Heat kernels and Green functions on metric measure spaces

Jiaxin Hu Tsinghua University, Beijing, China (Joint with Alexander Grigor'yan)

December 10-14, 2012 (Hong Kong)

- Background
- Conditions
- Theorems.

Metric measure space

- (*M*, *d*): a metric space (locally compact, separable).
- μ: a Radon measure (locally finite, inner regular) (μ(Ω) > 0 for any open Ω ≠ Ø).
- (M, d, μ) : a metric measure space.

A metric space: Hata's tree.

Dirichlet form

• $(\mathcal{E}, \mathcal{F})$: a **Dirichlet form** in $L^2(M, \mu)$ that is regular, strongly local.

• DF: a closed Markovian symmetric form.

- regular: $C_0(M) \cap \mathcal{F}$ is dense in both \mathcal{F} and $C_0(M)$.
- strongly local: *E*(*f*, *g*) = 0 for any *f*, *g* ∈ *F* where *f* is constant in some neighborhood of supp(*g*).

Heat semigroup

{P_t}_{t≥0}: a heat semigroup in L²(M, μ):
 (a) strongly cts, contractive, symmetric in L²;

(b) Markovian in L^{∞} :

 $P_t f \ge 0$ if $f \ge 0$, and $P_t f \le 1$ if $f \le 1$.

•
$$(\mathcal{E}, \mathcal{F}) \Leftrightarrow \{P_t\}_{t \geq 0}$$
:

$$\mathcal{E}(f,g) = \lim_{t \to 0} \mathcal{E}_t(f,g)$$
$$:= \lim_{t \to 0} t^{-1}(f - P_t f,g).$$

Restricted Dirichlet form

• **Restricted DF**: $(\mathcal{E}, \mathcal{F}(\Omega))$, where

$$\mathcal{F}(\Omega) := \overline{\mathcal{C}_0(\Omega) \cap \mathcal{F}}$$
 in \mathcal{F} -norm,

for a non-empty open $\Omega \subset M$.

- $(\mathcal{E}, \mathcal{F}(\Omega)) \Leftrightarrow \{ P_t^{\Omega} \}.$
- Generator: \mathcal{L}^{Ω}

$$\mathcal{L}^{\Omega}f := \lim_{t \to 0} \frac{P_t^{\Omega}f - f}{t}$$
 in L^2 -norm.

• $\{p_t\}_{t>0}$: a heat kernel.

• symmetric: $p_t(x, y) = p_t(y, x)$;

- Markovian: $p_t(x, y) \ge 0$, and $\int_M p_t(x, y) d\mu(y) \le 1$;
- semigroup property;
- identity approximation.

Heat kernel: examples

• Sierpinski gaskets ('88) and carpets ('92, '99)

$$p_t(x,y) \asymp t^{-\alpha/\beta} \exp\left(-c\left(\frac{|x-y|}{t^{1/\beta}}\right)^{\beta/(\beta-1)}\right),$$

Gasket

Carpet

Purpose

To find equivalence conditions for the following estimate: (*UE*) Upper estimate: the heat kernel $p_t(x, y)$ exists, has a

Hölder continuous in $x, y \in M$ version, and satisfies

$$p_t(x,y) \leq \frac{C}{V(x,\mathcal{R}(t))} \exp\left(-\frac{1}{2}t\Phi\left(c\frac{d(x,y)}{t}\right)\right)$$

for all t > 0 and all $x, y \in M$, where $\mathcal{R} := F^{-1}$ and

$$\Phi(s) := \sup_{r>0} \left\{ \frac{s}{r} - \frac{1}{F(r)} \right\}.$$

Interesting case: $F(r) = r^{\beta}(\beta > 1)$, $V(x, r) \sim r^{\alpha}$, then $\Phi(s) = cs^{\beta/(\beta-1)}$, and

$$p_t(x,y) \leq \frac{C}{t^{\alpha/\beta}} \exp\left(-c\left(\frac{d(x,y)}{t^{1/\beta}}\right)^{\beta/(\beta-1)}\right)$$

How ?

