Measure of Self-Affine Sets and Associated Densities

Jean-Pierre Gabardo

McMaster University
Department of Mathematics and Statistics
gabardo@mcmaster.ca

December 18, 2012

Joint work with Xiaoye Fu

- Definition

(a) An $n \times n$ real matrix B is expansive if all of its eigenvalues λ_{i} satisfy $\left|\lambda_{i}\right|>1$.
(b) A set $\mathcal{D}=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\} \subseteq \mathbb{R}^{n}$ of m distinct vectors with $0 \in \mathcal{D}$ is called a digit set.
(c) Given B and \mathcal{D} as above, the self-affine set $K(B, \mathcal{D})$ is the unique compact set $K \subset \mathbb{R}^{n}$ satisfying the set-valued equation

$$
B K=\bigcup_{i=1}^{m}\left(K+d_{i}\right) .
$$

- Note that $K \subset B K$ since $0 \in \mathcal{D}$.
- For example, if we take $n=1, B=2, \mathcal{D}=\{0,1\}$, then $K=[0,1]$.
- If we take $n=1, B=3, \mathcal{D}=\{0,2\}$, we get K is the ternary Cantor set.

Definition

(a) Given B and \mathcal{D} as above, we can define the maps $f_{i}(x)=B^{-1}\left(x+d_{i}\right), 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}$, which define the corresponding ISF ("Iterated function system") and we have
$K=\bigcup_{i=1}^{m} f_{i}(K)$.
(b) We say that the IFS $\left\{f_{i}\right\}_{i=1}^{m}$ satisfies the open set condition if there exists a non-empty bounded open set V such that

$$
\bigcup_{i=1}^{m} f_{i}(V) \subset V \text { and } f_{i}(V) \bigcap f_{j}(V)=\emptyset \text { for } i \neq j .
$$

Definition

Given B and \mathcal{D} as above, we define for $k \geq 1$,

$$
\mathcal{D}_{k}:=\left\{\sum_{j=0}^{k-1} B^{j} d_{j}: d_{j} \in \mathcal{D}, j \geqslant 0\right\}, \quad \text { and } \quad \mathcal{D}_{\infty}:=\bigcup_{k=1}^{\infty} \mathcal{D}_{k} .
$$

■ For ex., if $n=1, B=2, \mathcal{D}=\{0,1\}, \mathcal{D}_{\infty}=\{0,1,2,3,4, \ldots\}$.

- If $n=1, B=3, \mathcal{D}=\{0,2\}$,

$$
\mathcal{D}_{\infty}=\{0,2,6,8,4,18,20,24,26, \ldots\}
$$

Theorem (He-Lau)

The IFS $\left\{f_{i}\right\}_{i=1}^{m}$ satisfies the open set condition if and only if \mathcal{D}_{∞} is a uniformly discrete set and the m^{k} expansions in \mathcal{D}_{k} are distinct for all $k \geq 1$.

Definition

If the matrix B above has the form $B=\rho R$, where $\rho>1$ and R is an orthogonal matrix, then B is called a similarity with scaling factor ρ and the corresponding set K is called a self-similar set.

- Our main goal in this talk is to exhibit a relationship between the Lebesgue measure $|K|$ of K or a certain Hausdorff measure $\mathcal{H}^{s}(K)$, where $0<s \leq n$, and an appropriate notion of density for the (discrete) measure μ defined by

$$
\mu=\lim _{k \rightarrow \infty} \sum_{d_{0}, \ldots, d_{k-1} \in \mathcal{D}} \delta_{d_{0}+B d_{1}+\cdots+B^{k-1} d_{k-1}}
$$

- Note that $\mu=\sum_{a \in \mathcal{D}_{\infty}} \delta_{a}$ if the expansions defining \mathcal{D}_{k} are all distinct for any $k \geq 1$.

The relationship will hold in the following two situations:

- The case where B is a general expansive matrix and $m=|\operatorname{det}(B)|$.
- The case where B is called a similarity with scaling factor $\rho>1$ and $m \leq|\operatorname{det}(B)|$.

