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Let μ be a Borel probability measure with compact support. We consider exponential
type orthonormal bases, Riesz bases and frames in L2(μ). We show that if L2(μ) admits
an exponential frame, then μ must be of pure type. We also classify various μ that
admits either kind of exponential bases, in particular, the discrete measures and their
connection with integer tiles. By using this and convolution, we construct a class of
singularly continuous measures that has an exponential Riesz basis but no exponential
orthonormal basis. It is the first of such kind of examples.
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1. Introduction

Throughout the paper we assume that μ is a (Borel) probability measure on Rd with compact support. We call a family
E(Λ) = {e2π iλx: λ ∈ Λ} (Λ is a countable set) a Fourier frame of the Hilbert space L2(μ) if there exist A, B > 0 such that

A‖ f ‖2 �
∑
λ∈Λ

∣∣〈 f , e2π iλx〉∣∣2 � B‖ f ‖2, ∀ f ∈ L2(μ). (1.1)

Here the inner product is defined as usual,〈
f , e2π iλx〉 = ∫

Rd

f (x)e−2π iλx dμ(x).

E(Λ) is called an (exponential) Riesz basis if it is both a basis and a frame of L2(μ). Fourier frames and exponential Riesz
bases are natural generalizations of exponential orthonormal bases in L2(μ). They have fundamental importance in non-
harmonic Fourier analysis and close connection with time-frequency analysis [2,8,9]. When (1.1) is satisfied, f ∈ L2(μ) can
be expressed as f (x) = ∑

λ∈Λ cλe2π iλx , and the expression is unique if it is a Riesz basis.
When E(Λ) is an orthonormal basis (Riesz basis, or frame) of L2(μ), we say that μ is a spectral measure (R-spectral

measure, or F-spectral measure respectively) and Λ is called a spectrum (R-spectrum, or F-spectrum respectively) of L2(μ). We
will also use the term orthonormal spectrum instead of spectrum when we need to emphasis the orthonormal property. If
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E(Λ) only satisfies the upper bound condition in (1.1), then it is called a Bessel set (or Bessel sequence); for convenience, we
also call Λ a Bessel set of L2(μ).

One of the interesting and basic questions in non-harmonic Fourier analysis is:

What kind of compactly supported probability measures in Rd belong to the above classes of measures?

When μ is the restriction of the Lebesgue measure on K with positive measure, the question whether it is a spectral
measure is related to the well known Fuglede problem of translational tiles (see [7,22,14,26] and the reference therein).
While it is easy to show that such μ is an F-measure, it is an open question whether it is an R-spectral measure. If K is
a unit interval, its F-spectrum was completely classified in terms of de Brange’s theory of entire functions [23]. In another
general situation, Lai [13] proved a sharp result that if μ is absolutely continuous with respect to the Lebesgue measure,
then it is an F-spectral measure if and only if its density function is essentially bounded above and below on the support.

The problem becomes more intriguing when μ is singular. The first example of such spectral measures was given by
Jorgensen and Pedersen [11]. They showed that the Cantor measures with even contraction ratio (ρ = 1/2k) is spectral, but
the one with odd contraction ratio (ρ = 1/(2k + 1)) is not. This raises the very interesting question on the existence of an
exponential Riesz basis or a Fourier frame for such measures, and more generally for the self-similar measures [15,16,6,25,
10]. In particular Dutkay et al. proposed to use the Beurling dimension as some general criteria for the existence of Fourier
frame [4]. They also attempted to find a self-similar measure which admits an exponential Riesz basis or a Fourier frame
but not an exponential orthonormal basis [5]. However, no such examples have been found up to now.

In this paper, we will carry out a detail study of the three classes of spectra mentioned. It is known that a spectral
measure must be either purely discrete or purely continuous [16]. Our first theorem is a pure type law for the F-spectral
measures.

Theorem 1.1. Let μ be an F-spectral measure on Rd. Then it must be one of the three pure types: discrete (and finite), singularly
continuous or absolutely continuous.

For the proof, the discrete case is based on the frame inequality, and the two continuous cases make use the concept of
lower Beurling density of the F-spectrum.

To complete the previous digression on the continuous measures, we have the following conclusions for finite discrete
measures.

Theorem 1.2. Let μ = ∑
c∈C pcδc be a discrete probability measure in Rd with C a finite set. Then μ is an R-spectral measure.

To determine such discrete μ to be a spectral measure, we will restrict our consideration on R1 and let C ⊂ Z+ with
0 ∈ C . Then the Fourier transform of μ is

μ̂(x) = p0 + p1e2π ic1 x + · · · + pk−1e2π ick−1x := mμ(x),

where P = {pi}k−1
i=0 is a set of probability weights. We call mμ(x) the mask polynomial of μ. Let Zμ = {x ∈ [0,1): mμ(x) = 0}

be the zero set of mμ(x), and Λ is called a bi-zero set if Λ − Λ ⊂ Zμ ∪ {0}. Denote the cardinality of E by #E . It is easy to
see the following simple proposition.

Proposition 1.3. Let μ = ∑
c∈C pcδc with C ∈ Z+ and 0 ∈ C . Then μ is a spectral measure if and only if there is a bi-zero set Λ of mμ

and #Λ = #C . In this case, all the pc are equal.