- Volume doubling condition: for all $x \in M, r > 0$,
 - $V(x,2r) \leq C_D V(x,r), \qquad (VD)$ where $V(x,r) := \mu(B(x,r))$. Then, for all $0 < r_1 \leq r_2$, $\frac{V(x,r_2)}{V(x,r_1)} \leq c \left(\frac{r_2}{r_1}\right)^{\alpha}.$
- Reverse volume doubling condition: for all x ∈ M and 0 < r₁ ≤ r₂,

$$\frac{V(x,r_2)}{V(x,r_1)} \ge c^{-1} \left(\frac{r_2}{r_1}\right)^{\alpha'}.$$
 (RVD)

If M is connected and unbounded, then $(VD) \Rightarrow (RVD)$.

• The (uniform elliptic) Harnack inequality: for any function $u \in \mathcal{F}$ that is **harmonic** and **non-negative** in $B(x_0, r)$,

$$\sup_{B(x_0,\delta r)} u \le C_H \inf_{B(x_0,\delta r)} u, \tag{H}$$

where the constants C_H and δ are **independent** of the ball $B(x_0, r)$ and the function u.

A function $u \in \mathcal{F}$ is **harmonic** in Ω if

 $\mathcal{E}(u, \varphi) = 0$ for any $\varphi \in \mathcal{F}(\Omega)$.

Harnack inequality

Harnack inequality:

Harmonic function *u* is **nearly constant** in $B(x_0, \delta r)$.

• The resistance condition (R_F) :

$$\operatorname{res}(B, KB) \simeq \frac{F(r)}{\mu(B)},$$
 (*R_F*)

where K > 1, r is the radius of B, and F is continuous increasing such that for all $0 < r_1 \le r_2$,

$$C^{-1}\left(\frac{r_2}{r_1}\right)^{\beta} \leq \frac{F(r_2)}{F(r_1)} \leq C\left(\frac{r_2}{r_1}\right)^{\beta'} (\beta > 1).$$

The resistance and capacity are defined by

$$\operatorname{res}(A, \Omega) := \frac{1}{\operatorname{cap}(A, \Omega)},$$
$$\operatorname{cap}(A, \Omega) := \inf \left\{ \mathcal{E}(\varphi) : \varphi \text{ is a cutoff function of } (A, \Omega) \right\}$$
for any $A \subseteq \Omega$.

Interesting case: $F(r) = r^{\beta}(\beta > 1), V(x, r) \sim r^{\alpha}$, then condition (R_F) becomes

$$\operatorname{res}(B, \operatorname{KB}) \simeq \frac{F(r)}{\mu(B)} \simeq r^{\beta-\alpha}.$$

• **Condition** (*G_F*) : the Green function *g^B* exists and is jointly continuous off the diagonal, and

$$g^{B}(x_{0}, y) \leq C \int_{\frac{d(x_{0}, y)}{K}}^{R} \frac{F(s) ds}{sV(x, s)} (y \in B \setminus \{x_{0}\}), \quad (G_{F} \leq)$$
$$g^{B}(x_{0}, y) \geq C^{-1} \int_{\frac{d(x_{0}, y)}{K}}^{R} \frac{F(s) ds}{sV(x, s)} (y \in K^{-1}B \setminus \{x_{0}\}),$$
$$(G_{F} \geq)$$

where K > 1 and C > 0, and $B := B(x_0, R)$.

The **Green function** g^{Ω} is defined by

$$G^{\Omega}f(x) = \int_{\Omega} g^{\Omega}(x,y)f(y)d\mu(y),$$

and the **Green operator** G^{Ω} :

 $\mathcal{E}(G^{\Omega}f,\varphi) = (f,\varphi), \ \forall \varphi \in \mathcal{F}(\Omega).$

• Condition (E_F) : for any ball B of radius r,

$$\begin{aligned} & \underset{B}{\operatorname{esup}} \, E^{B} \leq CF\left(r\right), & (E_{F} \leq) \\ & \underset{\delta_{1}B}{\operatorname{einf}} \, E^{B} \geq C^{-1}F\left(r\right). & (E_{F} \geq) \end{aligned}$$

where
$$C > 1$$
 and $\delta_1 \in (0, 1)$.