The case $m=|\operatorname{det}(B)|$ with B expansive

In this case, Lagarias and Wang proved the following result:

Theorem (Lagarias \& Wang)

The following four conditions are equivalent.
(i) $K(B, \mathcal{D})$ has positive Lebesgue measure.
(ii) $K(B, \mathcal{D})$ has non-empty interior.
(iii) $K(B, \mathcal{D})$ is the closure of its interior K°, and its boundary has zero Lebesgue measure.
(iv) For each $k \geq 1$, all m^{k} expansions in \mathcal{D}_{k} are distinct, and \mathcal{D}_{∞} is a uniformly discrete set.

Definition

Let μ be a Borel measure in \mathbb{R}^{n}. The upper Beurling density of the measure μ is defined by

$$
D^{+}(\mu)=\limsup _{N \rightarrow \infty} \sup _{z \in \mathbb{R}^{n}} \frac{\mu\left(I_{N}(z)\right)}{N^{n}}
$$

and the lower Beurling density of the measure μ is defined by

$$
D^{-}(\mu)=\liminf _{N \rightarrow \infty} \inf _{z \in \mathbb{R}^{n}} \frac{\mu\left(I_{N}(z)\right)}{N^{n}}
$$

where $I_{N}(z)=\left\{y \in \mathbb{R}^{n},\left|y_{i}-z_{i}\right| \leq \frac{N}{2}, i=1, \ldots, n\right\}$.
If $D^{+}(\mu)=D^{-}(\mu)$, we say that the Beurling density of the measure μ exists and we denote it as $D(\mu)$.

- If $\Lambda \subset \mathbb{R}^{n}$ is a discrete set, we also define $D^{+}(\Lambda)$ and $D^{-}(\Lambda)$ as $D^{+}(\mu)$ and $D^{-}(\mu)$, where $\mu=\sum_{\lambda \in \Lambda} \delta_{\lambda}$ respectively.

Definition

A positive Borel measure μ on \mathbb{R}^{n} is called translation-bounded if, for every compact set $K \subset \mathbb{R}^{n}$, there exists a constant $C_{\mu}(K) \geq 0$ such that $\mu(K+z) \leq C_{\mu}(K), z \in \mathbb{R}^{n}$.

Lemma

A positive Borel measure μ on \mathbb{R}^{n} is translation-bounded if and only if $D^{+}(\mu)<\infty$.

Theorem (G.)

Let $\mathcal{P}\left(\mathbb{R}^{n}\right)=\left\{f \in L^{1}\left(\mathbb{R}^{n}\right), f \geq 0, \int f d x=1\right\}$ and let μ be a positive Borel measure on \mathbb{R}^{n}. Then,

$$
D^{+}(\mu)=\inf \left\{C \geq 0, \mu * f \leq C \text { a.e. for some } f \in \mathcal{P}\left(\mathbb{R}^{n}\right)\right\}
$$

- This last result implies in particular that if μ is a positive Borel measure μ on \mathbb{R}^{n}, if $F \geq 0$ is integrable and $\mu * F \leq C$ where $C \geq 0$, then $D^{+}(\mu) \int F d x \leq C$.

Theorem

Let $B \in M_{n}(\mathbb{R})$ be an expansive matrix with $|\operatorname{det} B|=m \in \mathbb{Z}$ and let \mathcal{D} be a finite subset of \mathbb{R}^{n} with $\operatorname{card}(\mathcal{D})=m$. Then, $|K(B, \mathcal{D})|=\left(D^{+}(\mu)\right)^{-1}$, where

$$
\mu=\lim _{k \rightarrow \infty} \sum_{d_{0}, \ldots, d_{k-1} \in \mathcal{D}} \delta_{d_{0}+B d_{1}+\cdots+B^{k-1} d_{k-1}},
$$

with the convention that $|K(B, \mathcal{D})|=0$ if $D^{+}(\mu)=\infty$.

Idea of the proof in the case when $|K(B, \mathcal{D})|>0$:
■ We have $\mu=\sum_{\lambda \in \mathcal{D}_{\infty}} \delta_{\lambda}$ by the result of Lagarias and Wang.

