin{gathered}
\mathcal{R}_{2}(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} x\right)}{n^{2}} \\
d_{F}(H)=\left\{\begin{array}{rll}
4 H-2 & \text { if } & H \in[1 / 2,3 / 4] \\
0 & \text { if } & H=3 / 2 \\
-\infty & \text { else }
\end{array}\right.
\end{gathered}
$$



The cubic Riemann function: $\mathcal{R}_{3}(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n^{3} x\right)}{n^{3}}$
In a recent paper (arXiv :1208.6533v1) F. Chamizo and A. Ubis consider

$$
F(x)=\sum_{n=1}^{\infty} \frac{e^{i P(n) x}}{n^{\alpha}} \quad \operatorname{deg}(P)=k
$$

Theorem : (Chamizo and Ubis) : let $\nu_{F}$ be the maximal multiplicity of the zeros of $P^{\prime}$. If $1+\frac{k}{2}<\alpha<k$ and $\frac{1}{k}(\alpha-1) \leq H \leq \frac{1}{k}\left(\alpha-\frac{1}{2}\right)$, then

$$
d_{F}(H) \geq \max \left(\nu_{f}, 2\right)\left(H-\frac{\alpha-1}{k_{f}}\right)
$$

## Generalization : Nonharmonic Fourier series

Let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be a sequence of points in $\mathbb{R}^{d}$; a nonharmonic Fourier series is a function $f$ that can be written

$$
f(x)=\sum a_{n} e^{i \lambda_{n} \cdot x}
$$

## Generalization : Nonharmonic Fourier series

Let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be a sequence of points in $\mathbb{R}^{d}$; a nonharmonic Fourier series is a function $f$ that can be written

$$
f(x)=\sum a_{n} e^{i \lambda_{n} \cdot x}
$$

The gap sequence associated with $\left(\lambda_{n}\right)$ is the sequence $\left(\theta_{n}\right)$ :

$$
\theta_{n}=\inf _{m \neq n}\left|\lambda_{n}-\lambda_{m}\right|
$$

## Generalization : Nonharmonic Fourier series

Let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be a sequence of points in $\mathbb{R}^{d}$; a nonharmonic Fourier series is a function $f$ that can be written

$$
f(x)=\sum a_{n} e^{i \lambda_{n} \cdot x}
$$

The gap sequence associated with $\left(\lambda_{n}\right)$ is the sequence $\left(\theta_{n}\right)$ :

$$
\theta_{n}=\inf _{m \neq n}\left|\lambda_{n}-\lambda_{m}\right|
$$

The sequence $\left(\lambda_{n}\right)$ is separated if : $\inf _{n} \theta_{n}>0$.

## Generalization : Nonharmonic Fourier series

Let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be a sequence of points in $\mathbb{R}^{d}$; a nonharmonic Fourier series is a function $f$ that can be written

$$
f(x)=\sum a_{n} e^{i \lambda_{n} \cdot x}
$$

The gap sequence associated with $\left(\lambda_{n}\right)$ is the sequence $\left(\theta_{n}\right)$ :

$$
\theta_{n}=\inf _{m \neq n}\left|\lambda_{n}-\lambda_{m}\right|
$$

The sequence $\left(\lambda_{n}\right)$ is separated if : $\inf _{n} \theta_{n}>0$.
Theorem : Let $x_{0} \in \mathbb{R}^{d}$. If $\left(\lambda_{n}\right)$ is separated and $f \in C^{\alpha}\left(x_{0}\right)$, then $\exists C$ such that $\forall n$,

$$
\begin{equation*}
\text { if }\left|\lambda_{n}\right| \geq \theta_{n}, \quad \text { then } \quad\left|a_{n}\right| \leq \frac{C}{\left(\theta_{n}\right)^{\alpha}} \tag{1}
\end{equation*}
$$

Thus, if

$$
H=\sup \{\alpha:(1) \text { holds }\},
$$

then, for any $x_{0} \in \mathbb{R}^{d}, h_{f}\left(x_{0}\right) \leq H$.

