## Iteration of polynomials, functional equations, and fractal zeta functions

Peter Grabner joint work with Gregory Derfel \& Fritz Vogl<br>Institut für Analysis und Computational Number Theory<br>Graz University of Technology

10.12.2012

International Conference on Advances on Fractals and Related Topics, Hong-Kong

## Motivation

For certain fractals, for instance the Sierpiński gasket and its higher dimensional analogues, the eigenfunctions and eigenvalues of the Laplace operator follow a "self-similar" pattern: the fractal is approximated by a sequence of graphs $\left(G_{n}\right)_{n \in \mathbb{N}}$, which are connected by embeddings of the vertex sets $\varphi_{n}: V_{n} \rightarrow V_{n+1}$.


The time rescaling factor $\lambda$ is the fraction between the speed of the particle in $G_{n}$ and $G_{n-1}$.

These embeddings $\varphi_{n}$ correspond to a rational function $\psi$, which relates the probability generating function of the random walk on $G_{n}$ to the probability generating function of the random walk on $G_{n+1}$.


The time rescaling factor is given by

$$
\lambda=\mathbb{E}\left(T_{m+1}-T_{m}\right)=\psi^{\prime}(1)
$$

## Spectral decimation

The function $\psi$ also relates the eigenvalues of the discrete Laplacians on $G_{n}$ and $G_{n+1}$ : every eigenvalue of $\Delta_{n+1}$ is a preimage under $\psi$ of an eigenvalue of $\Delta_{n}$. For the Laplacian on $G$, i.e. the limit of the rescaled discrete Laplacians $\Delta_{n}$ this means that every eigenvalue of $\Delta$ can be written as

$$
\lambda^{m} \lim _{n \rightarrow \infty} \lambda^{n} \psi^{-n}\left(z_{0}\right)
$$

where $z_{0}$ is an eigenvalue of $\Delta_{0}$. The multiplicities $a_{\mu}$ of the eigenvalues depend only on $m$.
More precisely, we need that the multiplicities of the eigenvalues have a rational generating function.

## Poincaré functions

The equation giving the eigenvalues of the Laplacian motivates to study the solutions of the functional equation

$$
\Phi(\lambda z)=p(\Phi(z))
$$

where

$$
p(z)=\frac{1}{\psi(1 / z)},
$$

if $p$ is a polynomial.
For instance, this happens for the Sierpiński gaskets.

## $\Phi$ and the spectrum

The spectrum of the Laplacian can then be described as

$$
\phi^{(-1)}(A)
$$

for a finite set $A$.
The value distribution of $\Phi$ therefore encodes the spectrum.

The eigenvalue counting function

$$
N(x)=\sum_{\substack{\Delta u=-\mu u \\ \mu<x}} a_{\mu}
$$

the trace of the heat kernel

$$
P(t)=\sum_{-\Delta u=\mu u} a_{\mu} e^{-\mu t}=\int_{G} p_{t}(x, x) d \mathcal{H}(x)
$$

as well as the spectral zeta-function

$$
\zeta_{\Delta}(s)=\sum_{\Delta u=-\mu u} a_{\mu} \mu^{-s}
$$

can be related to $\Phi$.

## The spectral zeta function

The spectral zeta function $\zeta_{\Delta}$ can be given in the form

$$
\zeta_{\Delta}(s)=\sum_{w \in A} R_{w}\left(\lambda^{s}\right) \sum_{\substack{\Phi(-\mu)=w \\ \mu \neq 0}} \mu^{-s}
$$

where $R_{w}$ is the rational function encoding the multiplicities of the eigenvalues.
The analytic continuation of the functions

$$
\sum_{\substack{\Phi(-\mu)=w \\ \mu \neq 0}} \mu^{-s}
$$

can be obtained from the asymptotic behaviour of $\Phi$ at $\infty$.

## The poles of $\zeta_{\Delta}$

The functions

$$
\sum_{\substack{(-\mu)=w \\ \mu \neq 0}} \mu^{-s}
$$

have poles on the line $\Re s=\log _{5} 2$, which cancel in the sum forming $\zeta_{\Delta}$. This is a general phenomenon for fully symmetric fractals, as was shown recently by Steinhurst and Teplyaev.