The determination of the bi-zero set is, however, non-trivial, as the zeros of a mask polynomial is rather hard to handle.
As an implementation of the proposition, we work out explicit expressions of the set C and the bi-zero set when #C = 3,4.
It is difficult to have such expression beyond 4 directly. On the other hand, there are systematic studies of the zeros of the
mask polynomials by factorizing the mask polynomial as cyclotomic polynomials (the minimal polynomial of the root of
unity). This has been used to study the integer tiles and their spectra (see [3,14,19]). We adopt this approach to a class of
self-similar measures (which is continuous) in our consideration:

Let n > 0 and let A⊂ Z+ be a finite set with 0 ∈A, we define a self-similar measure μ := μA,n by

μ(E) = 1

#A

∑
a∈A

μ(nE − a)

where E is a Borel subset in R. Note that the Lebesgue measure on [0,1] and the Cantor measures are such kind of
measures. The following theorem is a combination of the results in [24,14] and [15]:

Theorem 1.4. Let A⊂ Z+ be a finite set with 0 ∈A. Suppose there exists B ⊂ Z+ such that A⊕B = Nn where Nn = {0, . . . ,n − 1}.
Then δA = ∑

a∈A δa is a spectral measure with a spectrum in 1
nZ; the associated self-similar measure μA,n is also a spectral measure,

and it has a spectrum in Z if gcdA= 1.
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Note that the 1/4-Cantor measure μ{0,2},4 satisfies the above condition, but not the 1/3-Cantor measure. In fact, it is an
open problem whether the 1/3-Cantor measure is an F-spectral measure. To a lesser degree we want to know the existence
of a singularly continuous measure that admits an R-spectrum but is not a spectral measure. Our final goal is to search for
new R-spectral measures and to obtain such an example as corollary.

To this end, we let η be a discrete probability measure with support C ⊂ Z+ . Let ν be another probability measure on
R with support Ω ⊆ [0,1], and let μ = η ∗ ν be the convolution of η and ν . Our main result is

Theorem 1.5. Let μ = η ∗ν be as the above, and assume that ν is an R-spectral measure with a spectrum in Z. Then μ is an R-spectral
measure.

In addition, if Zν ⊆ Z. Then μ is a spectral measure if and only if both η and ν are spectral measures.

We can modify the theorem slightly with the spectrum Γ and Zν to be some subsets of rationals (Theorems 5.1, 5.3),
this covers some more interesting cases (e.g., the Cantor measures). Finally by taking η to be a non-uniform discrete measure
(Proposition 1.3) and ν = μA,n in Theorem 1.4, we conclude from Theorem 1.5 that

Example 1.6. There exists a singularly continuous measure which is an R-spectral measure, but not a spectral measure.

For the organization of the paper, we prove Theorem 1.1 in Section 2 and Theorem 1.2 in Section 3. We then deal with
the discrete spectral measures in Section 3; Proposition 1.3 is proved, and explicit expressions of C (with #C = 3,4) for μC
to be a spectral measure (Examples 3.3, 3.4) are sought. In Section 4, we make a further discussion of the discrete spectral
measures in connection with the class of integer tiles. In Section 5, we prove the two statements in Theorem 1.5 in two
theorems, and Example 1.6 follows as a corollary. An Appendix A is included for a number-theoretic proof of Theorem 1.4.

2. Law of pure types

Recall that a σ -finite Borel measure μ on Rd can be decomposed uniquely as discrete, singularly continuous and absolutely
continuous measures, i.e., μ = μd + μs + μa . The measure μ is said to be of pure type if μ equals only one of the three
components.

In our proof of the pure type property of the F-spectral measures, we need to use the lower Beurling density of an infinite
discrete set Λ ⊂ Rd:

D−Λ := lim inf
h→∞

inf
x∈Rd

#(Λ ∩ Q h(x))

hd
,

where Q h(x) is the standard cube of side length h centered at x. Intuitively Λ is distributed like a lattice if D−Λ is positive.
In the seminal paper [17], Landau gave an elegant and useful necessary condition for Λ to be an F-spectrum on L2(Ω):
D−Λ � L(Ω) where L is the Lebesgue measure. The following proposition provides some relationships between the lower
Beurling density and the types of the measures.

Proposition 2.1. Let μ be a compactly supported probability measure on Rd, and Λ is an F-spectrum of μ, we have

(i) If μ = ∑
c∈C pcδc is discrete, then #Λ < ∞ and #C < ∞;

(ii) If μ is singularly continuous, then D−Λ = 0;
(iii) If μ is absolutely continuous, then D−Λ > 0.

Proof. (i) By the definition of Fourier frame, we have for all f ∈ L2(μ),∑
λ∈Λ

∣∣∣∣∑
c∈C

f (c)e2π i〈λ,c〉pc

∣∣∣∣2

� B
∑
c∈C

∣∣ f (c)
∣∣2

pc .

Taking f = χc0 , where pc0 > 0, we have (#Λ) · p2
c0

� Bpc0 . Hence #Λ � B/pc0 < ∞. This implies #C < ∞ by the complete-
ness of Fourier frame.

(ii) Suppose on the contrary that D−Λ � c > 0. We claim that Zd is a Bessel set of L2(μ). By the definition of D−Λ, we
can choose a large h ∈ N such that

inf
x∈Rd

(
#
(
Λ ∩ Q h(x)

))
� chd > 1.

Taking x = hn, where n ∈ Zd , we see that all cubes of the form hn + [−h/2,h/2)d contains at least one points of Λ, say λn .
Since Λ is an F-spectrum, {λn}n∈Zd is a Bessel set. By the stability under perturbation (see e.g., [4, Proposition 2.3]) and

|λn − hn| � diam
([−h/2,h/2)d) = √

d h,
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we conclude that hZd is also a Bessel set of L2(μ). As a Bessel set is invariant under translation, we see that the finite
union Zd = ⋃

k∈{0,...,h−1}d (hZd + k) is again a Bessel set of L2(μ), which proves the claim.
Now consider

G(x) :=
∑

n∈Zd

∣∣μ̂(x + n)
∣∣2

.

