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1. Introduction

M : a Riemaniann manifold

d(x,vy): the intrinsic distance (or the Carnot—
Carathéodory distance):

A(x,y) = sup {f<y> ()

f: Lipschitz on M,
IVl <1a.e.
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M : a Riemaniann manifold

d(x,vy): the intrinsic distance (or the Carnot—
Carathéodory distance):

A(x,y) = sup {f<y> ()

f: Lipschitz on M,
IVl <1a.e.

This is equal to the geodesic distance p(x, y):

, the length of continuous curves
o(x,y) := inf

connecting x and y
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Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli-Mosco, Sturm etc.)

(K, A): alocally compact, separable metric measure space

(€, F): a strong local regular Dirichlet form on L*(K; 1)



1. Introduction (cont'd)

Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli-Mosco, Sturm etc.)

(K, A): alocally compact, separable metric measure space

(€, F): a strong local regular Dirichlet form on L*(K; 1)

» (&£, F) is a closed, nonnegative-definite, symmetric
bilinear form on L?(K; A);

» (Markov property) Vf c F, f =0V fIN1EF
and £(f, f) < E(f, f);

» (strong locality) For f,g € JF with compact support,
if f is constant on a neighborhood of supp|g], then

E(f,8) =0



1. Introduction (cont'd)

Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli-Mosco, Sturm etc.)

(K, A): alocally compact, separable metric measure space

(€, F): a strong local regular Dirichlet form on L*(K; A)

Typical example:

(K, 1) = (RY, dx),

E(f,8) =5 [, (a5(x)Vf(x), Vg(x))pa dx
for f,g € F := H'(R?),

where (ai]-(x))fl,]-:1 is symmetric, uniformly positive and
bounded.
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Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli-Mosco, Sturm etc.)

(K, A): alocally compact, separable metric measure space
(€, F): a strong local regular Dirichlet form on L*(K; A)
1 (r): the energy measure of ferF
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Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli-Mosco, Sturm etc.)

(K, A): alocally compact, separable metric measure space
(€, F): a strong local regular Dirichlet form on L*(K; A)

1 (r): the energy measure of f € F

When f is bounded,

/Kq)dﬂm =2£(f, fo) — E(f*9) "€ F NCyp(K).

fE(f,8) = % /R (aij(x) V£(x), Vg(x))ga dx, then
uipy (dx) = (aij(x) Vf(x), V f(x) ) ga dx.
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1. Introduction (cont'd)

Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli-Mosco, Sturm etc.)

(K, A): alocally compact, separable metric measure space
(€, F): a strong local regular Dirichlet form on L?(K; A)
1 (r): the energy measure of f € F

d(x,y): the intrinsic distance

féflocmC(K)}

d(x,vy) ::sup{f(y)—f(x) and H(Fy <A

In this framework, various Gaussian estimates of the
transition density have been obtained.
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Questions:

Is d identified with the geodesic distance (=shortest path
metric)?

In particular, what if K is a fractal set, which does not
have a (usual) differential structure?



1. Introduction (cont'd)

Questions:

Is d identified with the geodesic distance (=shortest path
metric)?

In particular, what if K is a fractal set, which does not
have a (usual) differential structure?

But the straightforward formulation is not very useful as |
will explain...
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2. (Canonical Dirichlet forms on typical self-

similar fractals

Case of the 2-dim. standard Sierpinski gasket

%)
V,,: nth level graph approximation

e =(3) T 0@-rwy

3 x,YyeVy, x~y
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2. (Canonical Dirichlet forms on typical self-

similar fractals

Case of the 2-dim. standard Sierpinski gasket

%)
V,,: nth level graph approximation

e =(3) T 0@-rwy

3 x,YyeVy, x~y
T scaling factor



2. Canonical Dirichlet forms on typical self-similar fractals (cont'd) 8/17

EN(f,f) ./ PE(f, f) < +oo Vf € C(K).
F:={f € C(K) | £(f,f) < 4o}

Then, (&, F) is a strong local regular Dirichlet form on
L*(K;A). (A: the Hausdorff measure on K)




2. Canonical Dirichlet forms on typical self-similar fractals (cont'd)

EN(f,f) ./ PE(f, f) < +oo Vf € C(K).
F:={f € C(K) | £(f,f) < 4o}

Then, (&, F) is a strong local regular Dirichlet form on
L*(K;A). (A: the Hausdorff measure on K)

~~ { Xt }: “Brownian motion” on K
(invariant under scaling and isometric transformations)

Similar construction is valid for more general finitely
ramified fractals.
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In many examples, sy L A (self-similar measure).
Then,

d(xr y)

sup{f(y) — f(x) | f € F, pipy <A}

supf(y) — f(x) | f = const.}
= 0.




2. Canonical Dirichlet forms on typical self-similar fractals (cont'd)

In many examples, sy L A (self-similar measure).

Then,

d(x,y) = sup{f(y) — f(x)

= sup{f(y) — f(x)
= 0.

f = const. }

(This is closely connected with the fact that the heat
kernel density has a sub-Gaussian estimate.)



2. Canonical Dirichlet forms on typical self-similar fractals (cont'd)

In many examples, sy L A (self-similar measure).
Then,

d(x,y) =supif(y) —f(x) [ f€F, p) < A}

= sup{f(y) — f(x) | f = const.}
= 0.

(This is closely connected with the fact that the heat
kernel density has a sub-Gaussian estimate.)

