Progress on self-similar sets with overlaps

Michael Hochman

The Hebrew University of Jerusalem

Advances on Fractals and Related Fields
The Chinese University of Hong Kong
December 2012
$\left\{f_{i}\right\}_{i \in \Lambda}$ a linear iterated function system on \mathbb{R} :

$$
f_{i}(x)=r_{i} x+a_{i} \quad 0<\left|r_{i}\right|<1 \quad, \quad a_{i} \in \mathbb{R}
$$

With attractor is the unique compact non-empty set

$$
X=\bigcup_{i \in \Lambda} f_{i}(X)
$$

Problem:

$$
\text { What is } \operatorname{dim}(X) ? ? ?
$$

The similarity dimension is the solution s to

$$
\sum\left|r_{i}\right|^{s}=1
$$

Assuming strong separation or the Open Set Condition,

$$
\operatorname{dim}(X)=s
$$

Without separation we know that

$$
\operatorname{dim}(X) \leq \min \{1, s\}
$$

Folklore conjecture:

$$
\operatorname{dim}(X)<\min \{1, s\} \quad \Longrightarrow \quad \text { exact overlaps. }
$$

For $\mathbf{i}=i_{1} \ldots i_{n} \in \Lambda^{n}$,

$$
\begin{aligned}
f_{\mathbf{i}} & =f_{i_{1}} \circ \ldots \circ f_{i_{n}} \\
r_{\mathbf{i}} & =r_{i_{1}} \cdot \ldots \cdot r_{i_{n}}
\end{aligned}
$$

Exact overlaps occur if there are $\mathbf{i} \neq \mathbf{j}$ with $f_{\mathbf{i}}=f_{\mathbf{j}}$.
Equivalently: The semigroup generated by $\left\{f_{i}\right\}$ is not free.

The distance between affine maps g, h is

$$
d(g, h)= \begin{cases}|g(0)-h(0)| & \text { same contraction ratio } \\ \infty & \text { otherwise }\end{cases}
$$

and

$$
\Delta_{n}=\min \left\{d\left(f_{\mathbf{i}}, f_{\mathbf{j}}\right): \mathbf{i}, \mathbf{j} \in \Lambda^{n}, \mathbf{i} \neq \mathbf{j}\right\}
$$

Note.

1. Δ_{n} is decreasing.
2. Exact overlaps occur $\Longleftrightarrow \quad \exists n$ such that $\Delta_{n}=0$.
3. $\Delta_{n} \rightarrow 0$ exponentially. (There exists $0<\rho<1$ such that $\Delta_{n} \leq \rho^{n}$).

Remark: We can have $\Delta_{n} \geq \sigma^{n}$ (even without separation).

Theorem.

$$
\begin{array}{r}
\operatorname{dim}(X)<\min \{1, s\} \quad \Longrightarrow \quad \Delta_{n} \rightarrow 0 \text { super-exponentially. } \\
\left(-\frac{1}{n} \log \Delta_{n} \rightarrow \infty\right)
\end{array}
$$

Theorem.
$\operatorname{dim}(X)<\min \{1, s\} \quad \Longrightarrow \quad \Delta_{n} \rightarrow 0$ super-exponentially.

$$
\left(-\frac{1}{n} \log \Delta_{n} \rightarrow \infty\right)
$$

Equivalently,

$$
\exists \rho>0 \quad \text { s.t. } \quad \Delta_{n}>\rho^{n} \Longrightarrow \operatorname{dim}(X)=\min \{1, s\}
$$

Corollary.

The conjecture is true in the class of IFSs with algebraic coefficients: either $\operatorname{dim}(X)=\min \{1, s\}$ or there are exact overlaps.

Corollary.

The conjecture is true in the class of IFSs with algebraic coefficients: either $\operatorname{dim}(X)=\min \{1, s\}$ or there are exact overlaps.

Proof.

$$
\begin{aligned}
\Delta_{n} & =f_{\mathbf{i}}(0)-f_{\mathbf{j}}(0) \text { for some } \mathbf{i}, \mathbf{j} \in \Lambda^{n} \\
& =\text { a polynomial of degree } n \text { in } a_{i}, r_{i} .
\end{aligned}
$$

Since a_{i}, r_{i} are algebraic, by general facts about polynomials of algebraic numbers, there exists $\rho>0$ such that

$$
\Delta_{n}=\left\{\begin{array}{l}
0 \\
\geq \rho^{n}
\end{array}\right.
$$

Therefore if there are no exact overlaps $\Delta_{n} \rightarrow 0$ only exponentially, so by the theorem, $\operatorname{dim}(X)=\min \{1, s\}$.