G is a periodic function (mod Zd). As Zd is a Bessel set, applying the definition to e2π i〈x,·〉, we see that G(x) � B < ∞.
Hence G ∈ L1([0,1)d) and∫

Rd

∣∣μ̂(x)
∣∣2

dx =
∑

n∈Zd

∫
[0,1)d

∣∣μ̂(x + n)
∣∣2

dx =
∫

[0,1)d

∣∣G(x)
∣∣dx < ∞.

This means that μ̂ ∈ L2(Rd), which implies μ must be absolutely continuous. This is a contradiction.
(iii) If μ is absolutely continuous, then the density function must be bounded above and below almost everywhere on

the support of μ [13, Theorem 1.1]. Hence, Λ is an F-spectrum of L2(Ω), where Ω is the support of μ. By Landau’s density
theorem, D−Λ � L(Ω) > 0. �

Now it is easy to conclude that an F-spectral measure is of pure type.

Proof of Theorem 1.1. First let us assume that if μ is decomposed into non-trivial discrete and continuous parts, μ =
μd + μc . Let Λ be an F-spectrum of μ. As L2(μd) and L2(μs) are non-trivial subspaces of L2(μ), it is easy to see that Λ is
also an F-spectrum of both L2(μd) and L2(μc). Then #Λ < ∞ by Proposition 2.1(i); but #Λ = ∞ since L2(μc) is an infinite
dimensional Hilbert space. This contradiction shows that μ is either discrete or purely continuous.

Suppose μ is continuous and has non-trivial singular part μs and absolutely continuous part μa . By applying the same
argument as the above, Λ is an F-spectrum of L2(μs) and L2(μa). This is impossible in view of the Beurling density of Λ

in Proposition 2.1(ii) and (iii). �
The following corollary is immediate from Theorem 1.1.

Corollary 2.2. A spectral measure or an R-spectral measure must be of pure type.

3. Discrete measures

In this section, we will show that all discrete measures on Rd are R-spectral measures. By Proposition 2.1(i), we only
need to consider measures with finite number of atoms. Let C = {c0, . . . , cn−1} ⊂ Rd be a finite set and let

μ =
∑
c∈C

pcδc, with pi > 0,
∑
c∈C

pc = 1. (3.1)

For λ ∈Rd , we denote the vector [e2π i〈λ, c0〉, . . . , e2π i〈λ, cn−1〉]t by vλ .

Proposition 3.1. Let C = {c0, . . . , cn−1} ⊂ Rd and let μ be as in (3.1). Let Λ = {λ0, . . . , λm−1} ⊂Rd be another finite set. Then

(i) Λ is an F-spectrum of μ if and only if span{vλ0 , . . . ,vλm−1 } = Cn.
(ii) Λ is an R-spectrum of μ if and only if m = n in the above identity.

Proof. (i) Suppose first Λ is an F-spectrum of μ. Let u = [u0, . . . , un−1]t be such that 〈u,vλi 〉 = 0 for all i. Consider f as a
function defined on C with f (ci) = ui/pci . By using the lower bound of the Fourier frame, we have

A
∑
c∈C

∣∣ f (c)
∣∣2

pc �
∑
λ∈Λ

∣∣∣∣∑
c∈C

f (c)e2π i〈λ,c〉pc

∣∣∣∣2

=
∑
λ∈Λ

∣∣〈u,vλ〉
∣∣2 = 0.

It follows that f (c) = 0 for all c ∈ C , hence u = 0 and the necessity in (i) follows.
Conversely, the assumption implies that the vectors vλ0 , . . . ,vλm−1 form a frame on Cn (see [2, Corollary 1.1.3]), i.e., there

exist A, B > 0 such that for all u = [u0, . . . , un−1]t ∈ Cn

A
n−1∑

|ui|2 �
∑∣∣〈u,vλ〉

∣∣2 � B
n−1∑

|ui|2.

i=0 λ∈Λ i=0
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For any f ∈ L2(μ), we take u = [ f (c0)pc0 , . . . , f (cn−1)pcn−1 ]t , we see that Λ is a frame with lower bound (mini pi)A and
upper bound (maxi pi)B .

(ii) is clear from (i). �
Proof of Theorem 1.2. Let C = {c0, . . . , cn−1}. We first establish the theorem for C ⊂ R1. Let W = span{vλ: λ ∈R1}, it suffices
to show that W = Cn . Then we can select {λ0, . . . , λn−1} ⊂ R1 so that {vλ0 , . . . ,vλn−1 } a basis of Cn . The theorem for R1

will follow from Proposition 3.1(ii).
To see W = Cn , it suffices to show that if 〈u,vλ〉 = 0 for all λ ∈R, then u = 0. To this end, we write u = [u0, . . . , un−1]t ,

and the given condition is

n−1∑
i=0

uie
2π iλci = 0.

We differentiate the expression with respect to λ for k times with k = 1, . . . ,n − 1, then

n−1∑
i=0

uic
k
i e2π iλci = 0.

This means⎡⎢⎢⎢⎣
1 1 · · · 1
c0 c1 · · · cn−1
...

...
...

...

cn−1
0 cn−1

1 · · · cn−1
n−1

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
u0e2π iλc0

u1e2π iλc1

...

un−1e2π iλcn−1

⎤⎥⎥⎥⎦ = 0.

As all ci are distinct, the Vandermonde matrix is invertible. Hence,[
u0e2π iλc0 , u1e2π iλc1 , . . . , un−1e2π iλcn−1

]t = 0,

and thus u = 0. This completes the proof of the theorem for R1.
On Rd , we note that by Proposition 3.1, {c0, . . . , cn−1} admits an R-spectrum {λ0, . . . , λn−1} if and only if {Q c0, . . . , Q cn−1}

admits an R-spectrum {Q λ0, . . . , Q λn−1}, where Q is any orthogonal transformation on Rd . Now given any {c0, . . . , cn−1}
on Rd , we let 
i j be the line passes through two points ci , c j , and choose a line 
 such that 
 is not perpendicular to any 
i j .
Apply an orthogonal transformation Q so that the first axis coincides with the direction of 
. In this way the construction
shows that the first coordinates of Q c0, . . . , Q cn−1 are all distinct.