By taking different measures as A, however, we have
nontrivial quantities...
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K: 2-dim. Sierpinski gasket 42

V= M) + M, (Kusuoka measure)

(h;: a harmonic function, £ (h;, h;) = §; ;)



2. Canonical Dirichlet forms on typical self-similar fractals (cont'd) R
K: 2-dim. Sierpinski gasket  4°& >

(€, F): the standard Dirichlet form on L*(K, v) with
V= M) + M, (Kusuoka measure)

(h;: a harmonic function, € (h;, hj) = 6; ;)

Theorem (Kigami 93, '08, Kajino '12)
» (Ki) h: K — h(K) C R?* is homeomorphic;
» (Ka) The intrinsic distance d coincides with the geodesic
distance pj, on h(K) by the identifying K and h(K);
» (Ki, Ka) The transition density p} (x,y) has a x

Gaussian estimate w.r.t. pp (= d);
» (Ki) The red line is the geodesic.
y
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3. General framework

(K, dk): a compact metric space

A: afinite Borel measure on K

(€, F): a strong local regular Dirichlet form on L*(K, 1)
NeNh=(hy,...,hy) € F¥NNC(K - RY)

N
VIS i = L o)
]:
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3. General framework

(K, dk): a compact metric space

A: afinite Borel measure on K

(€, F): a strong local regular Dirichlet form on L*(K, 1)
NeNh=(hy,...,hy) € F¥NNC(K - RY)

N
VIS i = L o)
]:

The intrinsic distance dj, (x, y) based on (£, F) and h is
defined as

(o) i=sup { £ — 1) |1 S ”C(K)}.

and #(s)y < #h)




3. General framework (cont'd)

The geodesic distance py(x,y) based on h is defined as

7 is a continuous curve}
4

on(x,y) = inf {lh('Y) connecting x and y

where the length I, () of v € C([0,1] — K) based on
h is defined as

n

I (7) o= sup{ Y h(y(5:)) — h(v(ti-1)) lgws

i=1
nEN,O=t0<t1<“°<tn=1}

( = the usual length of ho y € C([O, 1] — IRN)-)



3. General framework (cont'd)

The geodesic distance py(x,y) based on h is defined as

7 is a continuous curve}
4

on(x,y) = inf {lh('Y) connecting x and y

where the length I, () of v € C([0,1] — K) based on
h is defined as

n

I (7) o= sup{ Y h(y(5:)) — h(v(ti-1)) lgws

i=1
nEN,O=t0<t1<“°<tn=1}

( = the usual length of ho y € C([O, 1] — IRN)-)

Problem: The relation between dj, and py,?
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4. Results

Theorem 1 pp(x,v) < dy(x,y) if the following hold:

(A1) (Finitely ramified cell structure) There exists an

increasing sequence of finite subsets {V,, },._, of
K such that

(i) Upp—o Vi is dense in K;

(i) Foreach m, K \ V,, is decomposed as a finite
number of connected components {Uj }rca,,;

(i) limy, 0 maxycp,, diam Uy = 0.
(A2) F C C(K).

(A3) £(f, f) = 0if and only if f is a constant function.
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4. Results (cont'd)

Theorem 2 pp(x,y) > dp(x,y) if
» K: a 2-dimensional (generalized) Sierpinski gasket
that is also a nested fractal;

» (A:the normalized Hausdorff measure;)

» (£, F): the self-similar Dirichlet form
associated with the Brownian motion on K;

» h = (hy,...,h,;); each h; is a harmonic function;

» The harmonic structure associated with (€, F) is
nondegenerate. (That is, for any nonconstant
harmonic functions g, g is not constant on any
nonempty open sets.)



Theorem 2 pp(x,y) =dg(x,y) if
» K: a 2-dimensional (generalized) Sierpinski gasket
that is also a nested fractal;

» (A:the normalized Hausdorff measure;)

» (£, F): the self-similar Dirichlet form
associated with the Brownian motion on K;

» h = (hy,...,h,;); each h; is a harmonic function;

» The harmonic structure associated with (€, F) is
nondegenerate. (That is, for any nonconstant
harmonic functions g, g is not constant on any
nonempty open sets.)



4. Results (cont'd)

The nondegeneracy assumption holds for 2-dim. level [
S. G. with I < 50 (by the numerical computation).

(level I S. G. with I = 2,3,4,5,10)



4. Results (cont'd)

The nondegeneracy assumption holds for 2-dim. level [
S. G. with I < 50 (by the numerical computation).

(level I S. G. with I = 2,3,4,5,10)

Remark Theorem 2 is valid under more general
situations. Essential assumptions (for the current proof)
are:

» # the vertex set = 3;

» [he harmonic structure is near to symmetric.



4. Results (cont'd)

Some ingredients for the proof

» A version of Rademacher’s theorem
» An alternative of the fundamental theorem of calculus

» Proof of better nondegeneracy

16/17



4. Results (cont'd)

Remark The classical case:
K: closure of a bdd domain of RY with smooth boundary

E(f,8) =5 [ (VF, Ve)gnix, F=H'(K)
hi(x):=x; (i=1,...,N)



4. Results (cont'd)

Remark The classical case:
K: closure of a bdd domain of RY with smooth boundary

E(f,8) =5 [ (VF, Ve)gnix, F=H'(K)
h,-(x) — X (i = 1,...,N)

Then, py, is the usual geodesic distance on K, and

N
Hy (dx) = Y ' dx = N dx. Therefore, pj, = V/Nd,,.
i=1



4. Results (cont'd)

Remark The classical case:
K: closure of a bdd domain of RY with smooth boundary

E(f,8) =5 [ (VF, Ve)gnix, F=H'(K)
h,-(x) — X (i = 1,...,N)

Then, py, is the usual geodesic distance on K, and
N

iy (dx) = ) dx = N dx. Therefore, pj, = v/ Ndj.
i=1

1

P
the intrinsic distance in general.

(p(x): the pointwise index of (&€, F))

Probably,

1y (dx) is the correct measure to define



