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1 Stochastic completeness of a diffusion

Let {Xt}t≥0 be a reversible Markov process on a state space M . This
process is called stochastically complete if its lifetime is almost surely ∞,
that is

Px (Xt ∈ M) = 1.

If the process has no interior killing (which will be assumed) then the only
way the stochastic incompleteness can occur is if the process leaves the
state space in finite time. For example, diffusion in a bounded domain
with the Dirichlet boundary condition is stochastically incomplete.

 

x 

X ζ 

2



A by far less trivial example was discovered by R.Azencott in 1974: he
showed that Brownian motion on a geodesically complete non-compact
manifold can be stochastically incomplete. In his example the mani-
fold has negative sectional curvature that grows to −∞ very fast with
the distance to an origin. The stochastic incompleteness occurs because
negative curvature plays the role of a drift towards infinity, and a very
high negative curvature produces an extremely fast drift that sweeps the
Brownian particle away to infinity in a finite time.

Various sufficient conditions in terms of curvature bounds were ob-
tained by S.-T. Yau 1978, E.P. Hsu 1989, etc. It is somewhat surprising
that one can obtain a sufficient condition for stochastic completeness in
terms of the volume growth. Let V (x, r) be the volume of the geodesic
ball of radius r centered at x. Then

V (x, r) ≤ exp
(
Cr2

)
⇒ stochastic completeness.

Moreover,
∫ ∞ rdr

log V (r)
= ∞ ⇒ stochastic completeness.
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Let us sketch the construction of Brownian motion on a Riemannian
manifold M and approach to the proof of the volume test for stochastic
completeness. Let M be a Riemannian manifold, μ be the Riemannian
measure on M and Δ be the Laplace-Beltrami operator on M . By the
Green formula, Δ is a symmetric operator on C∞

0 (M) with respect to
μ, which allows to extend Δ to a a self-adjoint operator in L2 (M,μ).
Assuming that M is geodesically complete, it is possible to prove that
this extension is unique. Hence, Δ can be regarded as a (non-positive
definite) self-adjoint operator in L2.

By functional calculus, the operator Pt := etΔ is a bounded self-
adjoint operator for any t ≥ 0. The family {Pt}t≥0 is called the heat
semigroup of Δ. It can be used to solve the Cauchy problem in R+ ×M :

{
∂u
∂t

= Δu,
u|t=0 = f,

since u (t, ∙) = Ptf is solution for any f ∈ L2.
Local regularity theory implies that Pt is an integral operator, whose

kernel is pt (x, y) is a positive smooth function of (t, x, y). In fact, pt (x, y)
is the minimal positive fundamental solution to the heat equation.
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The heat kernel can be used to construct a diffusion process {Xt} on
M with transition density pt (x, y). For example, in Rn one has

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

,

and the process {Xt} with this transition density is Brownian motion.
In terms of the heat kernel the stochastic completeness of diffusion

{Xt} is equivalent to the following identity:

∫

M

pt (x, y) dμ (y) = 1,

for all t > 0 and x ∈ M .
Another useful criterion for stochastic completeness is as follows: M

is stochastically complete if the homogeneous Cauchy problem

{
∂u
∂t

= Δu
u|t=0 = 0

(1)

has a unique solution u ≡ 0 in the class of bounded functions (Khas’minskii).
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By classical results, in Rn the uniqueness for (1) holds even in the
class

|u (t, x)| ≤ exp
(
C |x|2

)

(Tikhonov class), but not in

|u (t, x)| ≤ exp
(
C |x|2+ε) .

More generally, uniqueness holds in the class

|u (t, x)| ≤ exp (f (r))

provided function f satisfies

∫ ∞ rdr

f (r)
= ∞

(Täcklind class).
The following result can be regarded as an analogue of the latter

uniqueness class.
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Theorem 1 (AG, 1986) Let M be a complete connected Riemannian
manifold, and let u(x, t) be a solution to the Cauchy problem (1). Assume
that, for some x ∈ M and for some T > 0 and all r > 0,

∫ T

0

∫

B(x,r)

u2(y, t) dμ(y)dt ≤ exp (f(r)) , (2)

where f(r) is a positive increasing function on (0, +∞) such that

∫ ∞ rdr

f(r)
= ∞.