We then apply the same argument as in R1 above, using partial differentiation with respect to the first coordinates
which are all distinct, the Vandermonde matrix is invertible, hence the theorem follows. �
Remark 1. If c0, . . . , cn−1 have rational coordinates, then we can choose elements Λ to have rational coordinates also. To
see this, by multiplying an integer, we can assume that {c0, . . . , cn−1} are in Zd , we consider the determinant function

ϕ(λ) = ϕ(λ0, . . . , λn−1) = det

⎡⎢⎣ e2π i〈λ0,c0〉 · · · e2π i〈λ1,cn−1〉
. . .

e2π i〈λn−1,c0〉 · · · e2π i〈λn−1,cn−1〉

⎤⎥⎦
with λ = (λ0, . . . , λn−1) on Rdn . Then ϕ(λ) is a trigonometric polynomial on Rdn , whose zero set is a closed set of Lebesgue
measure zero. We can choose λ so that ϕ(λ) �= 0 and λ is rational, and Proposition 3.1(ii) shows that Λ = {λ0, . . . , λn−1} is
an R-spectrum will rational coordinates.

Remark 2. The R-spectrum shown in Theorem 1.2 is not explicit. It is also not easy to see whether a given set Λ is an
R-spectrum since the invertibility of the matrix is not easy to establish in general. A probabilistic approach of finding such
Λ in the case of trigonometric polynomials was given in [1]. The work gave a theoretical background on the theory of
reconstruction of multivariate trigonometric polynomials via random sampling sets.

To carry out Theorem 1.2 further, we consider the condition that a discrete measure to be an orthogonal spectral mea-
sure. We will restrict our consideration on the one-dimensional case, and by translation, we can assume, without loss of
generality, that C ⊂ Z+ and 0 ∈ C . The mask polynomial of μ = ∑

c∈C pcδc is

mC,P (x) = μ̂(x) =
∑
c∈C

pce2π icx.

In case P is a set of equal probability, then we just use the notation mC(x). We call a set Λ a bi-zero set of mC,P if 0 ∈ Λ

and mC,P (λi − λ j) = 0 for distinct λi, λ j ∈ Λ. It is clear that such E(Λ) is an orthogonal set in L2(μ).
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Proposition 3.2. Let C ⊂ Z be a finite set, and let μ = ∑
c∈C pcδc . Then μ is a spectral measure if and only if there is a bi-zero set Λ

of mC,P and #C = #Λ. In this case, all the pc ’s are equal.

Proof. Note that μ is a spectral measure if and only if there exists a set Λ = {λ1, . . . , λn} with n = #C such that μ̂(λi −λ j) =
0 for all i �= j. Since μ̂(x) = mC,P (x), this is equivalent to Λ is a bi-zero set of mC,P and #C = #Λ.

To see that all the pc are equal, we put f = χc into the Parseval’s identity.∑
λ∈Λ

∣∣〈 f , e2π i〈λ,x〉〉∣∣2 = ‖ f ‖2.

We obtain
∑

λ∈Λ p2
c = pc . Hence, pc = 1/#Λ = 1/#C . �

In the following we use Proposition 3.2 to obtain explicit expressions of C with #C � 4 that are discrete spectral mea-
sures. It is trivial to check that when #C = 1,2, the associated μ is always a spectral measure.

Example 3.3. Let C = {c0 = 0, c1, c2} ⊂ Z+ with gcd(C) = 1. Then μ = ∑
c∈C δc is a spectral measure if and only if c2 ≡

2c1 (mod 3) (i.e., C is a complete residue (mod 3)).

Proof. For the sufficiency, we write c1 = 3k + i, i = 1,2 and k ∈N. Then c2 = 3l + 2i and

{0, c1, c2} = {0,1,2} (mod 3).

It is direct to check that Λ = {0, 1
3 , 2

3 } is a bi-zero set of mC(x) with #Λ = #C and hence μ is a spectral measure.
For the necessity, we let Λ = {0, λ1, λ2} be such that mC(b1) = mC(b2) = mC(b2 −b1) = 0. Note that mC(x) = 1+e2π ic1x +

e2π ic2x . Then mC(x) has roots in (0,1) if and only if e2π ic1x = e2π i/3, e2π ic2 = e4π i/3 (or the other way round). Hence there
exists k, l ∈ Z+ such that

2πc1x = 2kπ + 2

3
π, 2πc2x = 2lπ + 4

3
π.

It follows that x = 3k+1
3c1

= 3l+2
3c2

. Since gcd(c1, c2) = 1, we have 3k + 1 = c1m and 3l + 2 = c2m. Hence 3 �m, and 3 | (c2 − 2c1).
This implies the sufficiency. �
Example 3.4. Let C = {c0 = 0, c1, c2, c3} ⊂ Z+ with gcd(C) = 1. Then μ is a spectral measure if and only if after rearrange-
ment, c1 is even, c2, c3 are odd, and c1 = 2α(2k + 1), c2 − c3 = 2α(2
 + 1) for some α > 0.

