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Metric measure space

(M , d): a metric space (locally compact, separable).
µ: a Radon measure (locally finite, inner regular)
(µ(Ω) > 0 for any open Ω 6= ∅).
(M , d , µ): a metric measure space.

A metric space: Hata’s tree.
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Dirichlet form

(E ,F): a Dirichlet form in L2(M , µ) that is
regular, strongly local.

↘
• DF: a closed Markovian symmetric form.

• regular: C0(M) ∩ F is dense in both F and
C0(M).

• strongly local: E(f , g) = 0 for any f , g ∈ F
where f is constant in some neighborhood of
supp(g).
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Heat semigroup

{Pt}t≥0: a heat semigroup in L2(M , µ):

(a) strongly cts, contractive, symmetric in L2;
(b) Markovian in L∞:

Ptf ≥ 0 if f ≥ 0, and Ptf ≤ 1 if f ≤ 1.

(E ,F)⇔ {Pt}t≥0:

E(f , g) = lim
t→0
Et(f , g)

:= lim
t→0

t−1(f − Ptf , g).
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Restricted Dirichlet form

Restricted DF: (E ,F(Ω)), where

F(Ω) := C0(Ω) ∩ F in F -norm,

for a non-empty open Ω ⊂ M .

(E ,F(Ω))⇔ {PΩ
t }.

Generator: LΩ

LΩf := lim
t→0

PΩ
t f − f

t
in L2-norm.
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Heat kernel

{pt}t>0: a heat kernel.

↙
• symmetric: pt(x , y) = pt(y , x);

• Markovian: pt(x , y) ≥ 0, and∫
M
pt(x , y)dµ(y) ≤ 1;

• semigroup property;

• identity approximation.
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Heat kernel: examples

Sierpinski gaskets (’88) and carpets (’92, ’99)

pt(x , y) � t−α/β exp

(
−c
(
|x − y |
t1/β

)β/(β−1)
)
,

Gasket
Carpet
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Purpose

To find equivalence conditions for the following estimate:

(UE ) Upper estimate: the heat kernel pt (x , y) exists, has a
Hölder continuous in x , y ∈ M version, and satisfies

pt (x , y) ≤ C

V (x ,R (t))
exp

(
−1

2
tΦ

(
c
d (x , y)

t

))
for all t > 0 and all x , y ∈ M , where R : =F−1 and

Φ (s) := sup
r>0

{
s

r
− 1

F (r)

}
.

Interesting case: F (r) = rβ(β > 1),V (x , r) ∼ rα, then
Φ (s) = csβ/(β−1), and

pt(x , y) ≤ C

tα/β
exp

(
−c
(
d(x , y)

t1/β

)β/(β−1)
)
.
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Conditions

How ?

Volume doubling condition: for all x ∈ M , r > 0,

V (x , 2r) ≤ CDV (x , r) , (VD)

where V (x , r) := µ(B(x , r)). Then, for all 0 < r1 ≤ r2,

V (x , r2)

V (x , r1)
≤ c

(
r2
r1

)α
.

Reverse volume doubling condition: for all x ∈ M
and 0 < r1 ≤ r2,

V (x , r2)

V (x , r1)
≥ c−1

(
r2
r1

)α′

. (RVD)

If M is connected and unbounded, then (VD)⇒ (RVD).
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Conditions

The (uniform elliptic) Harnack inequality: for any function
u ∈ F that is harmonic and non-negative in B (x0, r),

esup
B(x0,δr)

u ≤ CH einf
B(x0,δr)

u, (H)

where the constants CH and δ are independent of the
ball B (x0, r) and the function u.

A function u ∈ F is harmonic in Ω if

E (u, ϕ) = 0 for any ϕ ∈ F (Ω) .
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Harnack inequality

Harnack inequality:

Harmonic function u is nearly constant in B(x0, δr).
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Conditions

The resistance condition (RF ):

res (B ,KB) ' F (r)

µ (B)
, (RF )

where K > 1, r is the radius of B , and F is continuous
increasing such that for all 0 < r1 ≤ r2,

C−1

(
r2
r1

)β
≤ F (r2)

F (r1)
≤ C

(
r2
r1

)β′

(β > 1).