## Generalization : Nonharmonic Fourier series

Let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be a sequence of points in $\mathbb{R}^{d}$; a nonharmonic Fourier series is a function $f$ that can be written

$$
f(x)=\sum a_{n} e^{i \lambda_{n} \cdot x}
$$

The gap sequence associated with $\left(\lambda_{n}\right)$ is the sequence $\left(\theta_{n}\right)$ :

$$
\theta_{n}=\inf _{m \neq n}\left|\lambda_{n}-\lambda_{m}\right|
$$

The sequence $\left(\lambda_{n}\right)$ is separated if : $\inf _{n} \theta_{n}>0$.
Theorem : Let $x_{0} \in \mathbb{R}^{d}$. If $\left(\lambda_{n}\right)$ is separated and $f \in C^{\alpha}\left(x_{0}\right)$, then $\exists C$ such that $\forall n$,

$$
\begin{equation*}
\text { if }\left|\lambda_{n}\right| \geq \theta_{n}, \quad \text { then } \quad\left|a_{n}\right| \leq \frac{C}{\left(\theta_{n}\right)^{\alpha}} . \tag{1}
\end{equation*}
$$

Thus, if

$$
H=\sup \{\alpha:(1) \text { holds }\},
$$

then, for any $x_{0} \in \mathbb{R}^{d}, h_{f}\left(x_{0}\right) \leq H$.
Open problem : Optimality of this result

## Davenport series

The sawtooth function is

$$
\{x\}= \begin{cases}x-\lfloor x\rfloor-1 / 2 & \text { if } x \notin \mathbb{Z} \\ 0 & \text { else }\end{cases}
$$



In one variable, Davenport series are of the form

$$
F(x)=\sum_{n=1}^{\infty} a_{n}\{n x\}, \quad a_{n} \in \mathbb{R}
$$

## Spectrum estimates for Davenport series

$$
F(x)=\sum_{n=1}^{\infty} a_{n}\{n x\}, \quad a_{n} \in \mathbb{R}
$$

Assuming that $\left(a_{n}\right) \in I^{1}$, then $F$ is continuous at irrational points and the jump at $p / q$ (if $p \wedge q=1$ ) is

$$
B_{q}=\sum_{n=1}^{\infty} a_{n q}
$$

## Spectrum estimates for Davenport series

$$
F(x)=\sum_{n=1}^{\infty} a_{n}\{n x\}, \quad a_{n} \in \mathbb{R}
$$

Assuming that $\left(a_{n}\right) \in I^{1}$, then $F$ is continuous at irrational points and the jump at $p / q$ (if $p \wedge q=1$ ) is

$$
B_{q}=\sum_{n=1}^{\infty} a_{n q}
$$

Theorem : Assume that $\left(n^{\beta} a_{n}\right) \notin 1^{\infty}$ and $\beta>1$. Then

$$
\operatorname{dim}\left(\underline{E_{H}}\right) \geq \frac{H}{\beta}
$$

if $\left(n^{\beta} a_{n}\right) \in I^{\infty}$ and $\beta>2$. Then

$$
\operatorname{dim}\left(\underline{E_{H}}\right) \leq \frac{2 H}{\beta}
$$

## Spectrum estimates for Davenport series

$$
F(x)=\sum_{n=1}^{\infty} a_{n}\{n x\}, \quad a_{n} \in \mathbb{R}
$$

Assuming that $\left(a_{n}\right) \in I^{1}$, then $F$ is continuous at irrational points and the jump at $p / q$ (if $p \wedge q=1$ ) is

$$
B_{q}=\sum_{n=1}^{\infty} a_{n q}
$$

Theorem : Assume that $\left(n^{\beta} a_{n}\right) \notin 1^{\infty}$ and $\beta>1$. Then

