Heat kernel estimates on a connected sum along a joint with a capacity growth

Satoshi Ishiwata
(JW with Alexander Grigor'yan)

Yamagata University
ishiwata@sci.kj.yamagata-u.ac.jp
December 11, 2012

Setting of the problem

Let $\boldsymbol{M}_{\mathbf{1}}, \boldsymbol{M}_{\mathbf{2}}$: complete non-compact Riemannian manifolds. For closed subsets $\boldsymbol{A}_{\mathbf{1}} \subset \boldsymbol{M}_{\mathbf{1}}, \boldsymbol{A}_{\mathbf{2}} \subset \boldsymbol{M}_{\mathbf{2}}$, consider

$$
M=M_{1} \backslash A_{1} \sqcup J \sqcup M_{2} \backslash A_{2} / \sim_{\partial}=: M_{1} \#_{J} M_{2} .
$$

Setting of the problem

Problem Long time behavior of the heat kernel $\boldsymbol{p}(\boldsymbol{t}, \boldsymbol{x}, \boldsymbol{y})$ on \boldsymbol{M} under some geom. or prob. assumptions of $\boldsymbol{M}_{\boldsymbol{i}}, \boldsymbol{A}_{\boldsymbol{i}}$ and \boldsymbol{J} ?

Assumption of $\boldsymbol{M}_{\boldsymbol{i}}$: two sided Gaussian heat kernel estimates (LY):

$$
p_{i}(t, x, y) \sim \frac{C}{V_{i}(x, \sqrt{t})} e^{-b d_{i}(x, y)^{2} / t} .
$$

Problem $\boldsymbol{M}=\boldsymbol{M}_{1} \#_{J} \boldsymbol{M}_{2}$: also satisfy (LY)?
If the joint is narrow, the probability of the BM from $\boldsymbol{x} \in \boldsymbol{M}_{\mathbf{1}} \backslash \boldsymbol{A}_{\mathbf{1}}$ to $\boldsymbol{y} \in \boldsymbol{M}_{2} \backslash \boldsymbol{A}_{2}$ is significantly small so that (LY) is failed.
The failure of (LY) is characterized by the capacity growth of $\boldsymbol{A}_{\boldsymbol{i}}$.

Known Result 1

Connected sum along a compact joint

Theorem (Grigor'yan, Saloff-Coste, 2009)

Assume that $\boldsymbol{A}_{\mathbf{1}}, \boldsymbol{A}_{\mathbf{2}}$ and \boldsymbol{J} are compact. Then for $\boldsymbol{x} \in \boldsymbol{M}_{\mathbf{1}} \backslash \boldsymbol{A}_{\mathbf{1}}$, $\boldsymbol{y} \in \boldsymbol{M}_{\mathbf{2}} \backslash \boldsymbol{A}_{\mathbf{2}}$ outside of a neighborhood of \boldsymbol{J}, and for $\boldsymbol{t}>\boldsymbol{T}$,

$$
p(t, x, y) \sim
$$

$$
C\left(\frac{1}{V_{1}(x, \sqrt{t})} \frac{d_{2}(y, J)^{2}}{V_{2}\left(y, d_{2}(y, J)\right)}+\frac{1}{V_{2}(y, \sqrt{t})} \frac{d_{1}(x, J)^{2}}{V_{1}\left(x, d_{1}(x, J)\right)}\right) e^{-b d(x, y)^{2} / t}
$$

In particular, when $\boldsymbol{M}_{\mathbf{1}}=\boldsymbol{M}_{\mathbf{2}}=\mathbb{R}^{\boldsymbol{n}}$,

$$
p(t, x, y) \sim C t^{-n / 2}\left(\frac{1}{d(x, J)^{n-2}}+\frac{1}{d(y, J)^{n-2}}\right) e^{-b d(x, y) / t}
$$

Known Result 2

Connected sum of \mathbb{R}^{n} along surface of a revolution

Let $M_{1}=M_{2}=\mathbb{R}^{n}$. For $\mathbf{0} \leq m \leq n-\mathbf{3}, \mathbf{0} \leq \alpha<\mathbf{1}$, define

$$
A_{1}=A_{2}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \sqrt{\sum_{i=m+1}^{n} x_{i}^{2}} \leq\left(\sqrt{1+\sum_{i=1}^{m} x_{i}^{2}}\right)^{\alpha}\right\} .
$$

Consider $\boldsymbol{M}=\boldsymbol{M}_{1} \#_{J} \boldsymbol{M}_{2}=\mathbb{R}^{n^{\prime}}{ }_{J} \mathbb{R}^{\boldsymbol{n}}$, where $\boldsymbol{J} \sim \boldsymbol{\partial} \boldsymbol{A}_{1} \times[\mathbf{0}, 1]$.

Known Result 2

Connected sum along surface of a revolution

Theorem (Grigor'yan, I, 2012)

For $\boldsymbol{x} \in \boldsymbol{M}_{1} \backslash \boldsymbol{A}_{1}, \boldsymbol{y} \in \boldsymbol{M}_{\mathbf{2}} \backslash \boldsymbol{A}_{\mathbf{2}}$ outside of the conical neighborhood of \boldsymbol{J}, and for $\boldsymbol{t}>\boldsymbol{T}\left(\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{J})^{2}+d(y, J)^{2}\right)$,
$p(t, x, y) \sim C t^{-n / 2}\left(\frac{1}{d(x, J)^{(1-\alpha)(n-m-2)}}+\frac{1}{d(y, J)^{(1-\alpha)(n-m-2)}}\right) e^{-b d(x, y)^{2} / t}$.
We note that

$$
\operatorname{cap}\left(B(o, r) \cap \partial A_{i}\right) \sim C r^{m+\alpha(n-m-2)}
$$

Main Problem
Can we predict the heat kernel estimate by the capacity growth of the joint?

