Energy Measures of Harmonic Functions on the Sierpiński Gasket

Ching Wei Ho

The Chinese University of Hong Kong

Joint work with Renee Bell and Robert S. Strichartz

AFRT, December 14, 2012

・ロン ・回 と ・ ヨ と ・ ヨ と

• Energy: for functions *u*, *v* on SG,

$$\mathcal{E}_m(u,v) = \left(\frac{5}{3}\right)^m \sum_{\substack{x \sim y \\ m}} (u(x) - u(y))(v(x) - v(y))$$

and

$$\mathcal{E}(u,v) = \lim_m \mathcal{E}_m(u,v).$$

- In general, ε_m(u, v) attains both positive and negative values but ε_m(u) (i.e.ε_m(u, u)) is always non-negative.
- We define a function h to be harmonic if its energy on level m

$$\mathcal{E}_m(h) = \sum_{i < j} (h(q_i) - h(q_j))^2$$

is a constant sequence where $\{q_i\}_{i=0}^2$ are vertices of the outermost triangle of SG.

ullet The standard Laplacian Δ_μ , defined by the weak formulation

$$-\mathcal{E}(u,v)=\int (\Delta_{\mu}u)vd\mu$$

for all $v \in \text{dom}\mathcal{E}_0$, where μ is standard measure on SG.

• Advantage: Self-similarity

$$5\Delta_{\mu}(u \circ F_j) = (\Delta_{\mu}u) \circ F_j.$$

- Disadvantage: For $u \in \text{dom}\Delta_{\mu}$, $u^2 \notin \text{dom}\Delta_{\mu}$ is not defined.
- Question: Does there exist another Laplacian which behaves better in terms of functions in the domain of the Laplacian forming an algebra under pointwise multiplication?

• Energy measure: for a cell F_wSG ,

$$\nu_{u,v}(F_wSG) = \left(\frac{5}{3}\right)^{|w|} \mathcal{E}(u \circ F_w, v \circ F_w).$$

•
$$\nu_u := \nu_{u,u}$$
.

• Similarly, in general, $\nu_{u,v}$ is a signed measure but ν_u is always a positive measure.

(4回) (1日) (日)

Introduction

• The symmetric harmonic functions h_0, h_1, h_2 have values $h_i(q_j) = \delta_{ij}$ on vertices q_j .

• Denote $\nu_i := \nu_{h_i}$, the energy measure of h_i .

伺下 イヨト イヨト

- The space of energy measures of harmonic functions is three dimensional and {ν₀, ν₁, ν₂} form a basis.
- The Kusuoka measure ν = ν₀ + ν₁ + ν₂ = 3(ν_h + ν_{h[⊥]}) if {h, h[⊥]} is an orthonormal basis of the space of all harmonic functions modulo constants.
- Fact: Every energy measure is absolutely continuous w.r.t. the Kusuoka measure ν.

・ 回 ト ・ ヨ ト ・ ヨ ト

• We define the "energy Laplacian" by the weak formulation

$$-\mathcal{E}(u,v)=\int (\Delta_{\nu} u)v d\nu$$

for all v of finite energy vanishing on the boundary of SG, where ν is the Kusuoka measure.

• Whenever $u \in {\sf dom} \Delta_
u$, $u^2 \in {\sf dom} \Delta_
u$ and

$$\Delta_{\nu}u^2 = 2u\Delta_{\nu}u + 2\frac{d\nu_u}{d\nu}.$$

(1) マン・ション・ (1) マン・

- Question: Does "energy Laplacian" behave in the sense of self-similarity like the standard Laplacian?
- Answer: We have some results like that but not that nice.
- We first establish the "self-similarity" of the the family $\{\nu_i\}$.

$$\begin{pmatrix} \nu_0 \\ \nu_1 \\ \nu_2 \end{pmatrix} = \sum_{i=0}^2 M_i \begin{pmatrix} \nu_0 \\ \nu_1 \\ \nu_2 \end{pmatrix} \circ F_i^{-1}$$

for some matrices M_i .