Proof. We first prove the necessity. The mask polynomial of μ is mC(x) = 1 + e2π ic1x + e2π ic2x + e2π ic3x . That mC(x) = 0
implies∣∣1 + e2π ic1x

∣∣ = ∣∣1 + e2π i(c3−c2)x
∣∣, (3.2)

which yields (i) e2π ic1x = e2π i(c3−c2)x or (ii) e2π ic1x = e−2π i(c3−c2)x . Putting (i) into mC(x) = 0, we have (1 + e2π ic1x)(1 +
e2π ic2x) = 0. Hence we have two sets of equations:

2c1x = 2k + 1; 2(c3 − c2)x = 2l + 1. (3.3)

or

2c2x = 2k + 1; 2(c3 − c1)x = 2l + 1. (3.4)

From (3.3), we have x = 2k+1
2c1

= 2l+1
2(c3−c2)

. Let a = gcd(c1, c2 − c3). It is easy to show that there exists m such that

2k + 1 = c1m

a
, 2l + 1 = (c3 − c2)m

a
. (3.5)

Hence m, c1/a, (c3 − c2)/a must be odd. Also note that gcd(c1, c2, c3) = 1, it follows from a direct check of the above that
two of the c1, c2, c3 must be odd, and one must be even (all three cases can happen).

The same argument applies to (3.4) and to (ii). The last statement also follows in the proof.
To prove the sufficiency, we first observe from the above that for c1 even, c2, c3 odd, there are solutions x1, x2 ∈ (0,1)

from (i) (see (3.3)–(3.5)):

x1 = 2i + 1
, 0 � i < a; x2 = 2 j + 1

, 0 � j < b,

2a 2b
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where gcd(c1, c2 − c3) as above, and b = gcd(c2, c3 − c1). Since b is odd, we can take 2 j + 1 = b, so that x2 = 1
2 is a solution

of mC(x) = 0. Let

λ1 = 1

2
, λ2 = 1

2a
, λ3 = 2α gcd(r, s) + 1

2a
,

where c1 = 2αr, c2 = 2αs and r, s are odd integers as in the assumption. We claim that Λ = {0, λ1, λ2, λ3} is a bi-zero set
of mC(x). Indeed, since a = 2α gcd(r, s), λ1 − λ2 = (a − 1)/2a is of the form x1 for i = 2α−1 gcd(r, s) − 1, λ3 − λ1 = λ2 and
λ3 − λ2 = λ1, the claim follows. �

For #C large, it is difficult to evaluate the zero set of the mask polynomial. However there is a number-theoretical
approach to study such zeros related to the spectrum and integer tiling, this is to be discussed in the next section and in
Appendix A.

4. A connection with integer tiles

In this section we will give a brief discussion of the relationship between discrete spectral measures and integer tiles,
and provide the tools we need in the next section. Let A ⊂ Z+ and assume that 0 ∈ A, we say that A is an integer tile if
there exists T such that A⊕ T = Z, i.e., A+ [0,1] tiles R. Equivalently, A is a tile if there exists B and n such that

A⊕ B ≡ Zn (mod n). (4.1)

Recall that the Fuglede conjecture asserts that for Ω ⊂ Rd with positive measure, Ω is a translational tile if and only if
the restriction of the Lebesgue measure L|Ω is a spectral measure. Although the conjecture is proved to be false in either
direction [26,12], it remains unanswered for dimension 1 and 2, and for some special classes of tiles in any dimension.

Let A be a finite subset in Z, then the Fuglede conjecture reduces to A is an integer tile if and only if A+ [0,1] is a spectral
set, i.e., L|A+[0,1] is a spectral measure. It is also known that the latter part is also equivalent δA = ∑

a∈A δa is a discrete
spectral measure [22]. This also follows from Theorem 5.3 in Section 5. In Example 3.3, the spectral condition for #C = 3
is equivalent to C is a complete residue (mod 3), which trivially satisfies (4.1). Hence the conjecture is true for #C = 3. In
Example 3.4, the spectral condition is equivalent to

C = {
0, 2α(2k + 1), 2r + 1, 2r + 1 + 2α(2
 + 1)

}
for some non-negative integers k, r, 
. If we let B = {0,2} ⊕ · · · ⊕ {0,2α−1}, then it is direct to check that C ⊕ B ≡ Z2α+1

(mod 2α+1). Hence by (4.1), the conjecture is true for #C = 4. Actually, by using some deeper number-theoretic argument
(see Appendix A), it can be shown that if #C = pαqβ where p,q are distinct primes, then C is an integer tile implies it is a
spectral set [3,14].

The following is a useful sufficient condition of a discrete spectral measure. The condition trivially imply the underlying
set is an integer tile.

Theorem 4.1. Let A⊂ Z+ be a finite set with 0 ∈A. Suppose there exists B ⊂ Z+ such that

A⊕ B = Nn

where Nn = {0, . . . ,n − 1}. Then the discrete measure δA = ∑
a∈A δa (with equal weight) is a spectral measure with a spectrum

contained in 1
nZ.

The theorem was due to [24] (and also in [6]), and the proof involves an inductive construction of the spectrum. The
spectrum is implicit and the proof is long. We will provide an alternative proof using the properties of the root of unity as
the zeros of the mask polynomial. The framework is from [3] and the spectrum is explicitly given in [14]. Because of the
number-theoretical notations and techniques, we will leave the details in Appendix A.

Finally, we state a related theorem of the self-similar measures which follows from the known results, and will be needed
in the next section.

Theorem 4.2. Let A ⊂ Z+ be a finite set with 0 ∈ A. Suppose there exists B ⊂ Z+ such that A ⊕ B = Nn. Let μ be the self-similar
measure satisfying

μ(·) = 1

#A

∑
a∈A

μ(n · −a).

Then μ is a spectral measure. Moreover, if gcd(A) = 1, then the spectrum Λ of μ can be chosen to be in Z.



