Geodesic distances and intrinsic distances on some fractal sets

Masanori Hino (Kyoto Univ.)

International Conference on Advances on Fractals and Related Topics

Chinese University of Hong Kong, December 11, 2012

1. Introduction

M: a Riemaniann manifold

d(x,y): the intrinsic distance (or the Carnot–Carathéodory distance):

$$d(x,y) := \sup \left\{ f(y) - f(x) \,\middle|\, \begin{array}{l} f \text{: Lipschitz on } M, \\ |\nabla f| \leq 1 \text{ a.e.} \end{array} \right\}.$$

This is equal to the geodesic distance $\rho(x,y)$:

$$\rho(x,y) := \inf \left\{ \begin{aligned} &\text{the length of continuous curves} \\ &\text{connecting } x \text{ and } y \end{aligned} \right\}.$$

1. Introduction

M: a Riemaniann manifold

d(x,y): the intrinsic distance (or the Carnot–Carathéodory distance):

$$d(x,y) := \sup \left\{ f(y) - f(x) \,\middle|\, egin{aligned} f \colon \text{Lipschitz on } M, \\ |\nabla f| & \leq 1 \text{ a.e.} \end{aligned} \right\}.$$

This is equal to the geodesic distance $\rho(x,y)$:

$$\rho(x,y) := \inf \left\{ \begin{aligned} &\text{the length of continuous curves} \\ &\text{connecting } x \text{ and } y \end{aligned} \right\}.$$

(cf. Biloli-Mosco, Sturm etc.)

- (K, λ) : a locally compact, separable metric measure space
- $(\mathcal{E},\mathcal{F})$: a strong local regular Dirichlet form on $L^2(K;\lambda)$
 - \triangleright $(\mathcal{E}, \mathcal{F})$ is a closed, nonnegative-definite, symmetric bilinear form on $L^2(K; \lambda)$;
 - ► (Markov property) $\forall f \in \mathcal{F}, \hat{f} := (0 \lor f) \land 1 \in \mathcal{F}$ and $\mathcal{E}(\hat{f}, \hat{f}) \leq \mathcal{E}(f, f)$;
 - ▶ (strong locality) For $f,g \in \mathcal{F}$ with compact support, if f is constant on a neighborhood of supp[g], then $\mathcal{E}(f,g)=0$.

(cf. Biloli-Mosco, Sturm etc.)

- (K, λ) : a locally compact, separable metric measure space
- $(\mathcal{E},\mathcal{F})$: a strong local regular Dirichlet form on $L^2(K;\lambda)$
 - \triangleright $(\mathcal{E}, \mathcal{F})$ is a closed, nonnegative-definite, symmetric bilinear form on $L^2(K; \lambda)$;
 - ► (Markov property) $\forall f \in \mathcal{F}, \hat{f} := (0 \lor f) \land 1 \in \mathcal{F}$ and $\mathcal{E}(\hat{f}, \hat{f}) \leq \mathcal{E}(f, f)$;
 - ▶ (strong locality) For $f,g \in \mathcal{F}$ with compact support, if f is constant on a neighborhood of $\operatorname{supp}[g]$, then $\mathcal{E}(f,g)=0$.

(cf. Biloli-Mosco, Sturm etc.)

 (K, λ) : a locally compact, separable metric measure space

 $(\mathcal{E},\mathcal{F})$: a strong local regular Dirichlet form on $L^2(K;\lambda)$

Typical example:

$$(K,\lambda) = (\mathbb{R}^d, dx),$$
 $\mathcal{E}(f,g) = \frac{1}{2} \int_{\mathbb{R}^d} (a_{ij}(x) \nabla f(x), \nabla g(x))_{\mathbb{R}^d} dx$ for $f,g \in \mathcal{F} := H^1(\mathbb{R}^d),$

where $(a_{ij}(x))_{i,j=1}^d$ is symmetric, uniformly positive and bounded.

(cf. Biloli-Mosco, Sturm etc.)

