Heat kernels and Green functions on metric measure spaces

Jiaxin Hu
Tsinghua University, Beijing, China (Joint with Alexander Grigor'yan)

December 10-14, 2012 (Hong Kong)

Programme

- Background
- Conditions
- Theorems.

Metric measure space

- (M, d): a metric space (locally compact, separable).
- μ : a Radon measure (locally finite, inner regular) $(\mu(\Omega)>0$ for any open $\Omega \neq \emptyset)$.
- (M, d, μ): a metric measure space.

A metric space: Hata's tree.

Dirichlet form

- $(\mathcal{E}, \mathcal{F})$: a Dirichlet form in $L^{2}(M, \mu)$ that is regular, strongly local.

- DF: a closed Markovian symmetric form.
- regular: $C_{0}(M) \cap \mathcal{F}$ is dense in both \mathcal{F} and $C_{0}(M)$.
- strongly local: $\mathcal{E}(f, g)=0$ for any $f, g \in \mathcal{F}$ where f is constant in some neighborhood of $\operatorname{supp}(g)$.

Heat semigroup

- $\left\{P_{t}\right\}_{t \geq 0}$: a heat semigroup in $L^{2}(M, \mu)$:
(a) strongly cts, contractive, symmetric in L^{2};
(b) Markovian in L^{∞} :

$$
P_{t} f \geq 0 \text { if } f \geq 0, \text { and } P_{t} f \leq 1 \text { if } f \leq 1
$$

- $(\mathcal{E}, \mathcal{F}) \Leftrightarrow\left\{P_{t}\right\}_{t \geq 0}$:

$$
\begin{aligned}
\mathcal{E}(f, g) & =\lim _{t \rightarrow 0} \mathcal{E}_{t}(f, g) \\
& :=\lim _{t \rightarrow 0} t^{-1}\left(f-P_{t} f, g\right)
\end{aligned}
$$

Restricted Dirichlet form

- Restricted DF: $(\mathcal{E}, \mathcal{F}(\Omega))$, where

$$
\mathcal{F}(\Omega):=\overline{C_{0}(\Omega) \cap \mathcal{F}} \quad \text { in } \mathcal{F} \text {-norm },
$$

for a non-empty open $\Omega \subset M$.

- $(\mathcal{E}, \mathcal{F}(\Omega)) \Leftrightarrow\left\{P_{t}^{\Omega}\right\}$.
- Generator: \mathcal{L}^{Ω}

$$
\mathcal{L}^{\Omega} f:=\lim _{t \rightarrow 0} \frac{P_{t}^{\Omega} f-f}{t} \text { in } L^{2} \text {-norm. }
$$

Heat kernel

- $\left\{p_{t}\right\}_{t>0}$: a heat kernel.

- symmetric: $p_{t}(x, y)=p_{t}(y, x)$;
- Markovian: $p_{t}(x, y) \geq 0$, and $\int_{M} p_{t}(x, y) d \mu(y) \leq 1$;
- semigroup property;
- identity approximation.

Heat kernel: examples

- Sierpinski gaskets ('88) and carpets ('92, '99)

$$
p_{t}(x, y) \asymp t^{-\alpha / \beta} \exp \left(-c\left(\frac{|x-y|}{t^{1 / \beta}}\right)^{\beta /(\beta-1)}\right),
$$

Gasket
Carpet

Purpose

To find equivalence conditions for the following estimate:
(UE) Upper estimate: the heat kernel $p_{t}(x, y)$ exists, has a Hölder continuous in $x, y \in M$ version, and satisfies

$$
p_{t}(x, y) \leq \frac{C}{V(x, \mathcal{R}(t))} \exp \left(-\frac{1}{2} t \Phi\left(c \frac{d(x, y)}{t}\right)\right)
$$

for all $t>0$ and all $x, y \in M$, where $\mathcal{R}:=F^{-1}$ and

$$
\Phi(s):=\sup _{r>0}\left\{\frac{s}{r}-\frac{1}{F(r)}\right\} .
$$

Interesting case: $F(r)=r^{\beta}(\beta>1), V(x, r) \sim r^{\alpha}$, then $\Phi(s)=c s^{\beta /(\beta-1)}$, and

$$
p_{t}(x, y) \leq \frac{C}{t^{\alpha / \beta}} \exp \left(-c\left(\frac{d(x, y)}{t^{1 / \beta}}\right)^{\beta /(\beta-1)}\right)
$$

Conditions

How?

