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Programme

e Background
o Conditions
@ Theorems.
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Metric measure space

e (M, d): a metric space (locally compact, separable).

@ 1: a Radon measure (locally finite, inner regular)
(1£(€2) > 0 for any open Q # ().

e (M,d, p1): a metric measure space.
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A metric space: Hata's tree.
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Dirichlet form

e (&,F): a Dirichlet form in L>(M, ;1) that is
regular, strongly local.

N\

e DF: a closed Markovian symmetric form.

e regular: Co(M) N F is dense in both F and
Go(M).

e strongly local: £(f,g) =0 forany f,g € F
where f is constant in some neighborhood of
supp(g).-
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Heat semigroup

o {P;}:>0: a heat semigroup in L*(M, p1):

(a) strongly cts, contractive, symmetric in L2
(b) Markovian in L:

Pif >0if f>0,and P.f <1if f <1.

o (£,F) < {P:i}r>0:

= 1ing) t1(f — Pf,g).
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Restricted Dirichlet form

e Restricted DF: (£, F(Q2)), where
F(Q) = G(Q)NF in F-norm,

for a non-empty open Q C M.
° (£,F(Q) = {P}.
o Generator: L%
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Heat kernel

@ {p:}i>0: a heat kernel.

Ve

symmetric: pi(x,) = pe(y,x);

Markovian: p(x,y) > 0, and
S P, y)du(y) < 1;

e semigroup property;

identity approximation.
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Heat kernel: examples

o Sierpinski gaskets ('88) and carpets ('92, '99)

-1)
. ’X—y’ B/(B-1
pt(Xay) =t /8 exp <_C ( 1/8 )

Gasket

8/23



To find equivalence conditions for the following estimate:

(UE) Upper estimate: the heat kernel p; (x, y) exists, has a
Holder continuous in x, y € M version, and satisfies

p:(x,y) < Wexp (—%td) <CM>)

forall t > 0 and all x,y € M, where R : =F ! and

s 1
®(s):=supq - — .
=iy )
Interesting case: F(r) = r®(8 > 1), V(x,r) ~ r% then
¢ (s) = cs?/(5-1) and

C d(x,y) B/(8-1)
Pt(X,y)Smexp <_C( 1/ > :
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How 7

@ Volume doubling condition: for all x € M, r > 0,
V(x,2r) < CpV (x,r), (VD)
where V(x,r) := u(B(x,r)). Then, forall 0 < r, < n,

e Reverse volume doubling condition: for all x ¢ M
and 0 < n < n,

!

ez (3 @

If M is connected and unbounded, then (VD) = (RVD).
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@ The (uniform elliptic) Harnack inequality: for any function
u € F that is harmonic and non-negative in B (xo, r),

esup u < Cy einf u, (H)
B(X0,5r) B(X075r)

where the constants Cy and ¢ are independent of the
ball B (xo, r) and the function u.

A function u € F is harmonic in Q if

E (u, ) =0forany p € F(Q).
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Harnack inequality

Harnack inequality:

is harmonic in B

esup u < C,, einf u
B(3.57) Blx.2r)

Xo

Harmonic function v is nearly constant in B(x, dr).
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@ The resistance condition (Rg):

res (B, KB) ~

(RF)

where K > 1, r is the radius of B, and F is continuous
increasing such that for all 0 < r; < n,,

B B
_ F(r2) r
C1<9) < <C(—> > 1).
r - F(r]_) - rn (ﬁ )
The resistance and capacity are defined by
1

cap(A,Q)’
cap(A, Q) :=inf {E(p) : ¢ is a cutoff function of (A,Q)}

res (A, Q) :=

for any A € Q.
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Interesting case: F(r) = r?(8 > 1), V(x,r) ~ r% then
condition (RF) becomes

res (B, KB) ~
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e Condition (Gf) : the Green function g? exists and is
jointly continuous off the diagonal, and

gB (X07 )< C/xoy Sl_;/(()za;s) (y € B\{XO})7 (GF S)

£ 00) = ¢ [ DS e KB b)),

(Gr >)

where K > 1 and C > 0, and B := B(x, R).
The Green function g is defined by
GPf(x) Z/Qgﬂ(xm)f(y)du(y)’
and the Green operator G*:

E(Gf, ) = (f, @), Yy € F(Q).

15/23



e Condition (Eg) : for any ball B of radius r,

esup EB < CF (r), (EF <)
B

einfEZ > C7YF (r). (EF >)
nB

where C > 1 and 6; € (0, 1).

The function EZ is defined by
EB(x) = GP1(x) = E, (8),

where 7p is the first exit time from B.
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Namely, function EZ satisfies the Poisson-type equation:
—LBEB =1 weakly,
that is, £(E®, ¢) = [ pdu for any ¢ € F(B).

Note: if the Green function g? exists, then

E2() = [ £%0c)du(y)
B
Note: Condition (Ef) can be written

C7F(r) < esup EB < Ceinf EB.
B 01B
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Theorem 1(Grigor’'yan, Hu, 2012): Assume that
e (M,d, pn): a metric measure space.
o (&,F): aregular, strongly local DF in L?(M, ).
o (VD) and (RVD) hold.

Then we have the following equivalences:

(H)+ (Re) © (Gr) < (H) + (EF).

Remark: Condition (RVD) is needed only for

(H)+ (EF) = (Re >).
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Ideas of the proof:
e Maximum principles for subharmonic functions.
(Subharmonic: E(u, ) < 0 for any ¢ € F(Q2))

]

royS N0

If u is continuous on €, then

esup u = sup u.
Q oQ
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Ideas of the proof:

@ The Riesz measure associated with a superharmonic
function: if 0 < f € dom(L%) is superharmonic in 2, then

— L du(x) = dve(x),

a non-negative Borel measure on 2, namely,

E(u,p) = /Qgp(x) dve(x) for any p € Go(Q2) N F.

Consequently, if f is harmonic in Q\ S for a compact set S,
700 = [ 8%cn)dnily) (xe9)
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The hardest part of the proof:
@ The annulus Harnack for the Green function from (H):

sup g”(xo, -) = sup g (xo, )

aB Q\B
< CinfoQ s ) — Cinf e (xn. -
= Clgfg (XOJ ) Clanéfg (X07 )7

where C > 0 is independent of the ball B = B(xp, R)
and 2.

{ B(x,, KR)cQ

supg“(x,.+) < Cinf g%(x,,)
Q\B B
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One more condition

o Near-diagonal lower estimate: The heat kernel
p: (x,y) exists, has a Holder continuous in x,y € M
version, and satisfies

Cc

Pt(X:}/)Zm> (NLE)

for all t > 0 and all x,y € M such that d (x,y) < nR(t),
where n > 0 is a sufficiently small constant.

Recall that R = F1, for example,

R(t) =t/ (B> 1).
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Theorem 2 (Grigor'yan, Hu, 2012): Assume that
e (M,d, pi): a metric measure space.
o (&,F): aregular, strongly local DF in L?(M, ).
o (VD) and (RVD) hold,

Then we have the following three equivalences:

(H)+(RF) & (Gf) < (H) + (EF)
o (UE)+ (NLE).

The End of Talk
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