JID:YACHA AID:862 /FLA [m3G; v 1.64; Prn:18/05/2012; 7:56] P.8 (1-12)

8 X.-G. He et al. / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••
Proof. Denote the spectrum of δA in Theorem 4.1 by S with S ⊂ 1
nZ, then (A,S) form a compatible pair as in [15], i.e.,

1√
#A

[
e2π ias]

a∈A,s∈S

is a unitary matrix. The theorem follows from [15, Theorem 1.2]. For the last part, since we can change the residue repre-
sentatives of Γ with S = 1

n Γ and Γ ⊂ {−(n − 2), . . . ,n − 2}. With gcd(A) = 1, Theorem 1.2 in [15] states that

Λ = Γ ⊕ nΓ ⊕ n2Γ ⊕ · · ·
is a spectrum. This spectrum clearly lies in Z. �
Remark. For the 1/4-Cantor measure, μ(·) = 1

2 μ(4·) + 1
2 μ(4 · −2). It is easy to compute the Fourier transform is μ̂(ξ) =

e2π i 1
3 ξ

∏∞
j=1 cos(2πξ/4 j) and the zero set of μ̂ is Zμ = {4 ja: a is odd and j � 0}. Note that A = {0,2} and the condition

of the theorem is satisfied, the spectrum of μ can be taken as [11]

Λ = {0,1} ⊕ 4{0,1} ⊕ 42{0,1} ⊕ · · · ⊂ Zμ.

However the condition A ⊕ B = Nn in Theorem 4.2 is quite restrictive. For the 1/6-Cantor measure, μ(·) = 1
2 μ(6·) +

1
2 μ(6 · −2), according to [11], it is again a spectral measure and the spectrum is

Λ = 3

2

({0,1} ⊕ 6{0,1} ⊕ 62{0,1} ⊕ · · ·).
But for A = {0,2} in this case, we cannot find B so that A⊕ B = N6. Also, μ does not admit spectrum Λ′ ⊂ Z. The proof
is as follows: If so, observe that

Λ′ ⊂ Zμ = {
6 ja/4: a is odd and j � 1

}
.

As λ is an integer, we see that for λ ∈ Λ′ , λ = 6na/4, and n � 2 necessarily. Let x = 3/2, then x ∈ Zμ \ Λ′ and x − λ =
6(1 − 6n−1a)/4 ∈Zμ . This means

∑
λ∈Λ |μ̂(x − λ)|2 = 0, which shows that Λ′ cannot be a spectrum by Proposition 5.2.

5. Convolutions

Let ν be a probability measure with compact support Ω ⊂ [0,1] and let η be a discrete probability measure with support
on C ⊂ Z+ and probability weight P , i.e. η = δC,P = ∑

c∈C pcδc . Then μ = η ∗ ν has support on C +Ω . Given a non-negative
integer q, we let ηq = δqC,P .

Theorem 5.1. Let ν be an R-spectral measure with a spectrum Γ and assume that there exists an integer q � 1 such that qΓ ⊆ Z.
Then μ := ηq ∗ ν is an R-spectral measure.

Proof. We write A = qC = {0 = a0,a1, . . . ,ak−1}. By Theorem 1.2, there exists an R-spectrum of A which we denote it as
S = {0 = s0, s1, . . . , sk−1}. By Proposition 3.1(ii), we see that

det
[
e2π ias]

a∈A, s∈S �= 0.

We will show that S ⊕ Γ is an R-spectrum of μ.
Since Ω = supp(ν) ⊂ [0,1], for any f ∈ L2(μ), f is uniquely determined by the vector-valued function [ f (x + a0),

. . . , f (x + ak−1)]t on Ω . Let M = [e2π ias]a∈A,s∈S , it is invertible. We define[
g0(x), . . . , gk−1(x)

]t = M−1[ f (x + a0), . . . , f (x + ak−1)
]t

, x ∈ Ω.

Clearly g j ∈ L2(ν) for 0 � j � k − 1. It is easy to see s j +Γ is also an R-spectrum of ν , so that g j can be uniquely expressed
as

g j(x) =
∑
γ ∈Γ

cs j+γ e2π i(s j+γ )x.

Hence, we have

M
[

g0(x), . . . , gk−1(x)
]t =

[
k−1∑

e2π ia0s j g j(x), . . . ,
k−1∑

e2π iak−1s j g j(x)

]t

,

j=0 j=0
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and therefore

f (x + ai) =
k−1∑
j=0

e2π iai s j
∑
γ ∈Γ

cs j+γ e2π i(s j+γ )x =
k−1∑
j=0

∑
γ ∈Γ

cs j+γ e2π i(s j+γ )(x+ai). (5.1)

Note that the last equality follows from γ ai = (qγ )c j is an integer by the assumption qΓ ⊂ Z. By a change of variable with
y = x + ai for each i, we have

f (y) =
k−1∑
j=0

∑
γ ∈Γ

cs j+γ e2π i(s j+γ )y, y ∈ C + Ω = supp(μ).

It is easy to see that the above representation is unique, this means E(S + Γ ) is both a basis and a frame of L2(μ). Hence
E(S + Γ ) is a Riesz basis. �

We now recall a general criterion of spectral measures due to Jorgensen and Pedersen [11].

Proposition 5.2. Let μ be a probability measure on Rd with compact support. Then Λ is an orthogonal spectrum of μ if and only if

Q (x) =
∑
λ∈Λ

∣∣μ̂(x + λ)
∣∣2 ≡ 1, x ∈R.

In particular, if μ = ∑
c∈C pcδc is a discrete spectral measure with spectrum Λ, then pc = 1/#C by Proposition 3.2 and∑

λ∈Λ

∣∣mC,P (x + λ)
∣∣2 ≡ 1.

To determine whether μ in Theorem 5.1 is a spectral measure, we have the following simple characterization.

Theorem 5.3. Let ν be an R-spectral measure and suppose qZν ⊂ Z. Then μ = ηq ∗ ν is a spectral measure if and only if both η and
ν are spectral measures.