 (K, λ) : a locally compact, separable metric measure space

 $(\mathcal{E},\mathcal{F})$: a strong local regular Dirichlet form on $L^2(K;\lambda)$

 $\mu_{\langle f \rangle}$: the energy measure of $f \in \mathcal{F}$

When f is bounded,

$$\int_{K} \varphi \, d\mu_{\langle f \rangle} = 2\mathcal{E}(f, f\varphi) - \mathcal{E}(f^{2}, \varphi)^{\forall} \varphi \in \mathcal{F} \cap C_{b}(K).$$

If
$$\mathcal{E}(f,g) = \frac{1}{2} \int_{\mathbb{R}^d} (a_{ij}(x) \nabla f(x), \nabla g(x))_{\mathbb{R}^d} dx$$
, then $\mu_{\langle f \rangle}(dx) = (a_{ij}(x) \nabla f(x), \nabla f(x))_{\mathbb{R}^d} dx$.

(cf. Biloli–Mosco, Sturm etc.)

 (K,λ) : a locally compact, separable metric measure space

 $(\mathcal{E},\mathcal{F})$: a strong local regular Dirichlet form on $L^2(K;\lambda)$

 $\mu_{\langle f \rangle}$: the energy measure of $f \in \mathcal{F}$

When *f* is bounded,

$$\int_{K} \varphi \, d\mu_{\langle f \rangle} = 2\mathcal{E}(f, f\varphi) - \mathcal{E}(f^{2}, \varphi) \quad \forall \varphi \in \mathcal{F} \cap C_{b}(K).$$

If
$$\mathcal{E}(f,g) = \frac{1}{2} \int_{\mathbb{R}^d} (a_{ij}(x) \nabla f(x), \nabla g(x))_{\mathbb{R}^d} dx$$
, then $\mu_{\langle f \rangle}(dx) = (a_{ij}(x) \nabla f(x), \nabla f(x))_{\mathbb{R}^d} dx$.

(cf. Biloli-Mosco, Sturm etc.)

 (K, λ) : a locally compact, separable metric measure space

 $(\mathcal{E},\mathcal{F})$: a strong local regular Dirichlet form on $L^2(K;\lambda)$

 $\mu_{\langle f \rangle}$: the energy measure of $f \in \mathcal{F}$

d(x, y): the intrinsic distance

$$d(x,y) := \sup \left\{ f(y) - f(x) \middle| \begin{array}{l} f \in \mathcal{F}_{loc} \cap C(K) \\ \text{and } \mu_{\langle f \rangle} \leq \lambda \end{array} \right\}.$$

In this framework, various Gaussian estimates of the transition density have been obtained.

(cf. Biloli-Mosco, Sturm etc.)

 (K, λ) : a locally compact, separable metric measure space

 $(\mathcal{E},\mathcal{F})$: a strong local regular Dirichlet form on $L^2(K;\lambda)$

 $\mu_{\langle f \rangle}$: the energy measure of $f \in \mathcal{F}$

d(x, y): the intrinsic distance

$$\mathbf{d}(x,y) := \sup \left\{ f(y) - f(x) \middle| \begin{array}{l} f \in \mathcal{F}_{\mathrm{loc}} \cap C(K) \\ \text{and } \mu_{\langle f \rangle} \leq \lambda \end{array} \right\}.$$

In this framework, various Gaussian estimates of the transition density have been obtained.

Questions:

Is d identified with the geodesic distance (=shortest path metric)?

In particular, what if K is a fractal set, which does not have a (usual) differential structure?

But the straightforward formulation is not very useful as I will explain...

Questions:

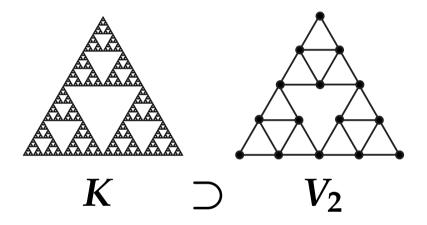
Is d identified with the geodesic distance (=shortest path metric)?

In particular, what if K is a fractal set, which does not have a (usual) differential structure?

But the straightforward formulation is not very useful as I will explain...

