Measure of Self-Affine Sets and Associated Densities

Jean-Pierre Gabardo

McMaster University Department of Mathematics and Statistics gabardo@mcmaster.ca

December 18, 2012

Joint work with Xiaoye Fu

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

- (a) An n × n real matrix B is expansive if all of its eigenvalues λ_i satisfy |λ_i| > 1.
- (b) A set $\mathcal{D} = \{d_1, d_2, \dots, d_m\} \subseteq \mathbb{R}^n$ of *m* distinct vectors with $0 \in \mathcal{D}$ is called a digit set.
- (c) Given B and D as above, the self-affine set K(B, D) is the unique compact set $K \subset \mathbb{R}^n$ satisfying the set-valued equation

$$BK = \bigcup_{i=1}^m (K + d_i).$$

< □ > < @ > < 注 > < 注 > ... 注

• Note that $K \subset BK$ since $0 \in \mathcal{D}$.

- For example, if we take n = 1, B = 2, $\mathcal{D} = \{0, 1\}$, then $\mathcal{K} = [0, 1]$.
- If we take n = 1, B = 3, $D = \{0, 2\}$, we get K is the ternary Cantor set.

- (a) Given B and D as above, we can define the maps $f_i(x) = B^{-1}(x + d_i), \ 1 \le i \le m, \quad x \in \mathbb{R}^n$, which define the corresponding ISF ("Iterated function system") and we have $\mathcal{K} = \bigcup_{i=1}^m f_i(\mathcal{K}).$
- (b) We say that the IFS $\{f_i\}_{i=1}^m$ satisfies the open set condition if there exists a non-empty bounded open set V such that

$$\bigcup_{i=1}^m f_i(V) \subset V \text{ and } f_i(V) \bigcap f_j(V) = \emptyset \text{ for } i \neq j.$$

Given *B* and \mathcal{D} as above, we define for $k \geq 1$,

$$\mathcal{D}_k := \Big\{ \sum_{j=0}^{k-1} B^j d_j : d_j \in \mathcal{D}, j \ge 0 \Big\}, \quad \text{and} \quad \mathcal{D}_\infty := \bigcup_{k=1}^\infty \mathcal{D}_k.$$

• For ex., if n = 1, B = 2, $\mathcal{D} = \{0, 1\}$, $\mathcal{D}_{\infty} = \{0, 1, 2, 3, 4, ...\}$. • If n = 1, B = 3, $\mathcal{D} = \{0, 2\}$, $\mathcal{D}_{\infty} = \{0, 2, 6, 8, 4, 18, 20, 24, 26, ...\}$

Theorem (He-Lau)

The IFS $\{f_i\}_{i=1}^m$ satisfies the open set condition if and only if \mathcal{D}_{∞} is a uniformly discrete set and the m^k expansions in \mathcal{D}_k are distinct for all $k \geq 1$.

If the matrix *B* above has the form $B = \rho R$, where $\rho > 1$ and *R* is an orthogonal matrix, then *B* is called a similarity with scaling factor ρ and the corresponding set *K* is called a self-similar set.

• Our main goal in this talk is to exhibit a relationship between the Lebesgue measure |K| of K or a certain Hausdorff measure $\mathcal{H}^{s}(K)$, where $0 < s \leq n$, and an appropriate notion of density for the (discrete) measure μ defined by

$$\mu = \lim_{k \to \infty} \sum_{d_0, \dots, d_{k-1} \in \mathcal{D}} \delta_{d_0 + Bd_1 + \dots + B^{k-1}d_{k-1}},$$

Note that μ = ∑_{a∈D∞} δ_a if the expansions defining D_k are all distinct for any k ≥ 1.

The relationship will hold in the following two situations:

- The case where B is a general expansive matrix and m = |det(B)|.
- The case where B is called a similarity with scaling factor $\rho > 1$ and $m \le |\det(B)|$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

In this case, Lagarias and Wang proved the following result:

Theorem (Lagarias & Wang)

The following four conditions are equivalent.

- (i) K(B, D) has positive Lebesgue measure.
- (ii) K(B, D) has non-empty interior.
- (iii) K(B,D) is the closure of its interior K°, and its boundary has zero Lebesgue measure.
- (iv) For each $k \ge 1$, all m^k expansions in \mathcal{D}_k are distinct, and \mathcal{D}_{∞} is a uniformly discrete set.

Let μ be a Borel measure in \mathbb{R}^n . The upper Beurling density of the measure μ is defined by

$$D^+(\mu) = \limsup_{N \to \infty} \sup_{z \in \mathbb{R}^n} \frac{\mu(I_N(z))}{N^n},$$

and the lower Beurling density of the measure μ is defined by

$$D^{-}(\mu) = \liminf_{N \to \infty} \inf_{z \in \mathbb{R}^n} \frac{\mu(I_N(z))}{N^n},$$

where $I_N(z) = \left\{ y \in \mathbb{R}^n, |y_i - z_i| \le \frac{N}{2}, i = 1, ..., n \right\}$. If $D^+(\mu) = D^-(\mu)$, we say that the Beurling density of the measure μ exists and we denote it as $D(\mu)$.