Then u ≡ 0 in (0, T ) × M.

One may wonder why the geodesic balls can be used to determine the
stochastic completeness, because the latter condition does not depend on
the distance function at all. The reason is that the geodesic distance d
is by definition related to the gradient ∇ (and, hence, to the Laplacian)
by |∇d| ≤ 1. An analogue of this condition will appear later also in jump
processes.
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If u is a bounded solution, then replacing in (2) u by const we obtain
that if

V (x, r) ≤ exp (f (r))

then u ≡ 0, that is, M is stochastic completeness. Setting

f (r) = log V (x, r)

we obtain the volume test for stochastic completeness:

∫ ∞ rdr

log V (x, r)
= ∞.

The latter condition cannot be further improved: if W (r) is an increasing
function such that ∫ ∞ rdr

log W (r)
< ∞

then there exists a geodesically complete but stochastically incomplete
manifold with V (x, r) ≤ W (r) .
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2 Jump processes

Let (M,d) be a metric space such that all closed metric balls

B(x, r) = {y ∈ M : d(x, y) ≤ r}

are compact. In particular, (M,d) is locally compact and separable. Let
μ be a Radon measure on M with a full support.

Recall that a Dirichlet form (E ,F) in L2 (M,μ) is a symmetric, non-
negative definite, bilinear form E : F × F → R defined on a dense
subspace F of L2 (M,μ), that satisfies in addition the following proper-
ties:

• Closedness: F is a Hilbert space with respect to the following inner
product:

E1(f, g) := E(f, g) + (f, g) .

• The Markov property: if f ∈ F then also f̃ := (f ∧ 1)+ belongs to

F and E(f̃) ≤ E (f) , where E (f) := E (f, f) .
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For example, the classical Dirichlet form in Rn is

E (f, g) =

∫

Rn

∇f ∙ ∇g dx

in F = W 1,2 (Rn).
A general Dirichlet form (E ,F) has the generator L that is a non-

positive definite, self-adjoint operator on L2 (M,μ) with domain D ⊂ F
such that

E (f, g) = (−Lf, g)

for all f ∈ D and g ∈ F . The generator L determines the heat semigroup
{Pt}t≥0 by Pt = etL in the sense of functional calculus of self-adjoint
operators. It is known that {Pt}t≥0 is strongly continuous, contractive,
symmetric semigroup in L2, and is Markovian, that is, 0 ≤ Ptf ≤ 1 for
any t > 0 if 0 ≤ f ≤ 1.

The Markovian property of the heat semigroup implies that the op-
erator Pt preserves the inequalities between functions, which allows to
use monotone limits to extend Pt from L2 to L∞. In particular, Pt1 is
defined.
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Definition. The form (E ,F) is called conservative or stochastically com-
plete if Pt1 = 1 for every t > 0.

Assume in addition that (E ,F) is regular, that is, the set F∩C0 (M) is
dense both in F with respect to the norm E1 and in C0 (M) with respect
to the sup-norm. By a theory of Fukushima, for any regular Dirichlet
form there exists a Hunt process {Xt}t≥0 such that, for all bounded Borel
functions f on M ,

Exf(Xt) = Ptf(x) (3)

for all t > 0 and almost all x ∈ M , where Ex is expectation associated
with the law of {Xt} started at x.

Using the identity (3), one can show that the lifetime of Xt is almost
surely ∞ if and only if Pt1 = 1 for all t > 0, which motivates the term
“stochastic completeness” in the above definition.

One distinguishes local and non-local Dirichlet forms. The Dirichlet
form (E ,F) is called local if E (f, g) = 0 for all functions f, g ∈ F with
disjoint compact support. It is called strongly local if the same is true
under a milder assumption that f = const on a neighborhood of supp g.
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For example, the following Dirichlet form on a Riemannian manifold

E (f, g) =

∫

M

∇f ∙ ∇gdμ

is strongly local. The generator of this form the self-adjoint Laplace-
Beltrami operator Δ, and the Hunt process is Brownian motion on M .

