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Motivation

For certain fractals, for instance the Sierpiński gasket and its higher
dimensional analogues, the eigenfunctions and eigenvalues of the
Laplace operator follow a “self-similar” pattern:
the fractal is approximated by a sequence of graphs (Gn)n∈N, which
are connected by embeddings of the vertex sets ϕn : Vn → Vn+1.

Gn Gn+1 Gn+2

ϕn+2ϕn+1ϕnϕn−1

The time rescaling factor λ is the fraction between the speed of the
particle in Gn and Gn−1.

Peter Grabner Iteration of polynomials. . .



These embeddings ϕn correspond to a rational function ψ, which
relates the probability generating function of the random walk on
Gn to the probability generating function of the random walk on
Gn+1.
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The time rescaling factor is given by

λ = E(Tm+1 − Tm) = ψ′(1).
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Spectral decimation

The function ψ also relates the eigenvalues of the discrete
Laplacians on Gn and Gn+1: every eigenvalue of ∆n+1 is a
preimage under ψ of an eigenvalue of ∆n.
For the Laplacian on G , i.e. the limit of the rescaled discrete
Laplacians ∆n this means that every eigenvalue of ∆ can be
written as

λm lim
n→∞

λnψ−n(z0),

where z0 is an eigenvalue of ∆0. The multiplicities aµ of the
eigenvalues depend only on m.
More precisely, we need that the multiplicities of the eigenvalues
have a rational generating function.
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Poincaré functions

The equation giving the eigenvalues of the Laplacian motivates to
study the solutions of the functional equation

Φ(λz) = p(Φ(z)),

where

p(z) =
1

ψ(1/z)
,

if p is a polynomial.
For instance, this happens for the Sierpiński gaskets.
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Φ and the spectrum

The spectrum of the Laplacian can then be described as

Φ(−1)(A)

for a finite set A.
The value distribution of Φ therefore encodes the spectrum.

Peter Grabner Iteration of polynomials. . .



The eigenvalue counting function

N(x) =
∑

∆u=−µu
µ<x

aµ

the trace of the heat kernel

P(t) =
∑

−∆u=µu

aµe−µt =

∫

G

pt(x , x) dH(x),

as well as the spectral zeta-function

ζ∆(s) =
∑

∆u=−µu

aµµ
−s

can be related to Φ.
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The spectral zeta function

The spectral zeta function ζ∆ can be given in the form

ζ∆(s) =
∑

w∈A

Rw (λ
s)

∑

Φ(−µ)=w
µ6=0

µ−s ,

where Rw is the rational function encoding the multiplicities of the
eigenvalues.
The analytic continuation of the functions

∑

Φ(−µ)=w
µ6=0

µ−s

can be obtained from the asymptotic behaviour of Φ at ∞.
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The poles of ζ∆

The functions

∑

Φ(−µ)=w
µ6=0

µ−s

have poles on the line ℜs = log5 2, which
cancel in the sum forming ζ∆. This is a
general phenomenon for fully symmetric
fractals, as was shown recently by Stein-
hurst and Teplyaev.
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Zero counting and the harmonic measure

The function Φ has infinitely many zeros, which come in geometric
progressions with factor λ by

Φ(λz) = p(Φ(z)).

Let
NΦ(r) =

∑

|z |<r
Φ(z)=0

1

denote the zero counting function.
Then the following are equivalent

lim
r→∞

r−ρNΦ(r) exists

lim
t→0

t−ρµ(B(0, t)) exists.
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Applications

The existence of an analytic continuation of ζ∆ to the whole
complex plane allows for the definition and computation of an
according Casimir energy:
Consider the operator

P = − ∂2

∂τ2
−∆

on (R/ 1
β
Z)× G , where β = 1/(kT ).

The eigenvalues of P are then given by

4k2π2

β2
+ λn.
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Zeta function of P

The zeta function of P is then given by

ζP(s) =
1

Γ(s)

∫ ∞

0

K (t)
∑

n∈Z

e
− 4n2π2

β2 t
ts−1 dt.

Using the theta relation

∑

n∈Z

e
− 4π2n2

β2 t
=

β

2
√
πt

∑

n∈Z

e−
β2n2

4t

we obtain

ζP(s) =
β

2
√
πΓ(s)

Γ

(

s − 1

2

)

ζ∆

(

s − 1

2

)

+
β√
πΓ(s)

∫ ∞

0

K (t)

∞
∑

n=1

e−
β2n2

4t ts− 3
2 dt
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Regularised determinant of P

The regularised determinant (“product of eigenvalues”) of P is
given by

det(P) = exp
(

−ζ ′P(0)
)

.

From the expression obtained before, we get

ζ ′P(0) = −βζ∆
(

−1

2

)

+
β√
π

∞
∑

n=1

∞
∑

j=1

∫ ∞

0

e−
β2n2

4t
−λj tt−

3
2 dt.

The integral and the summation over n can be evaluated explicitly,
which gives

ζ ′P(0) = −βζ∆
(

−1

2

)

− 2
∞
∑

j=1

ln
(

1 − e−β
√

λj

)

.
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Casimir energy

The energy of the system is then given by

E = −1

2

∂

∂β
ζ ′P(0) =

1

2
ζ∆

(

−1

2

)

+

∞
∑

j=1

√

λj

eβ
√

λj − 1
.

The zero point or Casimir energy of the system is then obtained by
letting the temperature tend to 0, which is equivalent to letting β
tend to ∞. This gives

ECas =
1

2
ζ∆

(

−1

2

)

.
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Numerical computations

The very explicit procedure used for the analytic continuation of ζ∆
allows for the numerical computation of ζ∆(−1

2
) to arbitrary

precision.
We computed

ED
Cas = 0.5474693544 . . .

for the Casimir energy of the two-dimensional Sierpiński gasket with
Dirichlet boundary conditions.

EN

Cas = 2.134394089264 . . .

for Neumann boundary conditions.
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