・ 同 ト ・ ヨ ト ・ ヨ ト

• The "self-similarity" of ν ,

$$\nu = \sum_{i=0}^{2} \left(\left(\frac{1}{15} + \frac{12}{15} \frac{d\nu_i}{d\nu} \right) \nu \right) \circ F_i^{-1}.$$

• For Energy Laplacian, we also have the "self-similarity"

$$\Delta_{\nu}(u \circ F_j) = \frac{3}{5} \left(\frac{1}{15} + \frac{12}{15} \frac{d\nu_j}{d\nu} \right) (\Delta_{\nu} u) \circ F_j$$

but with variable weights.

イロト イヨト イヨト イヨト

Portraits of the Derivative

Ching Wei Ho Energy Measures of Harmonic Functions on the Sierpiński Gash

Bounds for Derivatives

Lemma

$$\nu(F_wSG) = \Theta\left(\left(\frac{3}{5}\right)^{|w|}\right)$$

Lemma

If h is symmetric, $\nu_h(F_2F_1^mSG) = \Theta\left(\left(\frac{1}{15}\right)^m\right)$ and hence $\frac{d\nu_h}{d\nu}(x) = 0$ if $x \in \bigcap_m F_2F_1^mSG$.

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Theorem

Let h be a harmonic function. For every cell C, a) $\inf_{x \in C} \frac{d\nu_h}{d\nu}(x) = 0.$ b) If $\nu_h = a\nu_0 + b\nu_1 + c\nu_2$, $\sup_{x\in C}\frac{d\nu_h}{d\nu}(x)=\frac{2}{3}(a+b+c).$ In addition, if $\frac{d\nu_h}{d\nu}$ attains the maximum, then $\frac{d\nu_{h\perp}}{d\nu}$ attains its minimum, and at the same point.

▲□→ ▲目→ ▲目→ 三日

Bounds for Derivatives

Idea of proof:

For a), we look at the edge having an extremum.(existence of extremum proved by K. Dalrymple, R. S. Strichartz and J. P. Vinson, 1999)

For b) consider h^{\perp} orthogonal to *h*. Then $\frac{d\nu_h}{d\nu} + \frac{d\nu_{h^{\perp}}}{d\nu} = c$ for normalization constant $c = \frac{2}{3}(a+b+c)$. And

$$\sup \frac{d\nu_h}{d\nu} = c - \inf \frac{d\nu_{h^\perp}}{d\nu} = c.$$

Characterization of Positive Energy Measures

Theorem

Take $\{\nu_0, \nu_1, \nu_2\}$ as a basis for signed energy measures of harmonic functions. Then the coefficients of all positive energy measures form a solid, circular cone $\{(x, y, z) \in \mathbb{R}^3 : xy + yz + xz \ge 0\}$. Furthermore, the energy measures ν_h obtained by a single harmonic function form the boundary of the cone.

Sketch of proof: The coefficients of the measures ν_h form the cone $\{(x, y, z) \in \mathbb{R}^3 : xy + yz + xz = 0\}$, so it suffices to show each ν_h is on the boundary. Precisely, we show $\nu_h - \varepsilon \nu$ is not a positive measure $\forall \varepsilon > 0$. Suppose, for contradiction, that it gives a positive measure for some $\varepsilon > 0$. Then $\nu_h(C)/\nu(C) > \varepsilon$ for all C, contradicting $\inf_C \frac{d\nu_h}{d\nu} = 0$.

(日本)(日本)(日本)

Characterization of Positive Energy Measures

Corollary

Any positive energy measure $\nu_{f,g}$ is precisely a convex combination of two energy measures ν_h and $\nu_{h^{\perp}}$ for some harmonic h.

Proof. Cut the cone by the plane containing 0, ν and $\nu_{f,g}$. One of the two lines contains the required ν_h and the other contains the required $\nu_{h^{\perp}}$.