- Volume doubling condition: for all $x \in M, r>0$,

$$
\begin{equation*}
V(x, 2 r) \leq C_{D} V(x, r) \tag{VD}
\end{equation*}
$$

where $V(x, r):=\mu(B(x, r))$. Then, for all $0<r_{1} \leq r_{2}$,

$$
\frac{V\left(x, r_{2}\right)}{V\left(x, r_{1}\right)} \leq c\left(\frac{r_{2}}{r_{1}}\right)^{\alpha}
$$

- Reverse volume doubling condition: for all $x \in M$ and $0<r_{1} \leq r_{2}$,

$$
\begin{equation*}
\frac{V\left(x, r_{2}\right)}{V\left(x, r_{1}\right)} \geq c^{-1}\left(\frac{r_{2}}{r_{1}}\right)^{\alpha^{\prime}} \tag{RVD}
\end{equation*}
$$

If M is connected and unbounded, then $(V D) \Rightarrow(R V D)$.

Conditions

- The (uniform elliptic) Harnack inequality: for any function $u \in \mathcal{F}$ that is harmonic and non-negative in $B\left(x_{0}, r\right)$,

$$
\begin{equation*}
\operatorname{esup}_{B\left(x_{0}, \delta r\right)} u \leq C_{H} \operatorname{einf}_{B\left(x_{0}, \delta r\right)} u, \tag{H}
\end{equation*}
$$

where the constants C_{H} and δ are independent of the ball $B\left(x_{0}, r\right)$ and the function u.

A function $u \in \mathcal{F}$ is harmonic in Ω if

$$
\mathcal{E}(u, \varphi)=0 \text { for any } \varphi \in \mathcal{F}(\Omega)
$$

Harnack inequality

Harnack inequality:

Harmonic function u is nearly constant in $B\left(x_{0}, \delta r\right)$.

Conditions

- The resistance condition $\left(R_{F}\right)$:

$$
\begin{equation*}
\operatorname{res}(B, K B) \simeq \frac{F(r)}{\mu(B)} \tag{F}
\end{equation*}
$$

where $K>1, r$ is the radius of B, and F is continuous increasing such that for all $0<r_{1} \leq r_{2}$,

$$
C^{-1}\left(\frac{r_{2}}{r_{1}}\right)^{\beta} \leq \frac{F\left(r_{2}\right)}{F\left(r_{1}\right)} \leq C\left(\frac{r_{2}}{r_{1}}\right)^{\beta^{\prime}}(\beta>1)
$$

The resistance and capacity are defined by

$$
\begin{aligned}
\operatorname{res}(A, \Omega) & :=\frac{1}{\operatorname{cap}(A, \Omega)} \\
\operatorname{cap}(A, \Omega) & :=\inf \{\mathcal{E}(\varphi): \varphi \text { is a cutoff function of }(A, \Omega)\}
\end{aligned}
$$

for any $A \Subset \Omega$.

Conditions

Interesting case: $F(r)=r^{\beta}(\beta>1), V(x, r) \sim r^{\alpha}$, then condition $\left(R_{F}\right)$ becomes

$$
\operatorname{res}(B, K B) \simeq \frac{F(r)}{\mu(B)} \simeq r^{\beta-\alpha} .
$$

Conditions

- Condition $\left(G_{F}\right)$: the Green function g^{B} exists and is jointly continuous off the diagonal, and

$$
\begin{aligned}
& g^{B}\left(x_{0}, y\right) \leq C \int_{\frac{d\left(x_{0}, y\right)}{K}}^{R} \frac{F(s) d s}{s V(x, s)}\left(y \in B \backslash\left\{x_{0}\right\}\right), \quad\left(G_{F} \leq\right) \\
& g^{B}\left(x_{0}, y\right) \geq C^{-1} \int_{\frac{d\left(x_{0}, y\right)}{K}}^{R} \frac{F(s) d s}{s V(x, s)}\left(y \in K^{-1} B \backslash\left\{x_{0}\right\}\right), \\
& \left(G_{F} \geq\right)
\end{aligned}
$$

where $K>1$ and $C>0$, and $B:=B\left(x_{0}, R\right)$.
The Green function g^{Ω} is defined by

$$
G^{\Omega} f(x)=\int_{\Omega} g^{\Omega}(x, y) f(y) d \mu(y)
$$

and the Green operator G^{Ω} :

$$
\mathcal{E}\left(G^{\Omega} f, \varphi\right)=(f, \varphi), \forall \varphi \in \mathcal{F}(\Omega) .
$$

Conditions

- Condition $\left(E_{F}\right)$: for any ball B of radius r,

$$
\begin{array}{ll}
\operatorname{esup}_{B}^{\operatorname{esp}} E^{B} \leq C F(r), & \\
\operatorname{einf}_{\delta_{1} B} E^{B} \geq C^{-1} F(r) . & \\
\hline F) \\
& \left(E_{F} \geq\right)
\end{array}
$$

where $C>1$ and $\delta_{1} \in(0,1)$.
The function E^{B} is defined by

$$
E^{B}(x)=G^{B} 1(x)=\mathbb{E}_{x}\left(\tau_{B}\right)
$$

where τ_{B} is the first exit time from B.