$$
\operatorname{dim}\left(\underline{E_{H}}\right) \geq \frac{H}{\beta}
$$

if $\left(n^{\beta} a_{n}\right) \in I^{\infty}$ and $\beta>2$. Then

$$
\operatorname{dim}\left(\underline{E_{H}}\right) \leq \frac{2 H}{\beta}
$$

Open problem : Sharpen these bounds

## Hecke's functions

$$
\mathcal{H}_{s}(x)=\sum_{n=1}^{\infty} \frac{\{n x\}}{n^{s}}
$$

The function $\mathcal{H}_{s}(x)$ is a Dirichlet series in the variable $s$, and its analytic continuation depends on Diophantine approximation properties of $x$ (Hecke, Hardy, Littlewood).

## Hecke's functions

$$
\mathcal{H}_{s}(x)=\sum_{n=1}^{\infty} \frac{\{n x\}}{n^{s}}
$$

The function $\mathcal{H}_{s}(x)$ is a Dirichlet series in the variable $s$, and its analytic continuation depends on Diophantine approximation properties of $x$ (Hecke, Hardy, Littlewood).

Theorem : If $\operatorname{Re}(s) \geq 2$, the spectrum of singularities of $\mathcal{H}^{s}$ is

$$
\begin{aligned}
d(H) & =\frac{2 H}{\operatorname{Re}(s)} \quad \text { for } \quad H \leq \frac{\operatorname{Re}(s)}{2} \\
& =-\infty \quad \text { else. }
\end{aligned}
$$

If $1<\operatorname{Re}(s)<2$, the spectrum of singularities of Hecke's function $\mathcal{H}^{s}$ satisfies

$$
d(H)=\frac{2 H}{s} \quad \text { for } H \leq \operatorname{Re}(s)-1 .
$$

## Hecke's functions

$$
\mathcal{H}_{s}(x)=\sum_{n=1}^{\infty} \frac{\{n x\}}{n^{s}}
$$

The function $\mathcal{H}_{s}(x)$ is a Dirichlet series in the variable $s$, and its analytic continuation depends on Diophantine approximation properties of $x$ (Hecke, Hardy, Littlewood).

Theorem : If $\operatorname{Re}(s) \geq 2$, the spectrum of singularities of $\mathcal{H}^{s}$ is

$$
\begin{aligned}
d(H) & =\frac{2 H}{\operatorname{Re}(s)} \quad \text { for } \quad H \leq \frac{\operatorname{Re}(s)}{2} \\
& =-\infty \quad \text { else. }
\end{aligned}
$$

If $1<\operatorname{Re}(s)<2$, the spectrum of singularities of Hecke's function $\mathcal{H}^{s}$ satisfies

$$
d(H)=\frac{2 H}{s} \text { for } H \leq \operatorname{Re}(s)-1
$$

Open problem : Improve the second case

## Hecke's functions (continued)

$$
\mathcal{H}_{s}(x)=\sum_{n=1}^{\infty} \frac{\{n x\}}{n^{s}}
$$

If $\operatorname{Re}(s) \leq 1$, the sum is no more locally bounded, however :
if $1 / 2<\operatorname{Re}(s)<1$ then $\mathcal{H}_{s} \in L^{p}$ for $p<\frac{1}{1-\beta}$
One can still define a pointwise regularity exponent as follows (Calderón and Zygmund, 1961) :

Definition : Let $B\left(x_{0}, r\right)$ denote the open ball centered at $x_{0}$ and of radius $r ; \alpha>-d / p$. Let $f \in L^{p}$. Then $f$ belongs to $T_{\alpha}^{p}\left(x_{0}\right)$ if $\exists C, R>0$ and a polynomial $P$ such that

$$
\forall r \leq R, \quad\left(\frac{1}{r^{d}} \int_{B\left(x_{0}, r\right)}\left|f(x)-P\left(x-x_{0}\right)\right|^{p} d x\right)^{1 / p} \leq C r^{\alpha}
$$