2. Canonical Dirichlet forms on typical self-similar fractals

Case of the 2-dim. standard Sierpinski gasket

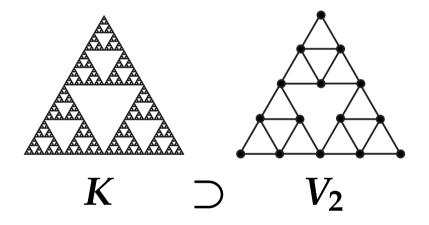


 V_n : nth level graph approximation

$$\mathcal{E}^{(n)}(f,f) = \left(\frac{5}{3}\right)^n \sum_{x,y \in V_n, \ x \sim y} (f(x) - f(y))^2$$

2. Canonical Dirichlet forms on typical self-similar fractals

Case of the 2-dim. standard Sierpinski gasket



 V_n : nth level graph approximation

$$\mathcal{E}^{(n)}(f,f) = \left(\frac{5}{3}\right)^n \sum_{\substack{x,y \in V_n, \ x \sim y \\ \text{scaling factor}}} (f(x) - f(y))^2$$

$$\mathcal{E}^{(n)}(f,f) \nearrow \exists \mathcal{E}(f,f) \leq +\infty \ \forall f \in C(K).$$

$$\mathcal{F} := \{ f \in C(K) \mid \mathcal{E}(f, f) < +\infty \}$$

Then, $(\mathcal{E}, \mathcal{F})$ is a strong local regular Dirichlet form on $L^2(K; \lambda)$. (λ) : the Hausdorff measure on K)

 $\longrightarrow \{X_t\}$: "Brownian motion" on K

(invariant under scaling and isometric transformations)

Similar construction is valid for more general finitely ramified fractals.

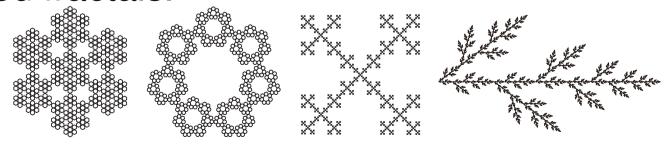
$$\mathcal{E}^{(n)}(f,f) \nearrow \exists \mathcal{E}(f,f) \leq +\infty \ \forall f \in C(K).$$

$$\mathcal{F} := \{ f \in C(K) \mid \mathcal{E}(f, f) < +\infty \}$$

Then, $(\mathcal{E}, \mathcal{F})$ is a strong local regular Dirichlet form on $L^2(K; \lambda)$. (λ) : the Hausdorff measure on K)

 $\leadsto \{X_t\}$: "Brownian motion" on K (invariant under scaling and isometric transformations)

Similar construction is valid for more general finitely ramified fractals.



In many examples, $\mu_{\langle f \rangle} \perp \lambda$ (self-similar measure). Then,

$$\begin{aligned} \mathbf{d}(x,y) &= \sup\{f(y) - f(x) \mid f \in \mathcal{F}, \, \mu_{\langle f \rangle} \leq \lambda\} \\ &= \sup\{f(y) - f(x) \mid f = \text{const.}\} \\ &= \mathbf{0}. \end{aligned}$$

(This is closely connected with the fact that the heat kernel density has a sub-Gaussian estimate.)

By taking different measures as λ , however, we have nontrivial quantities...

In many examples, $\mu_{\langle f \rangle} \perp \lambda$ (self-similar measure). Then,

$$\begin{aligned} \mathbf{d}(x,y) &= \sup\{f(y) - f(x) \mid f \in \mathcal{F}, \, \mu_{\langle f \rangle} \leq \lambda\} \\ &= \sup\{f(y) - f(x) \mid f = \text{const.}\} \\ &= 0. \end{aligned}$$

(This is closely connected with the fact that the heat kernel density has a sub-Gaussian estimate.)

By taking different measures as λ , however, we have nontrivial quantities...

In many examples, $\mu_{\langle f \rangle} \perp \lambda$ (self-similar measure). Then,

$$\begin{aligned} \mathbf{d}(x,y) &= \sup\{f(y) - f(x) \mid f \in \mathcal{F}, \, \mu_{\langle f \rangle} \leq \lambda\} \\ &= \sup\{f(y) - f(x) \mid f = \text{const.}\} \\ &= 0. \end{aligned}$$

(This is closely connected with the fact that the heat kernel density has a sub-Gaussian estimate.)

By taking different measures as λ , however, we have nontrivial quantities...

K: 2-dim. Sierpinski gasket

 $(\mathcal{E},\mathcal{F})$: the standard Dirichlet form on $L^2(K,\nu)$ with $\nu:=\mu_{\langle h_1\rangle}+\mu_{\langle h_2\rangle}$ (Kusuoka measure)

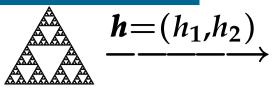
 $(h_i$: a harmonic function, $\mathcal{E}(h_i, h_j) = \delta_{i,j}$

Theorem (Kigami '93, '08, Kajino '12)

- \blacktriangleright (Ki) $h: K \to h(K) \subset \mathbb{R}^2$ is homeomorphic;
- ► (Ka) The intrinsic distance **d** coincides with the geodesic distance ρ_h on h(K) by the identifying K and h(K);
- (Ki, Ka) The transition density $p_t^v(x, y)$ has a Gaussian estimate w.r.t. $\rho_h(=d)$;
- (Ki) The red line is the geodesic.

2. Canonical Dirichlet forms on typical self-similar fractals (cont'd)

K: 2-dim. Sierpinski gasket



h(K)

 $(\mathcal{E},\mathcal{F})$: the standard Dirichlet form on $L^2(K,\nu)$ with

$$\nu := \mu_{\langle h_1 \rangle} + \mu_{\langle h_2 \rangle}$$
 (Kusuoka measure)

 (h_i) : a harmonic function, $\mathcal{E}(h_i, h_i) = \delta_{i,i}$

Theorem (Kigami '93, '08, Kajino '12)

- \blacktriangleright (Ki) $h: K \to h(K) \subset \mathbb{R}^2$ is homeomorphic;
- (Ka) The intrinsic distance d coincides with the geodesic distance ρ_h on h(K) by the identifying K and h(K);
- \blacktriangleright (Ki, Ka) The transition density $p_t^{\nu}(x,y)$ has a Gaussian estimate w.r.t. $\rho_h(=d)$;
- ► (Ki) The red line is the geodesic.

3. General framework

 (K, d_K) : a compact metric space

 λ : a finite Borel measure on K

 $(\mathcal{E},\mathcal{F})$: a strong local regular Dirichlet form on $L^2(K,\lambda)$

$$N \in \mathbb{N}, h = (h_1, \ldots, h_N) \in \mathcal{F}^N \cap C(K \to \mathbb{R}^N)$$

$$v := \mu_{\langle h \rangle} := \sum_{j=1}^{N} \mu_{\langle h_j \rangle}$$

The intrinsic distance $d_h(x,y)$ based on $(\mathcal{E},\mathcal{F})$ and h is defined as

$$d_h(x,y) := \sup \left\{ f(y) - f(x) \middle| \begin{array}{l} f \in \mathcal{F} \cap C(K) \\ \text{and } \mu_{\langle f \rangle} \leq \mu_{\langle h \rangle} \end{array} \right\}.$$

3. General framework

 (K, d_K) : a compact metric space

 λ : a finite Borel measure on K

 $(\mathcal{E},\mathcal{F})$: a strong local regular Dirichlet form on $L^2(K,\lambda)$

$$N \in \mathbb{N}, h = (h_1, \ldots, h_N) \in \mathcal{F}^N \cap C(K \to \mathbb{R}^N)$$

$$u := \mu_{\langle h \rangle} := \sum_{j=1}^{N} \mu_{\langle h_j \rangle}$$

The intrinsic distance $d_h(x, y)$ based on $(\mathcal{E}, \mathcal{F})$ and h is defined as

$$d_{\boldsymbol{h}}(x,y) := \sup \left\{ f(y) - f(x) \left| \begin{array}{c} f \in \mathcal{F} \cap C(K) \\ \text{and } \mu_{\langle f \rangle} \leq \mu_{\langle \boldsymbol{h} \rangle} \end{array} \right\}.$$

The geodesic distance $\rho_h(x, y)$ based on h is defined as

$$ho_{h}(x,y) = \inf \left\{ l_{h}(\gamma) \left| egin{array}{l} \gamma \text{ is a continuous curve} \\ \text{connecting } x \text{ and } y \end{array}
ight\},$$

where the length $l_{\pmb{h}}(\gamma)$ of $\gamma \in C([0,1] \to K)$ based on \pmb{h} is defined as

$$l_{h}(\gamma) := \sup \left\{ \sum_{i=1}^{n} |h(\gamma(t_{i})) - h(\gamma(t_{i-1}))|_{\mathbb{R}^{N}}; \\ n \in \mathbb{N}, \ 0 = t_{0} < t_{1} < \cdots < t_{n} = 1 \right\}$$

(= the usual length of $\boldsymbol{h} \circ \gamma \in C([0,1] \to \mathbb{R}^N)$.)

Problem: The relation between d_{h} and ho_{h} ?

The geodesic distance $\rho_h(x, y)$ based on h is defined as

$$ho_{h}(x,y) = \inf \left\{ l_{h}(\gamma) \left| egin{array}{l} \gamma \text{ is a continuous curve} \\ \text{connecting } x \text{ and } y \end{array}
ight\},$$

where the length $l_{\pmb{h}}(\gamma)$ of $\gamma \in C([0,1] \to K)$ based on \pmb{h} is defined as

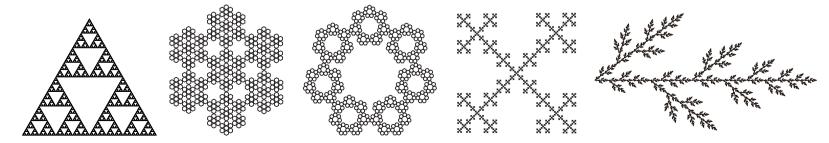
$$l_{h}(\gamma) := \sup \left\{ \sum_{i=1}^{n} |h(\gamma(t_{i})) - h(\gamma(t_{i-1}))|_{\mathbb{R}^{N}}; \\ n \in \mathbb{N}, \ 0 = t_{0} < t_{1} < \cdots < t_{n} = 1 \right\}$$

(= the usual length of $\boldsymbol{h} \circ \gamma \in C([0,1] \to \mathbb{R}^N)$.)

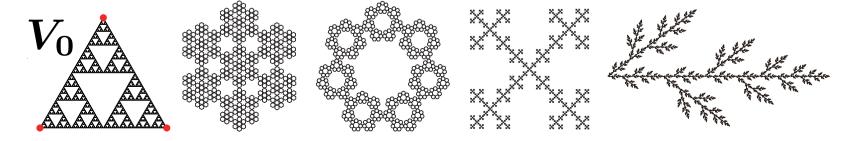
Problem: The relation between d_h and ρ_h ?

- (A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets $\{V_m\}_{m=0}^{\infty}$ of K such that
 - (i) $\bigcup_{m=0}^{\infty} V_m$ is dense in K;
 - (ii) For each $m, K \setminus V_m$ is decomposed as a finite number of connected components $\{U_{\lambda}\}_{\lambda \in \Lambda_m}$;
 - (iii) $\lim_{m\to\infty} \max_{\lambda\in\Lambda_m} \operatorname{diam} U_{\lambda} = 0$.
- (A2) $\mathcal{F} \subset C(K)$.
- (A3) $\mathcal{E}(f,f) = \mathbf{0}$ if and only if f is a constant function.

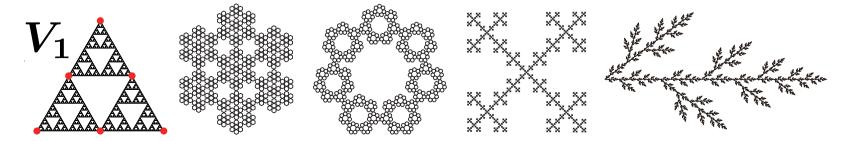
- (A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets $\{V_m\}_{m=0}^{\infty}$ of K such that
 - (i) $\bigcup_{m=0}^{\infty} V_m$ is dense in K;
 - (ii) For each $m, K \setminus V_m$ is decomposed as a finite number of connected components $\{U_{\lambda}\}_{\lambda \in \Lambda_m}$;
 - (iii) $\lim_{m\to\infty} \max_{\lambda\in\Lambda_m} \operatorname{diam} U_{\lambda} = 0$.