A well-studied non-local Dirichlet form in Rn is given by

E (f, g) =

∫

Rn×Rn

(f (x) − f (y)) (g (x) − g (y))

|x − y|n+α dxdy (4)

where 0 < α < 2. The domain of this form is the Besov space B
α/2
2,2 , the

generator is (up to a constant multiple) the operator − (−Δ)α/2 , where
Δ is the Laplace operator in Rn, and the Hunt process is the symmetric
stable process of index α.
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By a theorem of Beurling and Deny, any regular Dirichlet form can
be represented in the form

E = E (c) + E (j) + E (k),

where E (c) is a strongly local part that has the form

E (c) (f, g) =

∫

M

Γ (f, g) dμ,

where Γ (f, g) is a so called energy density (generalizing ∇f ∙ ∇g on
manifolds); E (j) is a jump part that has the form

E (j) (f, g) =
1

2

∫ ∫

X×X

(f (x) − f (y)) (g (x) − g (y)) dJ (x, y)

with some measure J on X × X that is called a jump measure ; and E (k)

is a killing part that has the form

E (k) (f, g) =

∫

X

fgdk

where k is a measure on X that is called a killing measure.
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In terms of the associated process this means that Xt is in some sense
a mixture of diffusion and jump processes with a killing condition.

The log-volume test of stochastic completeness of manifolds can be
extended to strongly local Dirichlet forms as follows. Set as before
V (x, r) = μ (B (x, r))

Theorem 2 (T.Sturm 1994) Let (E ,F) be a regular strongly local Dirich-
let form. Assume that the distance function ρ (x) = d (x, x0) on M sat-
isfies the condition

Γ (ρ, ρ) ≤ C,

for some constant C. If, for some x ∈ M ,
∫ ∞ rdr

log V (x, r)
= ∞

then the Dirichlet form (E ,F) is stochastically complete.

The method of proof is basically the same as for manifolds because for
strongly local forms the same chain rule and product rules are available.
The condition Γ (ρ, ρ) ≤ C is analogous to |∇ρ| ≤ 1 that is automatically
satisfied for the geodesic distance on any manifold.
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Now let us turn to jump processes. For simplicity let us assume that
the jump measure J has a density j (x, y). Namely, let j(x, y) be is a
non-negative Borel function on M × M that satisfies the following two
conditions:

(a) j (x, y) is symmetric: j (x, y) = j (y, x) ;

(b) there is a positive constant C such that

∫

M

(1 ∧ d(x, y)2)j(x, y)dμ (y) ≤ C for all x ∈ M.

Definition. We say that a distance function d is adapted to a kernel
j(x, y) (or j is adapted to d) if (b) is satisfied.

The condition (b) relates the distance function to the Dirichlet form
and plays the same role as Γ (ρ, ρ) ≤ C does for diffusion.
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Consider the following bilinear functional

E(f, g) =
1

2

∫ ∫

X×X

(f(x) − f(y))(g(x) − g(y))j(x, y)dμ(x)dμ (y)

that is defined on Borel functions f and g whenever the integral makes
sense. Define the maximal domain of E by

Fmax =
{
f ∈ L2 : E(f, f) < ∞

}
,

where L2 = L2(M,μ). By the polarization identity, E(f, g) is finite for
all f, g ∈ Fmax. Moreover, Fmax is a Hilbert space with the norm E1.

Denote by Lip0(M) the class of Lipschitz functions on M with com-
pact support. It follows from (b) that

Lip0(M) ⊂ Fmax.

Define the space F as the closure of Lip0(M) in (Fmax, ‖∙‖E1
). Under the

above hypothesis, (E ,F) is a regular Dirichlet form in L2(M,μ). The
associated Hunt process {Xt} is a pure jump process with the jump
density j(x, y).
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Many examples of jump processes in R are provided by Lévy-Khintchine
theorem where the Lévy measure W (dy) corresponds to j(x, y)dμ(y).
The condition (b) appears also in Lévy-Khintchine theorem in the form

∫

R\{0}

(
1 ∧ |y|2

)
W (dy) < ∞.

Hence, the Euclidean distance in R is adapted to any Lévy process.
An explicit example of a jump density in Rn is

j(x, y) =
const

|x − y|n+α ,

where α ∈ (0, 2), which defines the Dirichlet form (4).
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The next theorem is the main result.