The $p$-exponent of $f$ at $x_{0}$ is: $h_{f}^{p}\left(x_{0}\right)=\sup \left\{\alpha: f \in T_{\alpha}^{p}\left(x_{0}\right)\right\}$.
The $p$-spectrum of $f$ is: $d_{f}^{p}(H)=\operatorname{dim}\left(\left\{x_{0}: h_{f}^{p}\left(x_{0}\right)=H\right\}\right)$
Open problem : Determine the $p$-spectrum of Hecke's functions

## The Lebesgue-Davenport function

Let $t \in[0,1)$ and
$t=\left(0 ; t_{1}, t_{2}, \ldots, t_{n}, \ldots\right)_{2}$
be its proper expansion in basis 2.
Then $\mathcal{L}(t)=\left(x_{3}(t), y_{3}(t)\right)$ where

$$
\left\{\begin{array}{l}
x_{3}(t)=\left(0 ; t_{1}, t_{3}, t_{5}, \ldots\right)_{2} \\
y_{3}(t)=\left(0 ; t_{2}, t_{4}, t_{6}, \ldots\right)_{2} .
\end{array}\right.
$$

## The Lebesgue-Davenport function

Let $t \in[0,1)$ and
$t=\left(0 ; t_{1}, t_{2}, \ldots, t_{n}, \ldots\right)_{2}$
be its proper expansion in basis 2.
Then $\mathcal{L}(t)=\left(x_{3}(t), y_{3}(t)\right)$ where

$$
\left\{\begin{array}{l}
x_{3}(t)=\left(0 ; t_{1}, t_{3}, t_{5}, \ldots\right)_{2} \\
y_{3}(t)=\left(0 ; t_{2}, t_{4}, t_{6}, \ldots\right)_{2} .
\end{array}\right.
$$



## The Lebesgue-Davenport function

Let $t \in[0,1)$ and
$t=\left(0 ; t_{1}, t_{2}, \ldots, t_{n}, \ldots\right)_{2}$
be its proper expansion in basis 2 .
Then $\mathcal{L}(t)=\left(x_{3}(t), y_{3}(t)\right)$ where

$$
\left\{\begin{array}{l}
x_{3}(t)=\left(0 ; t_{1}, t_{3}, t_{5}, \ldots\right)_{2} \\
y_{3}(t)=\left(0 ; t_{2}, t_{4}, t_{6}, \ldots\right)_{2} .
\end{array}\right.
$$



## The Lebesgue-Davenport function

Let $t \in[0,1)$ and
$t=\left(0 ; t_{1}, t_{2}, \ldots, t_{n}, \ldots\right)_{2}$
be its proper expansion in basis 2.
Then $\mathcal{L}(t)=\left(x_{3}(t), y_{3}(t)\right)$ where

$$
\left\{\begin{array}{l}
x_{3}(t)=\left(0 ; t_{1}, t_{3}, t_{5}, \ldots\right)_{2} \\
y_{3}(t)=\left(0 ; t_{2}, t_{4}, t_{6}, \ldots\right)_{2} .
\end{array}\right.
$$



The Lebesgue-Davenport function $\mathcal{L}$ has the following expansion

$$
\begin{gathered}
x_{3}(t)=\frac{1}{2}+\sum a_{n}\left\{2^{n} t\right\} \text { where } a_{2 n}=2^{-n} \text { and } a_{2 n+1}=-2^{-n-1} \\
y_{3}(t)=\frac{1}{2}+\sum b_{n}\left\{2^{n} t\right\} \text { where } b_{2 n}=-2^{-n} \text { and } b_{2 n+1}=2^{-n} .
\end{gathered}
$$

The spectrum of singularities of $\mathcal{L}$ is

$$
\left\{\begin{aligned}
d_{\mathcal{L}}(H) & =2 H & & \text { if } \quad 0 \leq H \leq 1 / 2 \\
& =-\infty & & \text { else. }
\end{aligned}\right.
$$

## Davenport series in several variables

Davenport series in several variables are of the form

$$
f(x)=\sum_{n \in \mathbb{Z}^{d}} a_{n}\{n \cdot x\}
$$

where $\left(a_{n}\right)_{n \in \mathbb{Z}^{d}}$ is an odd sequence indexed by $\mathbb{Z}^{d}$.