General Case

Let us consider that the connected sum of two copies of \mathbb{R}^{n} along

$$
A_{1}=A_{2}=B\left(\mathbb{Z}, \frac{1}{3}\right) \text { by } J \sim \partial B\left(\mathbb{Z}, \frac{1}{3}\right) \times[0,1] .
$$

$\operatorname{cap}\left(B(o, r) \cap \partial A_{i}\right) \sim r$.

General Case

Let us consider that the connected sum of two copies of \mathbb{R}^{n} along

$$
A_{1}=A_{2}=B\left(\mathbb{Z}, \frac{1}{3}\right) \text { by } J \sim \partial B\left(\mathbb{Z}, \frac{1}{3}\right) \times[0,1] .
$$

$$
p(t, x, y) \sim c t^{-n / 2}\left(\frac{1}{d(x, J)^{n-3}}+\frac{1}{d(y, J)^{n-3}}\right) e^{-b d(x, y)^{2} / t} .
$$

General Case

Let us consider that the connected sum of two copies of \mathbb{R}^{n} along

$$
A_{1}=A_{2}=B\left(\mathbb{Z}, \frac{1}{3}\right) \text { by } J \sim \partial B\left(\mathbb{Z}, \frac{1}{3}\right) \times[0,1] .
$$

$$
p(t, x, y) \sim ? ? ?
$$

To avoid such difficulty, we assume that $\boldsymbol{d} \sim \boldsymbol{d}_{\boldsymbol{i}}$ on $\boldsymbol{M}_{\boldsymbol{i}} \backslash \boldsymbol{A}_{\boldsymbol{i}} \sqcup \boldsymbol{J}$, namely

$$
c d_{i}(x, y) \leq d(x, y) \leq d_{i}(x, y) \quad x, y \in M_{i} \backslash A_{i} \sqcup J .
$$

Theorem

Suppose that $\boldsymbol{M}_{\boldsymbol{i}} \backslash \boldsymbol{A}_{\boldsymbol{i}} \sqcup \boldsymbol{J}, \boldsymbol{i}=\mathbf{1 , 2}$ satisfies the Gaussian upper bound for Neumann heat kernel. Assume also that $\boldsymbol{d} \sim \boldsymbol{d}_{\boldsymbol{i}}$. Then the connected sum $\boldsymbol{M}=M_{1} \#_{J} \boldsymbol{M}_{2}$ also admits the Gaussian heat kernel upper bound.

Theorem (Gyrya, Saloff-Coste, 2011)

Suppose that \boldsymbol{M} satisfies (LY). Let $\boldsymbol{U} \subset M$ be an inner uniform domain. Then the Neumann heat kernel on \boldsymbol{U} also satisfies (LY).

Main Result

Suppose that $\boldsymbol{M}_{\boldsymbol{i}}, \boldsymbol{i}=\mathbf{1 , 2}$ satisfies

$$
\left(\frac{R}{r}\right)^{\beta_{i}} \leq \frac{V_{i}(x, R)}{V_{i}(x, r)} \leq\left(\frac{R}{r}\right)^{\beta_{i}^{\prime}} \quad R>r>0
$$

for some $2<\beta_{i} \leq \beta_{i}^{\prime}$.
For fixed $\boldsymbol{o}_{\boldsymbol{i}} \in \boldsymbol{A}_{\boldsymbol{i}}$, we assume that there exist an open subset $\boldsymbol{U}_{\boldsymbol{i}}$ containing A_{i} and $\mathbf{0} \leq \alpha_{i}<\beta_{i}-2$ so that

$$
\operatorname{cap}\left(A_{i} \cap B\left(o_{i}, 2 r\right) \backslash B\left(o_{i}, r\right), U_{i} \cap B\left(o_{i}, 4 r\right) \backslash B\left(o_{i}, r / 2\right)\right) \leq C r^{\alpha_{i}} .
$$

Main Result

Assume that the Neumann heat kernel on $\boldsymbol{M}_{\boldsymbol{i}} \backslash \boldsymbol{A}_{\boldsymbol{i}} \sqcup \boldsymbol{J}$ satisfies the Gaussian upper bound.
Let $\boldsymbol{M}=\boldsymbol{M}_{1} \#_{J} \boldsymbol{M}_{\mathbf{2}}$ be a connected sum of \boldsymbol{M}_{1} and $\boldsymbol{M}_{\mathbf{2}}$ along the boundary of $\boldsymbol{A}_{1} \subset \boldsymbol{M}_{1}$ and $\boldsymbol{A}_{\mathbf{2}} \subset \boldsymbol{M}_{2}$ by \boldsymbol{J}. We assume that $\boldsymbol{d} \sim \boldsymbol{d}_{\boldsymbol{i}}$.

Theorem

For $\boldsymbol{x} \in \boldsymbol{M}_{\mathbf{1}} \backslash \boldsymbol{A}_{\mathbf{1}}, \boldsymbol{y} \in \boldsymbol{M}_{\mathbf{2}} \backslash \boldsymbol{A}_{\mathbf{2}}$ outside of a conical neighborhood of \boldsymbol{U}_{i},

$$
p(t, x, y) \leq
$$

$$
C\left(\frac{1}{V_{1}(x, \sqrt{t})} \frac{d\left(y, U_{2}\right)^{2+\alpha_{2}}}{V_{2}\left(y, d\left(y, U_{2}\right)\right)}+\frac{1}{V_{2}(y, \sqrt{t})} \frac{d\left(x, U_{1}\right)^{2+\alpha_{1}}}{V_{1}\left(x, d\left(x, U_{1}\right)\right)}\right) e^{-b d(x, y)^{2} / t}
$$