Proof. It is clear that η is a spectral measure if and only if ηq is also a spectral measure. We first prove the sufficiency. Let
A= qC , and let S = {0, s1, . . . , sk−1} be a bi-zero set of mA,P (note that P is a set of equal weights by Proposition 3.2). Let
Γ be a spectrum of ν , then qΓ ⊆ Z by the hypothesis that qZν ⊂ Z. The Fourier transform of μ satisfies

μ̂(ξ) = mA,P (ξ)ν̂(ξ).

By the spectral property of S and Γ ,∑
0� j�k−1

∑
γ ∈Γ

∣∣μ̂(x + s j + γ )
∣∣2 =

∑
0� j�k−1

∑
γ ∈Γ

∣∣mA,P (x + s j + γ )
∣∣2∣∣ν̂(x + s j + γ )

∣∣2

=
∑

0� j�k−1

∑
γ ∈Γ

∣∣mA,P (x + s j)
∣∣2∣∣ν̂(x + s j + γ )

∣∣2

=
∑

0� j�k−1

∣∣mA,P (x + s j)
∣∣2 = 1.

Hence S ⊕ Γ is an orthogonal spectrum of μ by Proposition 5.2.
Conversely, suppose that Λ is a spectrum of μ and without loss of generality assume 0 ∈ Λ. Denote x = {x} + [x] where

[x] is the maximum integer which is less than or equal to x. We claim that S = {q−1{qλ}: λ ∈ Λ} is a bi-zero set of mA,P .
Indeed, by writing λ = q−1{qλ} + q−1[qλ], we have

0 = μ̂(λ) = mA,P
(
q−1{qλ} + q−1[qλ])ν̂(λ) = mA,P

(
q−1{qλ})ν̂(λ) (5.2)

for each λ ∈ Λ. Note that ν̂(λ) = 0 implies qλ ∈ Z (by the assumption qZν ⊂ Z), so that {qλ} = 0, (5.2) implies that
either q−1{qλ} = 0 or it is a root of mA,P . For any given distinct q−1{qλ1}, q−1{qλ2} ∈ S and {qλ1} > {qλ2}, we have
q−1{q(λ1 − λ2)} = q−1({qλ1} − {qλ2}) is a root of mA,P . This proves the claim.

Let us write Λ = ⋃k−1
j=0(s j + Λ j), s j ∈ S , where Λ j = {q−1[qλ]: q−1{qλ} = s j}. Since Λ is a spectrum of μ, we must have

for all λ1, λ2 ∈ Λ j ,

0 = μ̂(λ1 − λ2) = mA,P (λ1 − λ2)ν(λ1 − λ2).
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But a(q−1[qλ]) ∈ Z for all a ∈ A = qC , this shows mA, P (λ1 − λ2) �= 0 and hence ν(λ1 − λ2) = 0. Therefore E(Λ j), 0 � j �
k − 1, are the orthogonal set of ν . By the Bessel inequality,

∑
λ∈Λ j

|ν̂(x + s j + λ)|2 � 1. Note further that S is a bi-zero set
of mA,P . By Proposition 5.2, we have

1 ≡
∑
λ∈Λ

∣∣μ̂(x + λ)
∣∣2 =

k−1∑
j=0

∑
λ∈Λi

∣∣μ̂(x + s j + λ)
∣∣2

=
k−1∑
j=0

∑
λ∈Λ j

∣∣mA,P (x + s j + λ)ν̂(x + s j + λ)
∣∣2

=
k−1∑
j=0

∑
λ∈Λ j

∣∣mA, P (x + s j)ν̂(x + s j + λ)
∣∣2

(since aλ ∈ Z)

�
k−1∑
j=0

∣∣mA, P (x + s j)
∣∣2 � 1.

Hence S is the orthogonal spectrum of ηq by Proposition 5.2 again, so that η is a spectral measure. From the third line of
the above, we also have

1 ≡
k−1∑
j=0

∣∣mA,P (x + s j)
∣∣2 ∑

λ∈Λ j

∣∣ν̂(x + s j + λ)
∣∣2

.

With
∑k−1

j=0 |mA,P (x + s j)|2 ≡ 1, we must have
∑

λ∈Λ j
|ν̂(x + s j + λ)|2 ≡ 1. Hence, ν is a spectral measure and any one of

the Λi is a spectrum of ν . �
It has been an open question whether the 1/3-Cantor measure has an F-spectrum (or even an R-spectrum). To a less

extend, we do not know a non-trivial singularly continuous R-spectral measure. In the following, we can make use of
Theorems 5.1 and 5.3 to construct such measures.

Example 5.4. There exists a singularly continuous R-spectral measure which is not a spectral measure.

Proof. Consider the self-similar measure νA,n in Theorem 4.2 with A satisfying A⊕B =Nn and gcd(A) = 1. It is a spectral
measure and has a spectrum Γ ⊂ Z. Moreover we claim that Zν ⊂ Z. Indeed, observe that

ν̂(ξ) =
∞∏
j=1

mA

(
ξ

n j

)
where mA stands for the mask polynomial of A under equal weight. As A⊕B = Nn , we have

mA(ξ)mB(ξ) = 1 + e2π iξ + · · · + e2π i(n−1)ξ .

The zero set of mA on [0,1) is a finite subset Z ⊂ {1/n, . . . ,n − 1/n}. Let Z ′ = Z +Z. This shows that Zν = ⋃∞
j=1 n j Z ′ . This

proves the claim and the condition in Theorem 5.3 holds (taking q = 1).
Now we let η = δC,P be a discrete measure with any finite set C of non-negative integers and non-uniform weight P .