Corollary (Furstenberg's conjecture).
Let $u \in \mathbb{R}$ and F_{u} the attractor of

$$
x \mapsto \frac{1}{3} x \quad, \quad x \mapsto \frac{1}{3} x+1 \quad, \quad x \mapsto \frac{1}{3} x+u
$$

Then $\operatorname{dim} F_{u}=1$ for all irrational u.

Remark: $\operatorname{dim}\left(F_{u}\right)$ can be computed also for rational u (Kenyon).

Proof. (Thanks to B. Solomyak and P. Shmerkin)

$$
\begin{aligned}
\Delta_{n} & =\left|\sum_{k=1}^{n}\left(i_{k}-j_{k}\right) 3^{-k}\right| \quad \text { for some } \mathbf{i}, \mathbf{j} \in\{0,1, u\}^{n} \\
& =\left|\frac{a_{n}}{3^{n}}-u \cdot \frac{b_{n}}{3^{n}}\right| \quad \text { for integers }\left|a_{n}\right|,\left|b_{n}\right| \leq 3^{n}
\end{aligned}
$$

Suppose $\operatorname{dim}\left(F_{u}\right)<1=$ the similarity dimension.
By the theorem $\Delta_{n} \rightarrow 0$ super-exponentially, so

$$
\left|\frac{a_{n}}{3^{n}}-u \cdot \frac{b_{n}}{3^{n}}\right|=\Delta_{n}<\frac{1}{100^{n}} \quad \text { for large enough } n
$$

We can have $b_{n}=0$ only finitely often because it implies $\left|a_{n} / 2^{n}\right|<1 / 100^{n}$.

Dividing by $3^{n} / b_{n}$,

$$
\left|u-\frac{a_{n}}{b_{n}}\right|<\frac{3^{n}}{b_{n}} \Delta_{n}<\frac{1}{30^{n}}
$$

for large enough n
Subtracting successive n ,

$$
\left|\frac{a_{n}}{b_{n}}-\frac{a_{n+1}}{b_{n+1}}\right|<\frac{2}{30^{n}}
$$

for large enough n

But

$$
\left|\frac{a_{n}}{b_{n}}-\frac{a_{n+1}}{b_{n+1}}\right|=\frac{\left|a_{n} b_{n+1}-a_{n+1} b_{n}\right|}{\left|b_{n} b_{n+1}\right|}= \begin{cases}0 & \text { if }=0 \\ \geq 1 / 9^{n} & \text { if } \neq 0\end{cases}
$$

but $1 / 9^{n}>2 / 30^{n}$ so this difference must be 0 for large n.
$\Longrightarrow \exists a, b \in \mathbb{N}$ with $|u-a / b|<30^{-n}$, which implies $u=a / b$.

Corollary.

Let ν_{λ} be the Bernoulli convolution with parameter $1 / 2<\lambda<1$:

$$
\nu_{\lambda}=\text { distribution of } \sum_{k=1}^{\infty} \pm \lambda^{k} \text { (signs i.i.d. and uniform) }
$$

Then there is a set $E \subseteq[1 / 2,1]$ of packing dimension 0 such that $\operatorname{dim} \nu_{\lambda}=1$ for $\lambda \notin E$.

More generally this is true for any 1-parameter family of self-similar sets or measures as long as the parametrization is real-analytic, under a mild non-degeneracy condition.

Theorem.
$\operatorname{dim}(X)<\min \{1, s\} \quad \Longrightarrow \quad \Delta_{n} \rightarrow 0$ super-exponentially.

For simplicity assume:

- Uniform contraction 1/2.
- $\quad 0 \in X \subseteq[0,1]$.

Then $s=\log _{2}|\Lambda|$.

Define the n-th approximation of X :

$$
X_{n}:=\left\{f_{\mathbf{i}}(0): \mathbf{i} \in \Lambda^{n}\right\}
$$

We have the relation

$$
X_{m+n}=X_{m}+2^{-m} \cdot X_{n}
$$

Here

$$
\begin{aligned}
A+B & =\{a+b: a \in A, b \in B\} \\
c A & =\{c a: a \in A\}
\end{aligned}
$$

$$
N_{n}(Y):=\min \left\{k: Y \subseteq \bigcup_{i=1}^{k} Y_{i} \text { with } \operatorname{diam}\left(Y_{i}\right) \leq 2^{-n}\right\}
$$

$$
N_{n}(Y):=\min \left\{k: Y \subseteq \bigcup_{i=1}^{k} Y_{i} \text { with } \operatorname{diam}\left(Y_{i}\right) \leq 2^{-n}\right\}
$$

Sumset theorem.