(日) (四) (코) (코) (코)

• If $\Lambda \subset \mathbb{R}^n$ is a discrete set, we also define $D^+(\Lambda)$ and $D^-(\Lambda)$ as $D^+(\mu)$ and $D^-(\mu)$, where $\mu = \sum_{\lambda \in \Lambda} \delta_{\lambda}$ respectively.

Definition

A positive Borel measure μ on \mathbb{R}^n is called translation-bounded if, for every compact set $K \subset \mathbb{R}^n$, there exists a constant $C_{\mu}(K) \ge 0$ such that $\mu(K + z) \le C_{\mu}(K)$, $z \in \mathbb{R}^n$.

Lemma

A positive Borel measure μ on \mathbb{R}^n is translation-bounded if and only if $D^+(\mu) < \infty$.

Theorem (G.)

Let $\mathcal{P}(\mathbb{R}^n) = \{ f \in L^1(\mathbb{R}^n), f \ge 0, \int f \, dx = 1 \}$ and let μ be a positive Borel measure on \mathbb{R}^n . Then,

 $D^+(\mu) = \inf\{C \ge 0, \ \mu * f \le C \text{ a.e. for some } f \in \mathcal{P}(\mathbb{R}^n)\}.$

This last result implies in particular that if μ is a positive Borel measure μ on \mathbb{R}^n , if $F \ge 0$ is integrable and $\mu * F \le C$ where $C \ge 0$, then $D^+(\mu) \int F dx \le C$.

Theorem

Let $B \in M_n(\mathbb{R})$ be an expansive matrix with $|\det B| = m \in \mathbb{Z}$ and let \mathcal{D} be a finite subset of \mathbb{R}^n with $card(\mathcal{D}) = m$. Then, $|\mathcal{K}(B,\mathcal{D})| = (D^+(\mu))^{-1}$, where

$$\mu = \lim_{k \to \infty} \sum_{d_0, \dots, d_{k-1} \in \mathcal{D}} \delta_{d_0 + Bd_1 + \dots + B^{k-1}d_{k-1}},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

with the convention that |K(B, D)| = 0 if $D^+(\mu) = \infty$.

Idea of the proof in the case when |K(B, D)| > 0:

- We have $\mu = \sum_{\lambda \in \mathcal{D}_{\infty}} \delta_{\lambda}$ by the result of Lagarias and Wang.
- Since $B^k K = \bigcup_{d \in \mathcal{D}_k} K + d$, we have

$$\mu * \chi_{K} = \lim_{k \to \infty} \sum_{d \in \mathcal{D}_{k}} \chi_{K+d} = \lim_{k \to \infty} \chi_{B^{k}K} = \chi_{\cup_{k} B^{k}K} \le 1$$

which implies that $D^+(\mu) |\mathcal{K}| \leq 1$.

On the other hand, using that same result, K contains an open ball and thus ∪_kB^kK contains balls of arbitrarily large radii since B is expansive.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- This implies that $D^+(\mu * \chi_{\kappa}) \ge 1$ and thus that $D^+(\mu) |\kappa| \ge 1$.
- Hence, $D^+(\mu) |K| = 1$.

Using the previous result as well as the results of He-Lau, Lagarias-Wang, we obtain:

Theorem

Let $B \in M_n(\mathbb{R})$ be an expansive matrix with $|\det B| = m \in \mathbb{Z}$ and let \mathcal{D} be a finite subset of \mathbb{R}^n with $card(\mathcal{D}) = m$.

- (i) The IFS ${f_i}_{i=1}^m$ satisfies the open set condition.
- (ii) The m^k expansions in \mathcal{D}_k are distinct for all $k \ge 1$ and \mathcal{D}_{∞} is a uniformly discrete set.

< □ > < @ > < 注 > < 注 > ... 注

(iii)
$$|K(B,\mathcal{D})| > 0$$

(iv)
$$0 < D^+(\mu) < \infty$$
.

(v) μ is translation-bounded.

Information about the structure of K can also be extracted from the lower Beurling density of μ .

Theorem

Under the previous condition, suppose that |K(B, D)| > 0. Then, then we have the following alternative:

<ロト <四ト <注入 <注下 <注下 <

- (a) either K contains a neighborhood of 0 and $D^+(\mathcal{D}_{\infty}) = D^-(\mathcal{D}_{\infty}) = \frac{1}{|K|}.$
- (b) or, K does not contain a neighborhood of 0 and $D^+(\mathcal{D}_{\infty}) = \frac{1}{|K|}$ and $D^-(\mathcal{D}_{\infty}) = 0$.

The case $m < |\det(B)|$, B a similarity with factor $\rho > 1$.