## Davenport series in several variables

Davenport series in several variables are of the form

$$
f(x)=\sum_{n \in \mathbb{Z}^{d}} a_{n}\{n \cdot x\}
$$

where $\left(a_{n}\right)_{n \in \mathbb{Z}^{d}}$ is an odd sequence indexed by $\mathbb{Z}^{d}$.
Discontinuities of Davenport series
For $p \in \mathbb{Z}$ and $q \in \mathbb{Z}_{*}^{d}$, let

$$
H_{p, q}=\left\{x \in \mathbb{R}^{d} \mid p=q \cdot x\right\}
$$

Let us assume that $\left(a_{n}\right)_{n \in \mathbb{Z}^{d}}$ is an odd sequence in $\ell^{1}$. Then, The Davenport series is continuous except on the set $\bigcup H_{p, q}$ where it has a jump of magnitude $\left|A_{q}\right|$ with

$$
A_{q}=2 \sum_{l=1}^{\infty} a_{l q}
$$

## Upper bound on the Hölder exponent of a Davenport series

For each $q \in \mathbb{Z}^{d}$, let $\mathcal{P}_{q}=\{p \in \mathbb{Z} \mid \operatorname{gcd}(p, q)=1\}$.
For $x_{0} \in \mathbb{R}^{d}$, let

$$
\delta_{q}^{\mathcal{P}}\left(x_{0}\right)=\operatorname{dist}\left(x_{0}, \bigcup_{p \in \mathcal{P}_{q}} H_{p, q}\right)
$$

Let $f$ be a Davenport series with jump sizes $\left(A_{q}\right)_{q \in \mathbb{Z}^{d}}$. Then,

$$
\forall x_{0} \in \mathbb{R}^{d} \quad h_{f}\left(x_{0}\right) \leq \liminf _{\substack{q \rightarrow \infty \\ A_{q} \neq 0}} \frac{\log \left|A_{q}\right|}{\log \delta_{q}^{\mathcal{P}}\left(x_{0}\right)}
$$

Connection with Diophantine approximation :
$\left|q \cdot x_{0}-p\right|<|q|\left|A_{q}\right|^{1 / \alpha} \quad$ for an infinite sequence $\Longrightarrow h_{f}\left(x_{0}\right) \leq \alpha$.

## Upper bound on the Hölder exponent of a Davenport series

For each $q \in \mathbb{Z}^{d}$, let $\mathcal{P}_{q}=\{p \in \mathbb{Z} \mid \operatorname{gcd}(p, q)=1\}$.
For $x_{0} \in \mathbb{R}^{d}$, let

$$
\delta_{q}^{\mathcal{P}}\left(x_{0}\right)=\operatorname{dist}\left(x_{0}, \bigcup_{p \in \mathcal{P}_{q}} H_{p, q}\right)
$$

Let $f$ be a Davenport series with jump sizes $\left(A_{q}\right)_{q \in \mathbb{Z}^{d}}$. Then,

$$
\forall x_{0} \in \mathbb{R}^{d} \quad h_{f}\left(x_{0}\right) \leq \liminf _{\substack{q \rightarrow \infty \\ A_{q} \neq 0}} \frac{\log \left|A_{q}\right|}{\log \delta_{q}^{\mathcal{P}}\left(x_{0}\right)}
$$

Connection with Diophantine approximation :

$$
\left|q \cdot x_{0}-p\right|<|q|\left|A_{q}\right|^{1 / \alpha} \quad \text { for an infinite sequence } \Longrightarrow h_{f}\left(x_{0}\right) \leq \alpha .
$$

Corollary: If the jumps $A_{q}$ satisfy : $\left|A_{q}\right| \geq C / q^{a}$ for all $q$ in one direction at least, then

$$
\forall x, \quad h_{f}(x) \leq a / 2 \text { and } d\left(\underline{E_{H}}\right) \leq d-1+\frac{2 H}{a}
$$