If $\operatorname{dim}(X)<1$ then $\forall \varepsilon>0 \exists \delta>0$ such that for m large enough,

$$
N_{m}\left(X_{m}+A\right) \leq\left(N_{m}\left(X_{m}\right)\right)^{1+\delta} \quad \Longrightarrow \quad N_{m}(A) \leq 2^{\varepsilon m}
$$

Remark. There exist finite sets Y with $N_{m}(Y+Y) \approx N_{m}(Y)$ and $|Y| \approx 2^{c m}$. So self similarity here is important.

$$
N_{n}(Y):=\min \left\{k: Y \subseteq \bigcup_{i=1}^{k} Y_{i} \text { with } \operatorname{diam}\left(Y_{i}\right) \leq 2^{-n}\right\}
$$

Sumset theorem.

If $\operatorname{dim}(X)<1$ then $\forall \varepsilon>0 \exists \delta>0$ such that for m large enough,

$$
N_{m}\left(X_{m}+A\right) \leq\left(N_{m}\left(X_{m}\right)\right)^{1+\delta} \quad \Longrightarrow \quad N_{m}(A) \leq 2^{\varepsilon m}
$$

Remark. There exist finite sets Y with $N_{m}(Y+Y) \approx N_{m}(Y)$ and $|Y| \approx 2^{c m}$. So self similarity here is important.

Sumset theorem for dimension.

If $\operatorname{dim}(X)<1$ then $\forall \varepsilon>0 \exists \delta>0$ such that

$$
\operatorname{dim}(A)>\varepsilon \Longrightarrow \operatorname{dim}(X+A)>\operatorname{dim}(X)+\delta .
$$

Assume $\operatorname{dim}(X)<\min \{1, s\}$. We must prove

$$
\Delta_{n} \rightarrow 0 \text { super-exponentially }
$$

Equivalently,
For every $q>1: \Delta_{n}<2^{-q n}$ for all large n.
Assume no exact overlaps. Then
$\Delta_{n}=$ minimal distance between points in X_{n}
So we need to prove:
For every $q>1:\left\{\begin{array}{l}\text { For all large enough } n, \\ \left|X_{n} \cap I\right| \geq 2 \text { for some } \\ \text { interval } / \text { of length }<2^{-q n}\end{array}\right.$

It is well known that,

$$
N_{n}(X) \approx 2^{n \operatorname{dim}(X)}
$$

One can also show

$$
N_{q n}\left(X \cap I_{n+1}(x)\right) \approx 2^{(q-1) n \operatorname{dim}(X)}
$$

where $x \in X$ and

$$
I_{n}(x)=\left[x-2^{-n}, x+2^{-n}\right]
$$

$$
X_{q n}=X_{n}+2^{-n} X_{(q-1) n}
$$

Therefore

$$
X_{q n} \cap I_{n}(x) \supseteq\left(X_{n} \cap I_{n+1}(x)\right)+2^{-n} X_{(q-1) n}
$$

Therefore

$$
\begin{aligned}
N_{q n}\left(\left(X_{n} \cap I_{n+1}(x)\right)+2^{-n} X_{(q-1) n}\right) & \leq N_{q n}\left(X_{q n} \cap I_{n}(x)\right) \\
& \approx 2^{(q-1) n \operatorname{dim}(X)} \\
& \approx N_{q n}\left(2^{-n} X_{(q-1) n}\right)
\end{aligned}
$$

Equivalently (scaling everything by 2^{n}),

$$
N_{(q-1) n}\left(2^{n}\left(X_{n} \cap I_{n}(x)\right)+X_{(q-1) n}\right) \lesssim N_{(q-1) n}\left(X_{(q-1) n}\right)
$$

By the sumset theorem

$$
N_{q n}\left(X_{n} \cap I_{n}(x)\right)=2^{o(n)} \quad \text { as } n \rightarrow \infty
$$

Since

$$
\frac{\left|X_{n}\right|}{N_{n}\left(X_{n}\right)} \approx \frac{|\Lambda|^{n}}{2^{n \operatorname{dim}(X)}}=2^{n(s-\operatorname{dim}(X))}
$$

there must be some (even many) $x \in X$ such that

$$
\left|X_{n} \cap I_{n}(x)\right| \gtrsim 2^{n(s-\operatorname{dim}(X))}
$$

The first and third relations show that there are many points in $X_{n} \cap I_{n}(x)$ within distance $2^{-q n}$ of each other. QED.

Multidimensional generalizations: In progress...

Open questions

1. The conjecture we started with!
2. Dimension of Bernoulli convolutions.
3. Analogous results for absolute continuity?
4. What are implications of $\Delta_{n} \rightarrow 0$ superexponentially?
5. Nonlinear setting?

Preprint on arxiv will available from Tuesday afternoon HK time.

Thank you.