Recall the definition of Hausdorff measure:

Definition

Let *E* be a subset of \mathbb{R}^n and let $s \ge 0$. For $\delta > 0$, define

$$\mathcal{H}^{\mathfrak{s}}_{\delta}(E) = \inf \Big\{ \sum_{i=1}^{\infty} [\operatorname{diam}(U_i)]^{\mathfrak{s}} : E \subseteq \bigcup_{i=1}^{\infty} U_i, \operatorname{diam}(U_i) < \delta \Big\}.$$

Then, the s-dimensional Hausdorff measure of E is defined by

$$\mathcal{H}^{s}(E) = \lim_{\delta \to 0} \mathcal{H}^{s}_{\delta}(E) = \sup_{\delta > 0} \mathcal{H}^{s}_{\delta}(E).$$

Note that this definition $\mathcal{H}^n(E) = c_n |E|$ if E is Borel, where $c_n \neq 1$ if $n \geq 2$.

Given B a similarity with factor $\rho > 1$, consider the contractions f_i , $1 \le i \le m$. By a classical result of Hutchinson, there is a unique Borel probability measure σ supported on the set K(B, D) satisfying

$$\int f \ d\sigma = \frac{1}{m} \sum_{i=1}^m \int f \circ f_i \ d\sigma, \quad f \in C_c(\mathbb{R}^n).$$

■ The number s = log_ρ(m) is called the similarity dimension of the set K(B, D).

Theorem (Falconer)

Suppose that the open set condition holds for the similarities f_i , $1 \le i \le m$ on \mathbb{R}^n with ratio $\rho > 1$. Then the Hausdorff dimension of K(B, D) is given by the formula $s := \log_{\rho}(m)$. Moreover, for this value of s, the corresponding Hausdorff measure of K(B, D) is positive and finite, i.e. $0 < \mathcal{H}^s(K) < \infty$. Falconer proved that the probablity measure σ in the result of Hutchinson's is the restriction of H^s to K normalized so as to give σ(K) = 1.

Definition

If μ is a positive Borel measure on \mathbb{R}^n , we define the upper *s*-density of μ to be the quantity

$$\mathcal{E}^+_s(\mu) = \limsup_{r o \infty} \sup_{\mathsf{diam}(U) \geq r > 0} \, rac{\mu(U)}{[\mathsf{diam}(U)]^s},$$

where the supremum is over all compact convex sets U with diam $(U) \ge r > 0$.

Lemma

Let μ be a positive Borel measure on \mathbb{R}^n and σ be a Borel probability measure. Then, $\mathcal{E}_s^+(\mu * \sigma) = \mathcal{E}_s^+(\mu)$.

- (a) A subset $E \subset \mathbb{R}^n$ is called an *s*-set $(0 \le s \le n)$ if E is \mathcal{H}^s -measurable and $0 < \mathcal{H}^s(E) < \infty$.
- (b) If E is an s-set E and x ∈ ℝⁿ, we define the upper convex density of E at x, to be the quantity

$$D_c^s(E,x) = \overline{\lim_{r \to 0}} \sup_{0 < \operatorname{diam}(U) \le r} \frac{\mathcal{H}^s(E \cap U)}{[\operatorname{diam}(U)]^s},$$

where the supremum is over all convex sets U with $x \in U$ and $0 < \operatorname{diam}(U) \le r$.

Theorem (Falconer)

If E is an s-set in \mathbb{R}^n , then $D_c^s(E, x) = 1$ at \mathcal{H}^s -almost all $x \in E$ and $D_c^s(E, x) = 0$ at \mathcal{H}^s -almost all $x \in E^c$.

Corollary

Let K be a self-similar set and contractions f_i , $1 \le i \le m$ satisfy the open set condition. Then

$$\overline{\lim_{r \to 0}} \sup_{0 < diam(U) \le r} \frac{\sigma(U)}{[diam(U)]^s} = (\mathcal{H}^s(\mathcal{K}))^{-1},$$

where s is the Hausdorff dimension of the set K, σ is the Hutchinson probability measure and the supremum is taken over all convex sets U with $U \bigcap K \neq \emptyset$ and $0 < \operatorname{diam}(U) \leq r$.

Lemma

Let σ and K be as above.and define

$$\mu_N = \sum_{d_0, \dots, d_{N-1} \in \mathcal{D}} \delta_{d_0 + Bd_1 + \dots + B^{N-1}d_{N-1}}.$$

Then, for any Borel measurable set $W \subset \mathbb{R}^n$, we have $\sigma(B^{-N}W) = \frac{1}{m^N}\mu_N * \sigma(W)$.

ト ・ 母 ト ・ 言 ト ・ 言 ト ・ 言 ・ クタで

Theorem

Let K be a self-similar set and $s := \log_{\rho}(m) \le n$ be the similarity dimension of K. Then

$$\mathcal{H}^{s}(K) = (\mathcal{E}^{+}_{s}(\mu))^{-1},$$

where $\mu = \lim_{N \to \infty} \mu_N$, with the convention that $\mathcal{E}_s^+(\mu) = \infty$ if $\mathcal{H}^s(K) = 0$.

Corollary

Under the same conditions, we have

$$D^+(\mu) = \infty \iff \mathcal{E}^+_s(\mu) = \infty.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで