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1. Introduction

M: a Riemaniann manifold

d(x, y): the intrinsic distance (or the Carnot–
Carathéodory distance):

d(x, y) := sup
{

f (y) − f (x)
f : Lipschitz on M,
|∇ f | ≤ 1 a.e.

}
.

This is equal to the geodesic distance ρ(x, y):

ρ(x, y) := inf
{

the length of continuous curves
connecting x and y

}
.
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Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli–Mosco, Sturm etc.)

(K, λ): a locally compact, separable metric measure space

(E , F): a strong local regular Dirichlet form on L2(K; λ)

I (E , F) is a closed, nonnegative-definite, symmetric
bilinear form on L2(K; λ);

I (Markov property) ∀ f ∈ F , f̂ := (0 ∨ f ) ∧ 1 ∈ F
and E( f̂ , f̂ ) ≤ E( f , f );

I (strong locality) For f , g ∈ F with compact support,
if f is constant on a neighborhood of supp[g], then
E( f , g) = 0.
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Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli–Mosco, Sturm etc.)

(K, λ): a locally compact, separable metric measure space

(E , F): a strong local regular Dirichlet form on L2(K; λ)

Typical example:

(K, λ) = (RRRd, dx),

E( f , g) =
1
2

∫∫∫∫
RRRd

(aij(x)∇ f (x), ∇g(x))RRRd dx

for f , g ∈ F := H1(RRRd),

where (aij(x))d
i,j=1 is symmetric, uniformly positive and

bounded.
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Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli–Mosco, Sturm etc.)

(K, λ): a locally compact, separable metric measure space

(E , F): a strong local regular Dirichlet form on L2(K; λ)

µ〈 f 〉: the energy measure of f ∈ F

When f is bounded,∫∫∫∫
K

ϕdµ〈 f 〉 = 2E( f , fϕ) − E( f 2,ϕ) ∀ϕ∈F ∩ Cb(K).

If E( f , g) =
1
2

∫∫∫∫
RRRd

(aij(x)∇ f (x), ∇g(x))RRRd dx, then

µ〈 f 〉(dx) = (aij(x)∇ f (x), ∇ f (x))RRRd dx.
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Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli–Mosco, Sturm etc.)

(K, λ): a locally compact, separable metric measure space

(E , F): a strong local regular Dirichlet form on L2(K; λ)

µ〈 f 〉: the energy measure of f ∈ F
d(x, y): the intrinsic distance

d(x, y) :=sup
{

f (y)− f (x)
f ∈ Floc ∩ C(K)
and µ〈 f 〉 ≤λ

}
.

In this framework, various Gaussian estimates of the
transition density have been obtained.
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Questions:

Is d identified with the geodesic distance (=shortest path
metric)?

In particular, what if K is a fractal set, which does not
have a (usual) differential structure?

But the straightforward formulation is not very useful as I
will explain...
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2. Canonical Dirichlet forms on typical self-
similar fractals

Case of the 2-dim. standard Sierpinski gasket

K ⊃ V2

Vn: nth level graph approximation

E(n)( f , f ) =
(

5
3

)n

∑∑∑
x,y∈Vn , x∼y

( f (x) − f (y))2
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Case of the 2-dim. standard Sierpinski gasket

K ⊃ V2

Vn: nth level graph approximation

E(n)( f , f ) =
(

5
3

)
�� � scaling factor

n
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2. Canonical Dirichlet forms on typical self-similar fractals（cont’d） 8/17

E(n)( f , f ) ↗ ∃E( f , f ) ≤ +∞ ∀ f ∈ C(K).

F := { f ∈ C(K) | E( f , f ) < +∞}
Then, (E , F) is a strong local regular Dirichlet form on
L2(K; λ). (λ: the Hausdorff measure on K)

   {Xt}: “Brownian motion” on K
(invariant under scaling and isometric transformations)

Similar construction is valid for more general finitely
ramified fractals.
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In many examples, µ〈 f 〉 ⊥ λ (self-similar measure).
Then,

d(x, y) = sup{ f (y) − f (x) | f ∈ F , µ〈 f 〉 ≤ λ}
= sup{ f (y) − f (x) | f = const.}
= 0.

(This is closely connected with the fact that the heat
kernel density has a sub-Gaussian estimate.)

By taking different measures as λ, however, we have
nontrivial quantities...
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K: 2-dim. Sierpinski gasket

(E , F): the standard Dirichlet form on L2(K, ν) with
ν := µ〈h1〉 + µ〈h2〉 (Kusuoka measure)

(hi: a harmonic function, E(hi, hj) = δi,j)

Theorem (Kigami ’93, ’08, Kajino ’12)
I (Ki) hhh : K → hhh(K) ⊂ RRR2 is homeomorphic;
I (Ka) The intrinsic distance d coincides with the geodesic

distance ρhhh on hhh(K) by the identifying K and hhh(K);
I (Ki, Ka) The transition density pν

t (x, y) has a
Gaussian estimate w. r. t. ρhhh(= d);

I (Ki) The red line is the geodesic.
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K: 2-dim. Sierpinski gasket
hhh=(h1,h2)−−−−→

hhh(K)

RRR2

(E , F): the standard Dirichlet form on L2(K, ν) with
ν := µ〈h1〉 + µ〈h2〉 (Kusuoka measure)

(hi: a harmonic function, E(hi, hj) = δi,j)

Theorem (Kigami ’93, ’08, Kajino ’12)
I (Ki) hhh : K → hhh(K) ⊂ RRR2 is homeomorphic;
I (Ka) The intrinsic distance d coincides with the geodesic

distance ρhhh on hhh(K) by the identifying K and hhh(K);
I (Ki, Ka) The transition density pν

t (x, y) has a
Gaussian estimate w. r. t. ρhhh(= d);

I (Ki) The red line is the geodesic.
y

x
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3. General framework

(K, dK): a compact metric space
λ: a finite Borel measure on K
(E , F): a strong local regular Dirichlet form on L2(K, λ)
N ∈ NNN, hhh = (h1, . . . , hN) ∈ F N ∩ C(K → RRRN)

ν := µ〈hhh〉 :=
N

∑∑∑
j=1

µ〈hj〉

The intrinsic distance dhhh(x, y) based on (E , F) and hhh is
defined as

dhhh(x, y) := sup
{

f (y) − f (x)
f ∈ F ∩ C(K)
and µ〈 f 〉 ≤ µ〈hhh〉

}
.
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The geodesic distance ρhhh(x, y) based on hhh is defined as

ρhhh(x, y) = inf
{

lhhh(γ)
γ is a continuous curve
connecting x and y

}
,

where the length lhhh(γ) of γ ∈ C([0, 1] → K) based on
hhh is defined as

lhhh(γ) := sup
{ n

∑∑∑
i=1

|hhh(γ(ti)) − hhh(γ(ti−1))|RRRN ;

n ∈ NNN, 0 = t0 < t1 < · · · < tn = 1
}

( = the usual length of hhh ◦ γ ∈ C([0, 1] → RRRN).)

Problem: The relation between dhhh and ρhhh?
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4. Results

Theorem 1 ρhhh(x, y) ≤ dhhh(x, y) if the following hold:

(A1) (Finitely ramified cell structure) There exists an
increasing sequence of finite subsets {Vm}∞

m=0 of
K such that

(i)
∪∞

m=0 Vm is dense in K;

(ii) For each m, K \ Vm is decomposed as a finite
number of connected components {Uλ}λ∈Λm ;

(iii) limm→∞ maxλ∈Λm diam Uλ = 0.
(A2) F ⊂ C(K).
(A3) E( f , f ) = 0 if and only if f is a constant function.
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Theorem 2 ρhhh(x, y) ≥ dhhh(x, y) if

I K: a 2-dimensional (generalized) Sierpinski gasket
that is also a nested fractal;

I (λ: the normalized Hausdorff measure;)

I (E , F): the self-similar Dirichlet form
associated with the Brownian motion on K;

I hhh = (h1, . . . , hd); each hi is a harmonic function;

I The harmonic structure associated with (E , F) is
nondegenerate. (That is, for any nonconstant
harmonic functions g, g is not constant on any
nonempty open sets.)
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The nondegeneracy assumption holds for 2-dim. level l
S. G. with l ≤ 50 (by the numerical computation).

(level l S. G. with l = 2, 3, 4, 5, 10)

Remark Theorem 2 is valid under more general
situations. Essential assumptions (for the current proof)
are:

I # the vertex set = 3;

I The harmonic structure is near to symmetric.
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Some ingredients for the proof

I A version of Rademacher’s theorem

I An alternative of the fundamental theorem of calculus

I Proof of better nondegeneracy
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Remark The classical case:
K: closure of a bdd domain of RRRN with smooth boundary

E( f , g) =
1
2

∫∫∫∫
K
(∇ f , ∇g)RRRN dx, F = H1(K)

hi(x) := xi (i = 1, . . . , N)

Then, ρhhh is the usual geodesic distance on K, and

µ〈hhh〉(dx) =
N

∑∑∑
i=1

dx = N dx. Therefore, ρhhh =
√

Ndhhh.

Probably,
1

p(x)
µ〈hhh〉(dx) is the correct measure to define

the intrinsic distance in general.
(p(x): the pointwise index of (E , F))
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