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Definition

(a) An n × n real matrix B is expansive if all of its eigenvalues λi
satisfy |λi | > 1.

(b) A set D = {d1, d2, . . . , dm} ⊆ Rn of m distinct vectors with
0 ∈ D is called a digit set.

(c) Given B and D as above, the self-affine set K (B,D) is the
unique compact set K ⊂ Rn satisfying the set-valued equation

BK =
m⋃
i=1

(K + di ).

Note that K ⊂ BK since 0 ∈ D.



For example, if we take n = 1, B = 2, D = {0, 1}, then
K = [0, 1].

If we take n = 1, B = 3, D = {0, 2}, we get K is the ternary
Cantor set.

Definition

(a) Given B and D as above, we can define the maps
fi (x) = B−1(x + di ), 1 ≤ i ≤ m, x ∈ Rn, which define the
corresponding ISF ( “Iterated function system”) and we have

K =
m⋃
i=1

fi (K ).

(b) We say that the IFS {fi}mi=1 satisfies the open set condition if
there exists a non-empty bounded open set V such that

m⋃
i=1

fi (V ) ⊂ V and fi (V )
⋂

fj(V ) = ∅ for i 6= j .



Definition

Given B and D as above, we define for k ≥ 1,

Dk :=
{ k−1∑

j=0

B jdj : dj ∈ D, j > 0
}
, and D∞ :=

∞⋃
k=1

Dk .

For ex., if n = 1, B = 2, D = {0, 1}, D∞ = {0, 1, 2, 3, 4, . . . }.
If n = 1, B = 3, D = {0, 2},
D∞ = {0, 2, 6, 8, 4, 18, 20, 24, 26, . . . }

Theorem (He-Lau)

The IFS {fi}mi=1 satisfies the open set condition if and only if D∞
is a uniformly discrete set and the mk expansions in Dk are distinct
for all k ≥ 1.



Definition

If the matrix B above has the form B = ρR, where ρ > 1 and R is
an orthogonal matrix, then B is called a similarity with scaling
factor ρ and the corresponding set K is called a self-similar set.

Our main goal in this talk is to exhibit a relationship between
the Lebesgue measure |K | of K or a certain Hausdorff
measure Hs(K ), where 0 < s ≤ n, and an appropriate notion
of density for the (discrete) measure µ defined by

µ = lim
k→∞

∑
d0,...,dk−1∈D

δd0+Bd1+···+Bk−1dk−1
,

Note that µ =
∑

a∈D∞ δa if the expansions defining Dk are all
distinct for any k ≥ 1.



The relationship will hold in the following two situations:

The case where B is a general expansive matrix and
m = | det(B)|.
The case where B is called a similarity with scaling factor
ρ > 1 and m ≤ | det(B)|.



The case m = | det(B)| with B expansive

In this case, Lagarias and Wang proved the following result:

Theorem (Lagarias & Wang)

The following four conditions are equivalent.

(i) K (B,D) has positive Lebesgue measure.
(ii) K (B,D) has non-empty interior.
(iii) K (B,D) is the closure of its interior K◦, and its boundary has

zero Lebesgue measure.
(iv) For each k ≥ 1, all mk expansions in Dk are distinct, and D∞

is a uniformly discrete set.



Definition

Let µ be a Borel measure in Rn. The upper Beurling density of the
measure µ is defined by

D+(µ) = lim sup
N→∞

sup
z∈Rn

µ(IN(z))

Nn
,

and the lower Beurling density of the measure µ is defined by

D−(µ) = lim inf
N→∞

inf
z∈Rn

µ(IN(z))

Nn
,

where IN(z) =
{

y ∈ Rn, |yi − zi | ≤ N
2 , i = 1, . . . , n

}
.

If D+(µ) = D−(µ), we say that the Beurling density of the
measure µ exists and we denote it as D(µ).



If Λ ⊂ Rn is a discrete set, we also define D+(Λ) and D−(Λ)
as D+(µ) and D−(µ), where µ =

∑
λ∈Λ δλ respectively.

Definition

A positive Borel measure µ on Rn is called translation-bounded if,
for every compact set K ⊂ Rn, there exists a constant Cµ(K ) ≥ 0
such that µ(K + z) ≤ Cµ(K ), z ∈ Rn.

Lemma

A positive Borel measure µ on Rn is translation-bounded if and
only if D+(µ) <∞.

Theorem (G.)

Let P(Rn) = {f ∈ L1(Rn), f ≥ 0,
∫

f dx = 1} and let µ be a
positive Borel measure on Rn. Then,

D+(µ) = inf{C ≥ 0, µ ∗ f ≤ C a.e. for some f ∈ P(Rn)}.



This last result implies in particular that if µ is a positive
Borel measure µ on Rn, if F ≥ 0 is integrable and µ ∗ F ≤ C
where C ≥ 0, then D+(µ)

∫
F dx ≤ C .

Theorem

Let B ∈ Mn(R) be an expansive matrix with |det B| = m ∈ Z and
let D be a finite subset of Rn with card(D) = m. Then,
|K (B,D)| = (D+(µ))−1, where

µ = lim
k→∞

∑
d0,...,dk−1∈D

δd0+Bd1+···+Bk−1dk−1
,

with the convention that |K (B,D)| = 0 if D+(µ) =∞.



Idea of the proof in the case when |K (B,D)| > 0:

We have µ =
∑

λ∈D∞
δλ by the result of Lagarias and Wang.