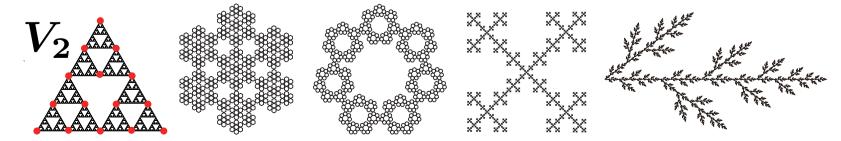
- (A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets $\{V_m\}_{m=0}^{\infty}$ of K such that
 - (i) $\bigcup_{m=0}^{\infty} V_m$ is dense in K;
 - (ii) For each $m, K \setminus V_m$ is decomposed as a finite number of connected components $\{U_{\lambda}\}_{\lambda \in \Lambda_m}$;
 - (iii) $\lim_{m\to\infty} \max_{\lambda\in\Lambda_m} \operatorname{diam} U_{\lambda} = 0$.



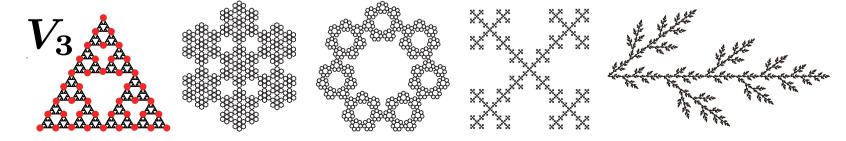
- (A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets $\{V_m\}_{m=0}^{\infty}$ of K such that
 - (i) $\bigcup_{m=0}^{\infty} V_m$ is dense in K;
 - (ii) For each $m, K \setminus V_m$ is decomposed as a finite number of connected components $\{U_{\lambda}\}_{\lambda \in \Lambda_m}$;
 - (iii) $\lim_{m\to\infty} \max_{\lambda\in\Lambda_m} \operatorname{diam} U_{\lambda} = 0$.



- (A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets $\{V_m\}_{m=0}^{\infty}$ of K such that
 - (i) $\bigcup_{m=0}^{\infty} V_m$ is dense in K;
 - (ii) For each $m, K \setminus V_m$ is decomposed as a finite number of connected components $\{U_{\lambda}\}_{\lambda \in \Lambda_m}$;
 - (iii) $\lim_{m\to\infty} \max_{\lambda\in\Lambda_m} \operatorname{diam} U_{\lambda} = 0$.



- (A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets $\{V_m\}_{m=0}^{\infty}$ of K such that
 - (i) $\bigcup_{m=0}^{\infty} V_m$ is dense in K;
 - (ii) For each $m, K \setminus V_m$ is decomposed as a finite number of connected components $\{U_{\lambda}\}_{\lambda \in \Lambda_m}$;
 - (iii) $\lim_{m\to\infty} \max_{\lambda\in\Lambda_m} \operatorname{diam} U_{\lambda} = 0$.



- (A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets $\{V_m\}_{m=0}^{\infty}$ of K such that
 - (i) $\bigcup_{m=0}^{\infty} V_m$ is dense in K;
 - (ii) For each $m, K \setminus V_m$ is decomposed as a finite number of connected components $\{U_{\lambda}\}_{\lambda \in \Lambda_m}$;
 - (iii) $\lim_{m\to\infty} \max_{\lambda\in\Lambda_m} \operatorname{diam} U_{\lambda} = 0$.
- (A2) $\mathcal{F} \subset C(K)$.
- (A3) $\mathcal{E}(f,f) = \mathbf{0}$ if and only if f is a constant function.

Theorem 2 $\rho_h(x,y) \ge d_h(x,y)$ if

- \blacktriangleright K: a 2-dimensional (generalized) Sierpinski gasket that is also a nested fractal;
- \blacktriangleright (λ : the normalized Hausdorff measure;)
- \triangleright (\mathcal{E} , \mathcal{F}): the self-similar Dirichlet form associated with the Brownian motion on K;
- ▶ $h = (h_1, ..., h_d)$; each h_i is a harmonic function;
- The harmonic structure associated with $(\mathcal{E}, \mathcal{F})$ is nondegenerate. (That is, for any nonconstant harmonic functions g, g is not constant on any nonempty open sets.)