Theorem 3 Assume that j satisfies (a) and (b) and let (E ,F) be the
jump form defined as above. If, for some x ∈ M, c > 0 and for all large
enough r,

V (x, r) ≤ exp (cr log r) , (5)

then the Dirichlet form (E ,F) is stochastically complete.

This theorem was proved by AG, Xueping Huang, and Jun Masamune
2010 for c < 1

2
. Then it was observed that a minor modification of the

proof works for all c. The latter was also proved slightly differently by
Masamune and Uemura, 2011.

For the proof of Theorem 3 we split the jump kernel j(x, y) into the
sum of two parts:

j′(x, y) = j(x, y)1{d(x,y)≤ε} and j ′′(x, y) = j(x, y)1{d(x,y)>ε} (6)

and show first the stochastic completeness of the Dirichlet form (E ′,F)
associated with j ′. For that we adapt the methods used for stochastic
completeness for the local form.
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The bounded range of j ′ allows to treat the Dirichlet form (E ′,F) as
“almost” local: if f, g are two functions from F such that d (supp f, supp g) >
ε then E (f, g) = 0. The condition (b) plays in the proof the same role
as the condition |∇d| ≤ 1 in the local case. However, the lack of local-
ity brings up in the estimates various additional terms that have to be
compensated by a stronger hypothesis of the volume growth (5).

The tail j ′′ can be regarded as a small perturbation of j ′ in the fol-
lowing sense: (E ,F) is stochastically complete if and only if (E ′,F) is so.
The proof is based on the fact that the integral operator with the kernel
j ′′ is a bounded operator in L2 (M,μ), because by (b)

∫

M

j ′′ (x, y) dμ (y) ≤ C.

It is not yet clear if the volume growth condition (5) in Theorem 3 is
sharp.

Let us briefly mention a result about uniqueness class for the heat
equation associated with the jump Dirichlet form on graphs satisfying
(a) and (b).
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Namely, Xueping Huang proved in 2011 that, for any b < 1
2

the
following inequality determines a uniqueness class

∫ T

0

∫

B(x,R)

u2 (t, x) dμ (x) dt ≤ exp (br log r) . (7)

What is more surprising, that for b > 2
√

2 this statement fails even on
the graph Z.

The optimal value of b in (7) is unknown. If b < 1
2

then Huang’s result
can be used to obtain Theorem 3 on graphs provided the constant c in
(5) is smaller than 1

2
. However, in general the stochastic completeness

test (5) does not follows from the uniqueness class (7) in contrast to
the case for diffusions. The sharpness of (5) in general is also unclear.
M.Folz and X.Huang have proved independently in 2012 that on graphs
the condition (5) can be replaced by

V (x, r) ≤ exp
(
Cr2

)

or even by the log-volume test.
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3 Random walks on graphs

Let us now turn to random walks on graphs. Let (X,E) be a locally
finite, infinite, connected graph, where X is the set of vertices and E is
the set of edges. We assume that the graph is undirected, simple, without
loops. Let μ be the counting measure on X. Define the jump kernel by
j(x, y) = 1{x∼y}, where x ∼ y means that x, y are neighbors, that is,
(x, y) ∈ E. The corresponding Dirichlet form is

E (f) =
1

2

∑

{x,y:x∼y}

(f (x) − f (y))2 ,

and its generator is

Δf(x) =
∑

y∼x

(f(y) − f(x)).

The operator Δ is called unnormalized (or physical) Laplace operator
on (X,E). This is to distinguish from the normalized or combinatorial
Laplace operator

Δ̂f(x) =
1

deg(x)

∑

y∼x

(f(y) − f(x)),
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where deg(x) is the number of neighbors of x. The normalized Laplacian
Δ̂ is the generator of the same Dirichlet form but with respect to the
degree measure deg (x).

Both Δ and Δ̂ generate the heat semigroups etΔ and etΔ̂ and, hence,
associated continuous time random walks on X. It is easy to prove
that Δ̂ is a bounded operator in L2(X, deg), which then implies that
the associated random walk is always stochastically complete. On the
contrary, the random walk associated with the unnormalized Laplace
operator can be stochastically incomplete.

