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Motivation

For certain fractals, for instance the Sierpinski gasket and its higher
dimensional analogues, the eigenfunctions and eigenvalues of the
Laplace operator follow a “self-similar” pattern:

the fractal is approximated by a sequence of graphs (G,,)nen, which
are connected by embeddings of the vertex sets ¢, : V,, — V,11.

Pn—1 Pn

N AN

Gn Gn+1

The time rescaling factor A is the fraction between the speed of the
particle in G, and G,_1.
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These embeddings ¢, correspond to a rational function 1), which
relates the probability generating function of the random walk on
G, to the probability generating function of the random walk on
Gnt1-

(n) (n+1)
}/m+1 YT 11

Y,gf") YT<:,+1)

The time rescaling factor is given by

)‘:E( m+1 — m)— ()
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Spectral decimation

The function 1) also relates the eigenvalues of the discrete
Laplacians on G, and G,1: every eigenvalue of A,y q is a
preimage under v of an eigenvalue of A,,.
For the Laplacian on G, i.e. the limit of the rescaled discrete
Laplacians A, this means that every eigenvalue of A can be
written as

AT lim A" (20),

n—oo

where zg is an eigenvalue of Ag. The multiplicities a,, of the
eigenvalues depend only on m.
More precisely, we need that the multiplicities of the eigenvalues
have a rational generating function.
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Poincaré functions

The equation giving the eigenvalues of the Laplacian motivates to
study the solutions of the functional equation

®(Az) = p(®(2)),

where
(&)=
P = T
¥(1/z)
if p is a polynomial.
For instance, this happens for the Sierpinski gaskets.
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® and the spectrum

The spectrum of the Laplacian can then be described as
Cb(_l)(A)

for a finite set A.
The value distribution of ® therefore encodes the spectrum.
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The eigenvalue counting function

can be related to .
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The spectral zeta function

The spectral zeta function {a can be given in the form

Cals) =D Ru(X) > n*

weA O(—p)=w
p#0

where R, is the rational function encoding the multiplicities of the
eigenvalues.
The analytic continuation of the functions

2 T
O(—p)=w
u#0

can be obtained from the asymptotic behaviour of ® at oo.
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The poles of (a

The functions

>
O(—p)=w

p#0
have poles on the line s = logs 2, which
cancel in the sum forming {a. This is a
general phenomenon for fully symmetric
fractals, as was shown recently by Stein-
hurst and Teplyaev.
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Zero counting and the harmonic measure

The function ® has infinitely many zeros, which come in geometric
progressions with factor A by

®(\2) = p(®(2)).

Let

No(r)= > 1

|z|<r
®(2)=0

denote the zero counting function.
Then the following are equivalent

m lim r~?Ng(r) exists
r—o0

o, ,
n th—%t wu(B(0, t)) exists.
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Applications

The existence of an analytic continuation of (A to the whole
complex plane allows for the definition and computation of an
according Casimir energy:
Consider the operator

82

P=———-A

oT?
on (R/%Z) x G, where = 1/(.kT).
The eigenvalues of P are then given by

4k3 72

T—F)\n.
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Zeta function of P

The zeta function of P is then given by
4n27r2

/ 0y e 2 “rs=1 gt
r(s)

nezZ

Using the theta relation

S f_wﬁ_ze—‘*i:z

nezZ mt nez

we obtain

N
e K Zl
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Regularised determinant of P

The regularised determinant (“product of eigenvalues”) of P is
given by
det(P) = exp (—(p(0)) .

From the expression obtained before, we get

o n2_

¢p(0) = —B¢a (—%) + % ZZ/ e‘ﬁir Nty=3 dt.

The integral and the summation over n can be evaluated explicitly,
which gives

(p(0) = —B¢a (—%) - 2§: In (1 - e‘ﬁ\/’\_f) .
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Casimir energy

The energy of the system is then given by

_ 1 AR SR
E=-— Mﬁc’p() §<A<—§>+;eﬁﬁj_l.

The zero point or Casimir energy of the system is then obtained by
letting the temperature tend to 0, which is equivalent to letting 3
tend to co. This gives

1 1
Eas:_ - = ]-
C 2CA< 2)
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Numerical computations

The very explicit procedure used for the analytic continuation of (s
allows for the numerical computation of (a(—3) to arbitrary
precision.
We computed

ES.. = 0.5474693544 . ..

for the Casimir energy of the two-dimensional Sierpinski gasket with
Dirichlet boundary conditions.

EX.. = 2.134394089264 . . .

for Neumann boundary conditions.
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