μ = η ∗ νA,n is an R-spectral measure but not a spectral measure by Theorem 5.1 and Theorem 5.3. These measures is
clearly singular if #A< n. �

Finally, if E is a Borel set with positive Lebesgue measure, we use L2(E) to denote the square integrable functions on E .
We remark that L2(E) always have an F-spectrum, and the existence of orthogonal spectrum is related to the translational
tile as in Fuglede’s conjecture. For R-spectrum, it is not known whether every Borel set E with positive Lebesgue measure, L2(E)

has an R-spectrum. In regard to this we have the following simple result.

Corollary 5.5. If E be a finite union of closed intervals with rational endpoints. Then L2(E) admits an R-spectrum.

Proof. By the hypothesis and by suitably rescaling and translation, there exist two integers r and s such that

rE + s = [0,1] +A := F ,
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where 0 ∈A and A ∈ Z+ is a finite set. By Theorem 1.3 with ν being the Lebesgue measure on [0,1], we see that F has an
R-spectrum, which implies L2(E) also has an R-spectrum. �

We remark that similar results were obtained in [21] who considered the problem from the sampling point of view and
used techniques in complex analysis. We do not know whether the condition of rational endpoints can be removed. In [18],
the case when the end-points lying in certain groups was considered, and the above also follows as a corollary.

Appendix A. Proof of Theorem 4.1

In this section, we will prove Theorem 4.1 using a number-theoretic method. The setup is in [3]. For the trigonometric
polynomial mA(ξ) = ∑

a∈A e2π iaξ , it is convenient to replace by the polynomial PA(x) = ∑
a∈A xa . Recall that a cyclo-

tomic polynomial Φn(x) is the minimal polynomial of the nth root of unity. It follows that Φs(x)|PA(x) is equivalent to
mA(s−1) = 0.

For a finite set A⊂ Z+ , we write p as primes and define

SA = {
pα > 1: Φpα (x)

∣∣PA(x)
}

and S̃A = {
s > 1: Φs(x)

∣∣PA(x)
}

(A.1)

and the following two conditions

(T1) #A= ∏
s∈SA Φs(1),

(T2) For any distinct prime powers s1, . . . , sn ∈ SA , then s1, . . . , sn ∈ S̃A .

Intuitively, (T1) means if #A = ∏k
j=1 p

α j

j , then there is exactly α j prime powers of p j in SA (since Φpr (1) = p). Also,

(T2) is a generalization from the basic identity 1 + x + · · · + xn−1 = ∏
d|n,d>1 Φd(x) to PA(x). It is known that if a set A

satisfies these conditions, then it is an integer tile, i.e., it tiles Z. Conversely, if a set A tiles Z, then it satisfies (T1); for (T2)
it holds when #A = pαqβ for p,q distinct prime numbers, and is still an open question without the additional condition.
Theorem 5.8 we are going to prove is a special case of this. In another direction Łaba [14] showed that (T1) and (T2) imply
the spectral property:

Proposition 5.6. Suppose that a finite set of non-negative integers A satisfies (T1) and (T2). Then δA is a spectral measure and has a
spectrum

S =
{ ∑

s∈SA

kss−1: ks ∈ {0,1, . . . , p − 1} if s = pα

}
.

The following are basic manipulation rules for the cyclotomic polynomials.

Lemma 5.7. Let p be a prime, then

(i) Φs(xp) = Φsp(x) if p|s, and
(ii) Φs(xp) = Φs(x)Φsp(x) if p is not a factor of s.

It follows that if p is a prime and Φpα (x) divides PA(xm) for some m > 0, then by Lemma 5.7, we have Φpα+1 (x) divides

PA(xm/p) if p|m (by (i)), and Φpα (x) divides PA(xm) if p � m (by (ii)). If we let γ = max{ j: p j |m} (by convention γ = 0 if
p � m) and repeat the above argument, we have Φpα+γ (x)|PA(x). That is

SmA = {
pα+γ : pα ∈ SA, γ = max

{
j: p j|m}}

. (A.2)

We reformulate Theorem 4.1 as the following

Theorem 5.8. Let A⊕B = Nn, then A and B satisfies (T1) and (T2). Hence δA is a spectral measure with a spectrum in 1
nZ.

Proof. It is easy to check that both A and B satisfy condition (T1) [3]. It remains to prove condition (T2) holds. Without
loss of generality we assume that 1 ∈ A. We use induction on the number of primes of n. If n consists only of one prime.
Then A equals {0,1, . . . ,n − 1} and (T2) holds trivially.

Let A⊕B = Nn , then by [20, Lemma 1], there exists m � 2 with m|n and A′ ⊕B′ = Nn/m such that

A = mA′ +Nm and B = mB′. (A.3)

Induction hypothesis implies that (T2) holds for A′ and B′ .
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To show that B has (T2), we observe that PB(x) = PB′(xm). By (A.2)

SB = {
qβ+γ : qβ ∈ SB′ , γ = max

{
j: q j|m}}

.

Taking distinct prime powers in SB , say qβ1+γ1
1 , . . . ,qβ
+γ



 . By (T2) of B′ , Φ
q
β1
1 ...q

β




(x) divides PB′ (x). Hence, Φ
q
β1
1 ...q

β




(xm)

divides PB(x) and so is Φ
q
β1+γ1
1 ...q

β
+γ




(x) by iteratively applying Lemma 5.6. This implies B has (T2).

Next we consider A, by (A.3),

PA(x) = PA′
(
xm)(

1 + x + · · · + xm−1) = PA′
(
xm) ·

∏
d|m,d>1

Φd(x).

We then have

SA = {
pα+γ: pα ∈ SA′ , γ = max

{
j: q j|m}} ∪ {

r j: r prime, r j|m}
.

We can apply the same argument as the above to check that the product of the prime powers in SA divides PA(x), and
hence A also has (T2).

For the last statement, we just need to note that SA ⊂ {d: d|n} by A⊕B = Nn . Hence, S constructed in Proposition 5.6
lies in 1

nZ. �
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