We say that the graph (X,E) is stochastically complete if the heat
semigroup etΔ is stochastically complete.

Denote by ρ(x, y) the graph distance on X, that is the minimal num-
ber of edges in an edge chain connecting x and y. Let Bρ(x, r) be closed
metric balls with respect to this distance ρ and set Vρ(x, r) = |Bρ(x, r)|
where |∙| := μ(∙) denotes the number of vertices in a given set.

Theorem 4 If there is a point x0 ∈ X and a constant c > 0 such that

Vρ(x0, r) ≤ cr3 log r (8)

for all large enough r, then the graph (X,E) is stochastically complete.
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Note that the function r3 log r is sharp here in the sense that it cannot
be replaced by r3 log1+ε r. For any non-negative integer r, set

Sr = {x ∈ X : ρ(x0, x) = r} .

R.Wojciechowski considered the graph where every vertex on Sr is con-
nected to all vertices on Sr−1 and Sr:

Anti-tree of Wojciechowski
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He proved in 2008 that for such graphs the stochastic incompleteness
is equivalent to the following condition:

∞∑

r=1

Vρ(x0, r)

|Sr+1| |Sr|
< ∞. (9)

Taking |Sr| ' r2 log1+ε r we obtain Vρ(x0, r) ' r3 log1+ε so that the con-
dition (9) is satisfied and, hence, the graph is stochastically incomplete.

The proof of Theorem 4 is based on the following ideas. Observe first
that the graph distance ρ is in general not adapted. Indeed, the integral
in (b) is equal to

∑

y

(
1 ∧ ρ2 (x, y)

)
j (x, y) =

∑

y

j (x, y) = deg (x)

so that (b) holds if and only if the graph has uniformly bounded degree,
which is not interesting as all graphs with bounded degree are automat-
ically stochastically complete.
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Let us construct an adapted distance as follows. For any edge x ∼ y
define first its length σ (x, y) by

σ(x, y) =
1

√
deg(x)

∧
1

√
deg(y)

.

Then, for all x, y ∈ X define d(x, y) as the smallest total length of all
edges in an edge path connecting x and y. It is easy to verify that d
satisfies (b):

∑

y

(
1 ∧ d2 (x, y)

)
j (x, y) ≤

∑

y

(
1

deg (x)
∧

1

deg (y)

)

j (x, y) ≤
∑

y∼x

1

deg (x)
= 1.

Then one proves that (8) for ρ-balls implies that the d-balls have at most
quadratic exponential volume growth, so that the stochastic completeness
follows by the result of Folz and Huang.

To see that, let us consider a more restrictive hypothesis

|Sr| ≤ Cr2 log r for r >> 1. (10)

(clearly, (10) is a bit stronger hypothesis than (8)).
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Any point x ∈ Sr admits a trivial estimate of the degree as follows:

deg(x) ≤ |Sr−1| + |Sr| + |Sr+1| ≤ C1r
2 log r.
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Therefore, if x, y are two neighboring vertices in Bρ (x0, r), then

σ(x, y) =
1

√
deg(x)

∧
1

√
deg(y)

≥
c1

r
√

log r
. (11)
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Fix a vertex x ∈ SR and let {xi}
N
i=0 be a path connecting x0 to x with

the minimal σ-length:

 

xi 

x0 

Si 

SR 

x=xN 

xi-1 

x1 

Clearly, ρ(x0, xi) ≤ i so that by (11) σ(xi−1, xi) ≥ c1
i
√

log i
whence

d(x0, x) =
N∑

i=1

σ(xi−1, xi) ≥ c1

R∑

i=1

1

i
√

log i
≥ c2

√
log R.
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Denoting by Bd the d-balls, we obtain

Bd(x0, c2

√
log R) ⊂ Bρ(x0, R).

Changing variables r = c2

√
log R and denoting by Vd the volume of Bd,

we obtain using (8) that

Vd(x0, r) ≤ Vρ(x0, e
Cr2

) ≤ exp
(
C ′r2

)

which was claimed.
In the general case (8) does not imply (10) for all r >> 1, but never-

theless (10) holds for sufficiently many values of r, which can be used to
prove the estimates of d as above.
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