## Sparse Davenport series

A Davenport series with coefficients given by a sequence $\left(a_{n}\right)_{n \in \mathbb{Z}^{d}}$ is sparse if

$$
\lim _{R \rightarrow \infty} \frac{\log \#\left\{|n|<R \mid a_{n} \neq 0\right\}}{\log R}=0 .
$$

## Sparse Davenport series

A Davenport series with coefficients given by a sequence $\left(a_{n}\right)_{n \in \mathbb{Z}^{d}}$ is sparse if

$$
\lim _{R \rightarrow \infty} \frac{\log \#\left\{|n|<R \mid a_{n} \neq 0\right\}}{\log R}=0 .
$$

A sequence $a=\left(a_{n}\right)_{n \in \mathbb{Z}^{d}}$ belongs to $\mathcal{F}^{\gamma}$ if

$$
\left|a_{n}\right| \leq \frac{C}{|n|^{\gamma}}
$$

## Sparse Davenport series

A Davenport series with coefficients given by a sequence $\left(a_{n}\right)_{n \in \mathbb{Z}^{d}}$ is sparse if

$$
\lim _{R \rightarrow \infty} \frac{\log \#\left\{|n|<R \mid a_{n} \neq 0\right\}}{\log R}=0
$$

A sequence $a=\left(a_{n}\right)_{n \in \mathbb{Z}^{d}}$ belongs to $\mathcal{F}^{\gamma}$ if

$$
\left|a_{n}\right| \leq \frac{C}{|n|^{\gamma}}
$$

Theorem : Let $f$ be a Davenport series with coefficients $a=\left(a_{n}\right)_{n \in \mathbb{Z}^{d}}$. Let

$$
\gamma_{a}:=\sup \left\{\gamma>0 \mid\left(a_{n}\right)_{n \in \mathbb{Z}^{d}} \in \mathcal{F}^{\gamma}\right\}
$$

We assume that $f$ is sparse and that $0<\gamma_{a}<\infty$. Then,

$$
\begin{array}{cl}
\forall H \in\left[0, \gamma_{a}\right] & d_{f}(H)=d-1+\frac{H}{\gamma_{a}} \\
\text { else } & d_{f}(H)=-\infty
\end{array}
$$

## Open problems concerning multivariate Davenport series

- Understand when the upper bound for the Hölder exponent is sharp


## Open problems concerning multivariate Davenport series

- Understand when the upper bound for the Hölder exponent is sharp
- Mutivariate analogue of Hecke's function

$$
\mathcal{H}_{s}(x)=\sum \frac{\{n \cdot x\}}{n^{s}}
$$

where the sum is taken on an half-plane

## Open problems concerning multivariate Davenport series

- Understand when the upper bound for the Hölder exponent is sharp
- Mutivariate analogue of Hecke's function

$$
\mathcal{H}_{s}(x)=\sum \frac{\{n \cdot x\}}{n^{s}}
$$

where the sum is taken on an half-plane

- What can be the shape of the spectrum of singularities of a Davenport series?


## Open problems concerning multivariate Davenport series

- Understand when the upper bound for the Hölder exponent is sharp
- Mutivariate analogue of Hecke's function

$$
\mathcal{H}_{s}(x)=\sum \frac{\{n \cdot x\}}{n^{s}}
$$

where the sum is taken on an half-plane

- What can be the shape of the spectrum of singularities of a Davenport series?
- Directional regularity


## Open problems concerning multivariate Davenport series

- Understand when the upper bound for the Hölder exponent is sharp
- Mutivariate analogue of Hecke's function

$$
\mathcal{H}_{s}(x)=\sum \frac{\{n \cdot x\}}{n^{s}}
$$

where the sum is taken on an half-plane

- What can be the shape of the spectrum of singularities of a Davenport series?
- Directional regularity


## Thank you for your (fractal ?) attention!