Since BkK = ∪d∈Dk
K + d , we have

µ ∗ χK = lim
k→∞

∑
d∈Dk

χK+d = lim
k→∞

χBkK = χ∪kBkK ≤ 1

which implies that D+(µ) |K | ≤ 1.

On the other hand, using that same result, K contains an
open ball and thus ∪kBkK contains balls of arbitrarily large
radii since B is expansive.

This implies that D+(µ ∗ χK ) ≥ 1 and thus that
D+(µ) |K | ≥ 1.

Hence, D+(µ) |K | = 1.



Using the previous result as well as the results of He-Lau,
Lagarias-Wang, we obtain:

Theorem

Let B ∈ Mn(R) be an expansive matrix with |det B| = m ∈ Z and
let D be a finite subset of Rn with card(D) = m.

(i) The IFS {fi}mi=1 satisfies the open set condition.
(ii) The mk expansions in Dk are distinct for all k ≥ 1 and D∞ is

a uniformly discrete set.
(iii) |K (B,D)| > 0
(iv) 0 < D+(µ) <∞.
(v) µ is translation-bounded.



Information about the structure of K can also be extracted from
the lower Beurling density of µ.

Theorem

Under the previous condition, suppose that |K (B,D)| > 0. Then,
then we have the following alternative:

(a) either K contains a neighborhood of 0 and
D+(D∞) = D−(D∞) = 1

|K | .

(b) or, K does not contain a neighborhood of 0 and
D+(D∞) = 1

|K | and D−(D∞) = 0.



The case m < | det(B)|, B a similarity with factor ρ > 1.

Recall the definition of Hausdorff measure:

Definition

Let E be a subset of Rn and let s ≥ 0. For δ > 0, define

Hs
δ(E ) = inf

{ ∞∑
i=1

[diam(Ui )]s : E ⊆
∞⋃
i=1

Ui , diam(Ui ) < δ
}
.

Then, the s-dimensional Hausdorff measure of E is defined by

Hs(E ) = lim
δ→0
Hs
δ(E ) = sup

δ>0
Hs
δ(E ).

Note that this definition Hn(E ) = cn |E | if E is Borel, where
cn 6= 1 if n ≥ 2.



Given B a similarity with factor ρ > 1, consider the
contractions fi , 1 ≤ i ≤ m. By a classical result of
Hutchinson, there is a unique Borel probability measure σ
supported on the set K (B,D) satisfying∫

f dσ =
1

m

m∑
i=1

∫
f ◦ fi dσ, f ∈ Cc(Rn).

The number s = logρ(m) is called the similarity dimension of
the set K (B,D).

Theorem (Falconer)

Suppose that the open set condition holds for the similarities
fi , 1 ≤ i ≤ m on Rn with ratio ρ > 1. Then the Hausdorff
dimension of K (B,D) is given by the formula s := logρ(m).
Moreover, for this value of s, the corresponding Hausdorff measure
of K (B,D) is positive and finite, i.e. 0 < Hs(K ) <∞.



Falconer proved that the probablity measure σ in the result of
Hutchinson’s is the restriction of Hs to K normalized so as to
give σ(K ) = 1.

Definition

If µ is a positive Borel measure on Rn, we define the upper
s-density of µ to be the quantity

E+
s (µ) = lim sup

r→∞
sup

diam(U)≥r>0

µ(U)

[diam(U)]s
,

where the supremum is over all compact convex sets U with
diam(U) ≥ r > 0.

Lemma

Let µ be a positive Borel measure on Rn and σ be a Borel

probability measure. Then, E+
s (µ ∗ σ) = E+

s (µ).



Definition

(a) A subset E ⊂ Rn is called an s-set (0 ≤ s ≤ n) if E is
Hs -measurable and 0 < Hs(E ) <∞.

(b) If E is an s-set E and x ∈ Rn, we define the upper convex
density of E at x , to be the quantity

Ds
c (E , x) = lim

r→0
sup

0<diam(U)≤r

Hs(E
⋂

U)

[diam(U)]s
,

where the supremum is over all convex sets U with x ∈ U and
0 < diam(U) ≤ r .

Theorem (Falconer)

If E is an s-set in Rn, then Ds
c (E , x) = 1 at Hs -almost all x ∈ E

and Ds
c (E , x) = 0 at Hs -almost all x ∈ E c .



Corollary

Let K be a self-similar set and contractions fi , 1 ≤ i ≤ m satisfy
the open set condition. Then

lim
r→0

sup
0<diam(U)≤r

σ(U)

[diam(U)]s
= (Hs(K ))−1,

where s is the Hausdorff dimension of the set K , σ is the
Hutchinson probability measure and the supremum is taken over all
convex sets U with U

⋂
K 6= ∅ and 0 < diam(U) ≤ r .

Lemma

Let σ and K be as above.and define

µN =
∑

d0,...,dN−1∈D
δd0+Bd1+···+BN−1dN−1

.

Then, for any Borel measurable set W ⊂ Rn, we have
σ(B−NW ) = 1

mN µN ∗ σ(W ).



Theorem

Let K be a self-similar set and s := logρ(m) ≤ n be the similarity
dimension of K . Then

Hs(K ) = (E+
s (µ))−1,

where µ = limN→∞ µN , with the convention that E+
s (µ) =∞ if

Hs(K ) = 0.

Corollary

Under the same conditions, we have

D+(µ) =∞ ⇐⇒ E+
s (µ) =∞.