- Since $B^{k} K=\cup_{d \in \mathcal{D}_{k}} K+d$, we have

$$
\mu * \chi_{K}=\lim _{k \rightarrow \infty} \sum_{d \in \mathcal{D}_{k}} \chi_{K+d}=\lim _{k \rightarrow \infty} \chi_{B^{k} K}=\chi_{\cup_{k} B^{k} K} \leq 1
$$

which implies that $D^{+}(\mu)|K| \leq 1$.

- On the other hand, using that same result, K contains an open ball and thus $\cup_{k} B^{k} K$ contains balls of arbitrarily large radii since B is expansive.
- This implies that $D^{+}\left(\mu * \chi_{K}\right) \geq 1$ and thus that $D^{+}(\mu)|K| \geq 1$.
- Hence, $D^{+}(\mu)|K|=1$.

Using the previous result as well as the results of He-Lau, Lagarias-Wang, we obtain:

Theorem

Let $B \in M_{n}(\mathbb{R})$ be an expansive matrix with $|\operatorname{det} B|=m \in \mathbb{Z}$ and let \mathcal{D} be a finite subset of \mathbb{R}^{n} with $\operatorname{card}(\mathcal{D})=m$.
(i) The IFS $\left\{f_{i}\right\}_{i=1}^{m}$ satisfies the open set condition.
(ii) The m^{k} expansions in \mathcal{D}_{k} are distinct for all $k \geq 1$ and \mathcal{D}_{∞} is a uniformly discrete set.
(iii) $|K(B, \mathcal{D})|>0$
(iv) $0<D^{+}(\mu)<\infty$.
(v) μ is translation-bounded.

Information about the structure of K can also be extracted from the lower Beurling density of μ.

- Theorem

Under the previous condition, suppose that $|K(B, \mathcal{D})|>0$. Then, then we have the following alternative:
(a) either K contains a neighborhood of 0 and

$$
D^{+}\left(\mathcal{D}_{\infty}\right)=D^{-}\left(\mathcal{D}_{\infty}\right)=\frac{1}{|K|} .
$$

(b) or, K does not contain a neighborhood of 0 and
$D^{+}\left(\mathcal{D}_{\infty}\right)=\frac{1}{|K|}$ and $D^{-}\left(\mathcal{D}_{\infty}\right)=0$.

The case $m<|\operatorname{det}(B)|, B$ a similarity with factor $\rho>1$.

Recall the definition of Hausdorff measure:

Definition

Let E be a subset of \mathbb{R}^{n} and let $s \geq 0$. For $\delta>0$, define

$$
\mathcal{H}_{\delta}^{s}(E)=\inf \left\{\sum_{i=1}^{\infty}\left[\operatorname{diam}\left(U_{i}\right)\right]^{s}: E \subseteq \bigcup_{i=1}^{\infty} U_{i}, \operatorname{diam}\left(U_{i}\right)<\delta\right\}
$$

Then, the s-dimensional Hausdorff measure of E is defined by

$$
\mathcal{H}^{s}(E)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{s}(E)=\sup _{\delta>0} \mathcal{H}_{\delta}^{s}(E)
$$

- Note that this definition $\mathcal{H}^{n}(E)=c_{n}|E|$ if E is Borel, where $c_{n} \neq 1$ if $n \geq 2$.
- Given B a similarity with factor $\rho>1$, consider the contractions $f_{i}, 1 \leq i \leq m$. By a classical result of Hutchinson, there is a unique Borel probability measure σ supported on the set $K(B, \mathcal{D})$ satisfying

$$
\int f d \sigma=\frac{1}{m} \sum_{i=1}^{m} \int f \circ f_{i} d \sigma, \quad f \in C_{c}\left(\mathbb{R}^{n}\right)
$$

- The number $s=\log _{\rho}(m)$ is called the similarity dimension of the set $K(B, \mathcal{D})$.