The **function** E^B is defined by

$$E^{B}(x) = G^{B}\mathbf{1}(x) = \mathbb{E}_{x}(\tau_{B}),$$

where τ_B is the **first exit time** from *B*.

Namely, function E^B satisfies the **Poisson-type** equation:

 $-\mathcal{L}^{B}E^{B}=1$ weakly,

that is, $\mathcal{E}(E^B, \varphi) = \int_B \varphi d\mu$ for any $\varphi \in \mathcal{F}(B)$. Note: if the Green function g^B exists, then

$$E^{B}(x) = \int_{B} g^{B}(x, y) d\mu(y).$$

Note: **Condition** (E_F) can be written

$$C^{-1}F(r) \leq \operatorname{esup}_{B} E^{B} \leq C\operatorname{einf}_{\delta_{1}B} E^{B}.$$

Theorem 1(Grigor'yan, Hu, 2012): Assume that

- (M, d, μ) : a metric measure space.
- $(\mathcal{E}, \mathcal{F})$: a regular, strongly local DF in $L^2(M, \mu)$.
- (VD) and (RVD) hold.

Then we have the following equivalences:

 $(H) + (R_F) \Leftrightarrow (G_F) \Leftrightarrow (H) + (E_F).$

Remark: Condition (RVD) is needed only for

$$(H)+(E_F)\Rightarrow (R_F\geq).$$

Ideas of the proof:

Maximum principles for subharmonic functions.
 (Subharmonic: ε(u, φ) ≤ 0 for any φ ∈ F(Ω))

If *u* is **continuous on** $\overline{\Omega}$, then

 $\operatorname{esup}_{\overline{\Omega}} u = \operatorname{sup}_{\partial\Omega} u.$

Ideas of the proof:

The Riesz measure associated with a superharmonic function: if 0 ≤ f ∈ dom(L^Ω) is superharmonic in Ω, then

$$-\mathcal{L}^{\Omega}f\,d\mu(x)=d\nu_f(x),$$

a non-negative Borel measure on Ω , namely,

$$\mathcal{E}(u, arphi) = \int_{\Omega} arphi(x) \, d
u_f(x) \quad ext{for any } arphi \in C_0(\Omega) \cap \mathcal{F}.$$

Consequently, if f is **harmonic** in $\Omega \setminus S$ for a compact set S,

$$f(x) = \int_{\mathcal{S}} g^{\Omega}(x,y) d\nu_f(y) \quad (x \in \Omega).$$

The hardest part of the proof:

• The annulus Harnack for the Green function from (H):

$$\sup_{\partial B} g^{\Omega}(x_0, \cdot) = \sup_{\Omega \setminus B} g^{\Omega}(x_0, \cdot)$$

$$\leq C \inf_{B} g^{\Omega}(x_0, \cdot) = C \inf_{\partial B} g^{\Omega}(x_0, \cdot),$$

where C > 0 is **independent** of the ball $B = B(x_0, R)$ and Ω .

One more condition

 Near-diagonal lower estimate: The heat kernel *p_t* (*x*, *y*) exists, has a Hölder continuous in *x*, *y* ∈ *M* version, and satisfies

$$p_t(x,y) \ge \frac{c}{V(x,\mathcal{R}(t))},$$
 (NLE)

for all t > 0 and all $x, y \in M$ such that $d(x, y) \le \eta \mathcal{R}(t)$, where $\eta > 0$ is a sufficiently small constant.

Recall that $\mathcal{R} = F^{-1}$, for example,

 $\mathcal{R}(t) = t^{1/\beta} \quad (\beta > 1).$

Theorem 2 (Grigor'yan, Hu, 2012): Assume that

- (M, d, μ) : a metric measure space.
- $(\mathcal{E}, \mathcal{F})$: a regular, strongly local DF in $L^2(M, \mu)$.
- (VD) and (RVD) hold.

Then we have the following three equivalences:

 $(H) + (R_F) \Leftrightarrow (G_F) \Leftrightarrow (H) + (E_F)$ $\Leftrightarrow (UE) + (NLE).$

The End of Talk