Conditions

Namely, function E^{B} satisfies the Poisson-type equation:

$$
-\mathcal{L}^{B} E^{B}=1 \quad \text { weakly }
$$

that is, $\mathcal{E}\left(E^{B}, \varphi\right)=\int_{B} \varphi d \mu$ for any $\varphi \in \mathcal{F}(B)$.
Note: if the Green function g^{B} exists, then

$$
E^{B}(x)=\int_{B} g^{B}(x, y) d \mu(y)
$$

Note: Condition $\left(E_{F}\right)$ can be written

$$
C^{-1} F(r) \leq \operatorname{esup}_{B} E^{B} \leq C \operatorname{einf}_{\delta_{1} B} E^{B}
$$

Theorem 1

Theorem 1(Grigor'yan, Hu, 2012): Assume that

- (M, d, μ) : a metric measure space.
- $(\mathcal{E}, \mathcal{F})$: a regular, strongly local DF in $L^{2}(M, \mu)$.
- (VD) and (RVD) hold.

Then we have the following equivalences:

$$
(H)+\left(R_{F}\right) \Leftrightarrow\left(G_{F}\right) \Leftrightarrow(H)+\left(E_{F}\right) .
$$

Remark: Condition (RVD) is needed only for

$$
(H)+\left(E_{F}\right) \Rightarrow\left(R_{F} \geq\right) .
$$

Theorem 1

Ideas of the proof:

- Maximum principles for subharmonic functions.
(Subharmonic: $\mathcal{E}(u, \varphi) \leq 0$ for any $\varphi \in \mathcal{F}(\Omega)$)

If u is continuous on $\bar{\Omega}$, then

$$
\operatorname{esup}_{\bar{\Omega}} u=\sup _{\partial \Omega} u
$$

Theorem 1

Ideas of the proof:

- The Riesz measure associated with a superharmonic function: if $0 \leq f \in \operatorname{dom}\left(\mathcal{L}^{\Omega}\right)$ is superharmonic in Ω, then

$$
-\mathcal{L}^{\Omega} f d \mu(x)=d \nu_{f}(x)
$$

a non-negative Borel measure on Ω, namely,

$$
\mathcal{E}(u, \varphi)=\int_{\Omega} \varphi(x) d \nu_{f}(x) \quad \text { for any } \varphi \in C_{0}(\Omega) \cap \mathcal{F}
$$

Consequently, if f is harmonic in $\Omega \backslash S$ for a compact set S,

$$
f(x)=\int_{S} g^{\Omega}(x, y) d \nu_{f}(y) \quad(x \in \Omega)
$$

Theorem 1

The hardest part of the proof:

- The annulus Harnack for the Green function from (H) :

$$
\begin{aligned}
\sup _{\partial B} g^{\Omega}\left(x_{0}, \cdot\right) & =\sup _{\Omega \backslash B} g^{\Omega}\left(x_{0}, \cdot\right) \\
& \leq C \inf _{B} g^{\Omega}\left(x_{0}, \cdot\right)=C \inf _{\partial B} g^{\Omega}\left(x_{0}, \cdot\right),
\end{aligned}
$$

where $C>0$ is independent of the ball $B=B\left(x_{0}, R\right)$ and Ω.

$$
\sup _{\Omega \backslash B} g^{\Omega}\left(x_{0}, \bullet\right) \leq C \inf _{B} g^{\Omega}\left(x_{0}, \bullet\right)
$$

One more condition

- Near-diagonal lower estimate: The heat kernel $p_{t}(x, y)$ exists, has a Hölder continuous in $x, y \in M$ version, and satisfies

$$
p_{t}(x, y) \geq \frac{c}{V(x, \mathcal{R}(t))}
$$

(NLE)
for all $t>0$ and all $x, y \in M$ such that $d(x, y) \leq \eta \mathcal{R}(t)$, where $\eta>0$ is a sufficiently small constant.

Recall that $\mathcal{R}=F^{-1}$, for example,

$$
\mathcal{R}(t)=t^{1 / \beta} \quad(\beta>1)
$$

Theorem 2

Theorem 2 (Grigor'yan, Hu, 2012): Assume that

- (M, d, μ) : a metric measure space.
- $(\mathcal{E}, \mathcal{F})$: a regular, strongly local DF in $L^{2}(M, \mu)$.
- (VD) and (RVD) hold.

Then we have the following three equivalences:

$$
\begin{aligned}
(H)+\left(R_{F}\right) & \Leftrightarrow\left(G_{F}\right) \Leftrightarrow(H)+\left(E_{F}\right) \\
& \Leftrightarrow(U E)+(N L E) .
\end{aligned}
$$

The End of Talk