Theorem 2 $\rho_h(x,y) = d_h(x,y)$ if

- \blacktriangleright K: a 2-dimensional (generalized) Sierpinski gasket that is also a nested fractal;
- \blacktriangleright (λ : the normalized Hausdorff measure;)
- \triangleright (\mathcal{E} , \mathcal{F}): the self-similar Dirichlet form associated with the Brownian motion on K;
- ▶ $h = (h_1, ..., h_d)$; each h_i is a harmonic function;
- The harmonic structure associated with $(\mathcal{E}, \mathcal{F})$ is nondegenerate. (That is, for any nonconstant harmonic functions g, g is not constant on any nonempty open sets.)

The nondegeneracy assumption holds for 2-dim. level l S. G. with $l \leq 50$ (by the numerical computation).

(level l S. G. with l = 2, 3, 4, 5, 10)

Remark Theorem 2 is valid under more general situations. Essential assumptions (for the current proof) are:

- \blacktriangleright # the vertex set = 3;
- ► The harmonic structure is near to symmetric.

The nondegeneracy assumption holds for 2-dim. level l S. G. with $l \leq 50$ (by the numerical computation).

(level l S. G. with l = 2, 3, 4, 5, 10)

Remark Theorem 2 is valid under more general situations. Essential assumptions (for the current proof) are:

- \blacktriangleright # the vertex set = 3;
- ► The harmonic structure is near to symmetric.

Some ingredients for the proof

- A version of Rademacher's theorem
- ► An alternative of the fundamental theorem of calculus
- Proof of better nondegeneracy

Remark The classical case:

K: closure of a bdd domain of \mathbb{R}^N with smooth boundary

$$\mathcal{E}(f,g) = \frac{1}{2} \int_{K} (\nabla f, \nabla g)_{\mathbb{R}^{N}} dx, \quad \mathcal{F} = H^{1}(K)$$
$$h_{i}(x) := x_{i} \ (i = 1, ..., N)$$

Then, ρ_h is the usual geodesic distance on K, and

$$\mu_{\langle h \rangle}(dx) = \sum_{i=1}^N dx = N \, dx$$
. Therefore, $\rho_h = \sqrt{N} \mathsf{d}_h$

Probably, $\frac{1}{p(x)}\mu_{\langle h\rangle}(dx)$ is the correct measure to define

the intrinsic distance in general.

(p(x)): the pointwise index of $(\mathcal{E}, \mathcal{F})$

Remark The classical case:

K: closure of a bdd domain of \mathbb{R}^N with smooth boundary

$$\mathcal{E}(f,g) = \frac{1}{2} \int_{K} (\nabla f, \nabla g)_{\mathbb{R}^{N}} dx, \quad \mathcal{F} = H^{1}(K)$$

$$h_{i}(x) := x_{i} \ (i = 1, ..., N)$$

Then, ρ_h is the usual geodesic distance on K, and

$$\mu_{\langle h \rangle}(dx) = \sum_{i=1}^N dx = N \, dx$$
. Therefore, $\rho_h = \sqrt{N} \mathsf{d}_h$.

Probably, $\frac{1}{p(x)}\mu_{\langle h\rangle}(dx)$ is the correct measure to define

the intrinsic distance in general.

(p(x)): the pointwise index of $(\mathcal{E}, \mathcal{F})$

Remark The classical case:

K: closure of a bdd domain of \mathbb{R}^N with smooth boundary

$$\mathcal{E}(f,g) = \frac{1}{2} \int_{K} (\nabla f, \nabla g)_{\mathbb{R}^{N}} dx, \quad \mathcal{F} = H^{1}(K)$$

$$h_{i}(x) := x_{i} \ (i = 1, ..., N)$$

Then, ρ_h is the usual geodesic distance on K, and

$$\mu_{\langle h \rangle}(dx) = \sum_{i=1}^N dx = N \, dx$$
. Therefore, $\rho_h = \sqrt{N} \mathsf{d}_h$.

Probably, $\frac{1}{p(x)}\mu_{\langle h\rangle}(dx)$ is the correct measure to define

the intrinsic distance in general.

(p(x)): the pointwise index of $(\mathcal{E}, \mathcal{F})$