## Zero counting and the harmonic measure

The function $\Phi$ has infinitely many zeros, which come in geometric progressions with factor $\lambda$ by

$$
\Phi(\lambda z)=p(\Phi(z))
$$

Let

$$
N_{\Phi}(r)=\sum_{\substack{|z|<r \\ \Phi(z)=0}} 1
$$

denote the zero counting function.
Then the following are equivalent

- $\lim _{r \rightarrow \infty} r^{-\rho} N_{\Phi}(r)$ exists
- $\lim _{t \rightarrow 0} t^{-\rho} \mu(B(0, t))$ exists.


## Applications

The existence of an analytic continuation of $\zeta_{\Delta}$ to the whole complex plane allows for the definition and computation of an according Casimir energy:
Consider the operator

$$
P=-\frac{\partial^{2}}{\partial \tau^{2}}-\Delta
$$

on $\left(\mathbb{R} / \frac{1}{\beta} \mathbb{Z}\right) \times G$, where $\beta=1 /(k T)$.
The eigenvalues of $P$ are then given by

$$
\frac{4 k^{2} \pi^{2}}{\beta^{2}}+\lambda_{n}
$$

## Zeta function of $P$

The zeta function of $P$ is then given by

$$
\zeta_{P}(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} K(t) \sum_{n \in \mathbb{Z}} e^{-\frac{4 n^{2} \pi^{2}}{\beta^{2}} t} t^{s-1} d t
$$

Using the theta relation

$$
\sum_{n \in \mathbb{Z}} e^{-\frac{4 \pi^{2} n^{2}}{\beta^{2}} t}=\frac{\beta}{2 \sqrt{\pi t}} \sum_{n \in \mathbb{Z}} e^{-\frac{\beta^{2} n^{2}}{4 t}}
$$

we obtain

$$
\begin{aligned}
& \zeta_{P}(s)=\frac{\beta}{2 \sqrt{\pi} \Gamma(s)} \Gamma\left(s-\frac{1}{2}\right) \zeta_{\Delta}\left(s-\frac{1}{2}\right) \\
&+\frac{\beta}{\sqrt{\pi} \Gamma(s)} \int_{0}^{\infty} K(t) \sum_{n=1}^{\infty} e^{-\frac{\beta^{2} n^{2}}{4 t}} t^{s-\frac{3}{2}} d t
\end{aligned}
$$

## Regularised determinant of $P$

The regularised determinant ("product of eigenvalues") of $P$ is given by

$$
\operatorname{det}(P)=\exp \left(-\zeta_{P}^{\prime}(0)\right)
$$

From the expression obtained before, we get

$$
\zeta_{P}^{\prime}(0)=-\beta \zeta_{\Delta}\left(-\frac{1}{2}\right)+\frac{\beta}{\sqrt{\pi}} \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \int_{0}^{\infty} e^{-\frac{\beta^{2} n^{2}}{4 t}-\lambda_{j} t} t^{-\frac{3}{2}} d t
$$

The integral and the summation over $n$ can be evaluated explicitly, which gives

$$
\zeta_{P}^{\prime}(0)=-\beta \zeta_{\Delta}\left(-\frac{1}{2}\right)-2 \sum_{j=1}^{\infty} \ln \left(1-e^{-\beta \sqrt{\lambda_{j}}}\right)
$$

## Casimir energy

The energy of the system is then given by

$$
E=-\frac{1}{2} \frac{\partial}{\partial \beta} \zeta_{P}^{\prime}(0)=\frac{1}{2} \zeta_{\Delta}\left(-\frac{1}{2}\right)+\sum_{j=1}^{\infty} \frac{\sqrt{\lambda_{j}}}{e^{\beta \sqrt{\lambda_{j}}}-1} .
$$

The zero point or Casimir energy of the system is then obtained by letting the temperature tend to 0 , which is equivalent to letting $\beta$ tend to $\infty$. This gives

$$
E_{\mathrm{Cas}}=\frac{1}{2} \zeta_{\Delta}\left(-\frac{1}{2}\right) .
$$

## Numerical computations

The very explicit procedure used for the analytic continuation of $\zeta_{\Delta}$ allows for the numerical computation of $\zeta_{\Delta}\left(-\frac{1}{2}\right)$ to arbitrary precision.
We computed

$$
E_{\mathrm{Cas}}^{\mathrm{D}}=0.5474693544 \ldots
$$

for the Casimir energy of the two-dimensional Sierpiński gasket with Dirichlet boundary conditions.

$$
E_{\mathrm{Cas}}^{\mathrm{N}}=2.134394089264 \ldots
$$

for Neumann boundary conditions.