Theorem (Falconer)

Suppose that the open set condition holds for the similarities $f_{i}, 1 \leq i \leq m$ on \mathbb{R}^{n} with ratio $\rho>1$. Then the Hausdorff dimension of $K(B, \mathcal{D})$ is given by the formula $s:=\log _{\rho}(m)$. Moreover, for this value of s, the corresponding Hausdorff measure of $K(B, \mathcal{D})$ is positive and finite, i.e. $0<\mathcal{H}^{s}(K)<\infty$.

- Falconer proved that the probablity measure σ in the result of Hutchinson's is the restriction of \mathcal{H}^{s} to K normalized so as to give $\sigma(K)=1$.

Definition

If μ is a positive Borel measure on \mathbb{R}^{n}, we define the upper s-density of μ to be the quantity

$$
\mathcal{E}_{s}^{+}(\mu)=\limsup _{r \rightarrow \infty} \sup _{\operatorname{diam}(U) \geq r>0} \frac{\mu(U)}{[\operatorname{diam}(U)]^{s}},
$$

where the supremum is over all compact convex sets U with $\operatorname{diam}(U) \geq r>0$.

Lemma

Let μ be a positive Borel measure on \mathbb{R}^{n} and σ be a Borel probability measure. Then, $\mathcal{E}_{s}^{+}(\mu * \sigma)=\mathcal{E}_{s}^{+}(\mu)$.

Definition

(a) A subset $E \subset \mathbb{R}^{n}$ is called an s-set $(0 \leq s \leq n)$ if E is \mathcal{H}^{s}-measurable and $0<\mathcal{H}^{s}(E)<\infty$.
(b) If E is an s-set E and $x \in \mathbb{R}^{n}$, we define the upper convex density of E at x, to be the quantity

$$
D_{c}^{s}(E, x)=\varlimsup_{r \rightarrow 0} \sup _{0<\operatorname{diam}(U) \leq r} \frac{\mathcal{H}^{s}(E \bigcap U)}{[\operatorname{diam}(U)]^{s}},
$$

where the supremum is over all convex sets U with $x \in U$ and $0<\operatorname{diam}(U) \leq r$.

Theorem (Falconer)

If E is an s-set in \mathbb{R}^{n}, then $D_{c}^{s}(E, x)=1$ at \mathcal{H}^{s}-almost all $x \in E$ and $D_{c}^{s}(E, x)=0$ at \mathcal{H}^{s}-almost all $x \in E^{c}$.

Corollary

Let K be a self-similar set and contractions $f_{i}, 1 \leq i \leq m$ satisfy the open set condition. Then

$$
\varlimsup_{r \rightarrow 0} \sup _{0<\operatorname{diam}(U) \leq r} \frac{\sigma(U)}{[\operatorname{diam}(U)]^{s}}=\left(\mathcal{H}^{s}(K)\right)^{-1}
$$

where s is the Hausdorff dimension of the set K, σ is the Hutchinson probability measure and the supremum is taken over all convex sets U with $U \bigcap K \neq \emptyset$ and $0<\operatorname{diam}(U) \leq r$.

Lemma

Let σ and K be as above.and define

$$
\mu_{N}=\sum_{d_{0}, \ldots, d_{N-1} \in \mathcal{D}} \delta_{d_{0}+B d_{1}+\cdots+B^{N-1} d_{N-1}}
$$

Then, for any Borel measurable set $W \subset \mathbb{R}^{n}$, we have $\sigma\left(B^{-N} W\right)=\frac{1}{m^{N}} \mu_{N} * \sigma(W)$.

- Theorem

Let K be a self-similar set and $s:=\log _{\rho}(m) \leq n$ be the similarity dimension of K. Then

$$
\mathcal{H}^{s}(K)=\left(\mathcal{E}_{s}^{+}(\mu)\right)^{-1}
$$

where $\mu=\lim _{N \rightarrow \infty} \mu_{N}$, with the convention that $\mathcal{E}_{s}^{+}(\mu)=\infty$ if $\mathcal{H}^{s}(K)=0$.

Corollary

Under the same conditions, we have

$$
D^{+}(\mu)=\infty \Longleftrightarrow \mathcal{E}_{s}^{+}(\mu)=\infty
$$