The resistance and capacity are defined by

res (A,Ω) :=
1

cap(A,Ω)
,

cap(A,Ω) := inf {E (ϕ) : ϕ is a cutoff function of (A,Ω)}

for any A b Ω.
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Conditions

Interesting case: F (r) = rβ(β > 1),V (x , r) ∼ rα, then
condition (RF ) becomes

res (B ,KB) ' F (r)

µ (B)
' rβ−α.
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Conditions

Condition (GF ) : the Green function gB exists and is
jointly continuous off the diagonal, and

gB (x0, y) ≤ C

∫ R

d(x0,y)
K

F (s) ds

sV (x , s)
(y ∈ B \ {x0}), (GF ≤)

gB (x0, y) ≥ C−1

∫ R

d(x0,y)
K

F (s) ds

sV (x , s)
(y ∈ K−1B \ {x0}),

(GF ≥)

where K > 1 and C > 0, and B := B(x0,R).

The Green function gΩ is defined by

GΩf (x) =

∫
Ω

gΩ(x , y)f (y)dµ(y),

and the Green operator GΩ:

E(GΩf , ϕ) = (f , ϕ) , ∀ϕ ∈ F(Ω).
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Conditions

Condition (EF ) : for any ball B of radius r ,

esup
B

EB ≤ CF (r) , (EF ≤)

einf
δ1B

EB ≥ C−1F (r) . (EF ≥)

where C > 1 and δ1 ∈ (0, 1).

The function EB is defined by

EB(x) = GB1(x) = Ex (τB) ,

where τB is the first exit time from B .
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Conditions

Namely, function EB satisfies the Poisson-type equation:

−LBEB = 1 weakly,

that is, E(EB , ϕ) =
∫
B
ϕdµ for any ϕ ∈ F(B).

Note: if the Green function gB exists, then

EB(x) =

∫
B

gB(x , y)dµ(y).

Note: Condition (EF ) can be written

C−1F (r) ≤ esup
B

EB ≤ Ceinf
δ1B

EB .
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Theorem 1

Theorem 1(Grigor’yan, Hu, 2012): Assume that

(M , d , µ): a metric measure space.

(E ,F): a regular, strongly local DF in L2(M , µ).

(VD) and (RVD) hold.

Then we have the following equivalences:

(H) + (RF )⇔ (GF )⇔ (H) + (EF ) .

Remark: Condition (RVD) is needed only for

(H) + (EF )⇒ (RF ≥) .
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Theorem 1

Ideas of the proof:
Maximum principles for subharmonic functions.
(Subharmonic : E(u, ϕ) ≤ 0 for any ϕ ∈ F(Ω))

If u is continuous on Ω, then

esup
Ω

u = sup
∂Ω

u.
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Theorem 1

Ideas of the proof:

The Riesz measure associated with a superharmonic
function: if 0 ≤ f ∈ dom(LΩ) is superharmonic in Ω, then

−LΩf dµ(x) = dνf (x),

a non-negative Borel measure on Ω, namely,

E(u, ϕ) =

∫
Ω

ϕ(x) dνf (x) for any ϕ ∈ C0(Ω) ∩ F .

Consequently, if f is harmonic in Ω \ S for a compact set S ,

f (x) =

∫
S

gΩ(x , y)dνf (y) (x ∈ Ω).
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Theorem 1

The hardest part of the proof:
The annulus Harnack for the Green function from (H):

sup
∂B

gΩ(x0, ·) = sup
Ω\B

gΩ(x0, ·)

≤ C inf
B
gΩ(x0, ·) = C inf

∂B
gΩ(x0, ·),

where C > 0 is independent of the ball B = B(x0,R)
and Ω.

21 / 23



One more condition

Near-diagonal lower estimate: The heat kernel
pt (x , y) exists, has a Hölder continuous in x , y ∈ M
version, and satisfies

pt (x , y) ≥ c

V (x ,R (t))
, (NLE )

for all t > 0 and all x , y ∈ M such that d (x , y) ≤ ηR (t),
where η > 0 is a sufficiently small constant.

Recall that R = F−1, for example,

R(t) = t1/β (β > 1).
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Theorem 2

Theorem 2 (Grigor’yan, Hu, 2012): Assume that

(M , d , µ): a metric measure space.

(E ,F): a regular, strongly local DF in L2(M , µ).

(VD) and (RVD) hold.

Then we have the following three equivalences:

(H) + (RF ) ⇔ (GF )⇔ (H) + (EF )

⇔ (UE ) + (NLE ) .

The End of Talk
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