Limited Continuity

• Because for every cell C,

$$\sup_{C} \frac{d\nu_h}{d\nu} = \sup_{SG} \frac{d\nu_h}{d\nu}$$

and

$$\inf_{C} \frac{d\nu_h}{d\nu} = \inf_{SG} \frac{d\nu_h}{d\nu}$$

we see that the function $\frac{d\nu_h}{d\nu}$ is discontinuous, as shown below.

Limited Continuity

Theorem

Let $\nu_{f,g}$ be an energy measure. Given any cell C, the restriction of Radon-Nikodym derivative $\frac{d\nu_{f,g}}{d\nu}$ to the graph is continuous on the three edges of C.

Idea of proof: All we need to prove is the continuity on an edge at one corner point but the proof is technical.

• We write the average value of the derivative on a cell as a weighted average of the value on the boundary points of the cell

$$\operatorname{Avg}_{C}\frac{d\nu_{f,g}}{d\nu}=\sum b_{i}\frac{d\nu_{f,g}}{d\nu}(p_{i})$$

- We find *b_i* depending on the cell, i.e. depending on a finite word *w*.
- One set of b_i satisfies all $\nu_{f,g}$.

(1日) (日) (日)

• Existence and uniqueness: On F_wSG

$$\sum b_i^{(w)} \begin{pmatrix} \frac{d\nu_0}{d\nu}(p_i) \\ \frac{d\nu_1}{d\nu}(p_i) \\ \frac{d\nu_2}{d\nu}(p_i) \end{pmatrix} = \begin{pmatrix} \frac{\nu_0(C)}{\nu(C)} \\ \frac{\nu_1(C)}{\nu(C)} \\ \frac{\nu_2(C)}{\nu(C)} \end{pmatrix}$$

The set of vectors concerning F_wSG and the set of vectors concerning SG differ by an invertible matrix. b_i^(Ø) exist and unique on SG.

高 とう ヨン うまと

 The distance of b_j^(w) from 1/3 is proportional to how "skewed" the Kusuoka measure is on the cell F_wF_jSG relative to F_wSG. That is,

$$\frac{1}{5}\left(b_{j}^{(w)} - \frac{1}{3}\right) = \frac{1}{4}\left(\frac{\nu(F_{w}F_{j}SG)}{\nu(F_{w}SG)} - \frac{1}{3}\right)$$

• $\inf_{w} \{b_j^{(w)}\} = 0$, $\sup_{w} \{b_j^{(w)}\} = \frac{2}{3}$, so no boundary point is favored too heavily and no boundary point contributes negatively.

・ 同 ト ・ ヨ ト ・ ヨ ト

Average Values

If we define the rational maps

$$B_{0}(x, y, z) = \left(\frac{9x}{13x + y + z}, \frac{2x + 2y - z}{13x + y + z}, \frac{2x - y + 2z}{13x + y + z}\right)$$
$$B_{1}(x, y, z) = \left(\frac{2x + 2y - z}{x + 13y + z}, \frac{9y}{x + 13y + z}, \frac{-x + 2y + 2z}{x + 13y + z}\right)$$
$$B_{2}(x, y, z) = \left(\frac{2x - y + 2z}{x + y + 13z}, \frac{-x + 2y + 2z}{x + y + 13z}, \frac{9z}{x + y + 13z}\right)$$

then

・ロン ・回 と ・ ヨン ・ ヨン

æ

Average Values

• We have the sharp bound:

$$\sum \left(b_j^{(w)} - \frac{1}{3} \right)^2 < \frac{1}{6}$$

• Plot of level 9 of $b^{(w)} = (b_0^{(w)}, b_1^{(w)}, b_2^{(w)})$:

• 3 >

3 D

Thank You!

Ching Wei Ho Energy Measures of Harmonic Functions on the Sierpiński Gash

・ロト ・回ト ・ヨト ・ヨト

Э